Arbeit, kinetische und potentielle Energie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Arbeit, kinetische und potentielle Energie"

Transkript

1 1 von :08 Arbeit, kinetische und potentielle Energie Aus SystemPhysik Arbeit, kinetische und potentielle Energie sind ziemlich populär. Entsprechend verschieden werden diese Begriffe verwendet. In der Physik ist Arbeit nur im Zusammenhang mit einem mechanischen Vorgang erklärbar. Der Begriff Arbeit macht nur als Arbeit einer Kraft oder Arbeit eines Drehmoments Sinn, d.h. Arbeit ist die Energie, die ein Körper zusammen mit dem Impuls und dem Drehimpuls austauscht. Unter kinetischer Energie versteht man die Energie, die ein Körper zusammen mit dem Impuls speichert. Die kinetische Energie wird freigesetzt, sobald ein Körper in den Zustand der Ruhe überführt wird, d.h. bei jedem Bremsvorgang fällt der Impuls geschwindigkeitsmässig hinunter und setzt Energie zwischen Körper und Bezugssystem frei. Die potenzielle Energie wird im elektromagnetischen oder im Gravitationsfeld gespeichert. Weil man der Gewichtskraft bzw. der elektrischen Kraft direkt keine Arbeit zuschreibt, bucht man die zugehörige Energie als potenzielle auf das Konto des Körpers. Die kinetische Energie hängt von der Bewegung des Bezugssystems ab. So kann die Masse oder Energie eines Protons, das aus den Weiten des Alls mit beinahe Lichtgeschwindigkeit in die Atmosphäre eintritt, von der Erde aus gesehen mehr als das Tausendfache der Ruhemasse bzw. Ruheenergie betragen. Von einem mit fliegenden Raumschiff aus würde man dagegen nur die Ruhemasse messen. Ähnlich verhält es sich mit der potenziellen Energie. Der absolute Wert der potenziellen Energie wird erst mit der Wahl des Potenzialnullpunktes festgesetzt. Weil sowohl die kinetische als auch die potentielle Energie vom Beobachter und seiner Wahl abhängen, nennt man diese beiden Grössen äussere Energieformen. Die Energie, die dem Körper per se zugeschrieben werden kann, heisst innere Energie. Inhaltsverzeichnis 1 Lernziele 2 Arbeit einer Kraft 3 Potentielle Energie 4 Potenzial 5 Zusammenfassung 6 Bewegung im Graviationsfeld 6.1 Achterbahn 6.2 Satellit 7 Kontrollfragen 8 Antworten zu den Kontrollfragen 9 Materialien Lernziele Sie lernen in dieser Vorlesung wie man die Arbeit einer Kraft berechnet dass die Arbeit einer Kraft bei linearer Bewegung gleich der Fläche unter der Kurve im Kraft- Weg-Diagramm ist dass die potentielle Energie immer als Masse mal Gravitationspotenzial bzw. als Ladung mal elektrisches Potenzial geschrieben werden kann

2 2 von :08 wie man das Gravitationspotenzial eines Himmelskörpers berechnet wie man bei Vernachlässigung der Reibung aus der Höhe die Geschwindigkeit eines bahngebundenen oder frei fallenden Körpers berechnet wie man bei gegebener Gesamtenergie aus der Postition die Geschwindigkeit eines Satelliten berechnet wie gross die Fluchtgeschwindigkeit ist Arbeit einer Kraft Eine Kraft steht für die Stärke eines Impulsstromes bezüglich eines Körpers. Nun kann man jedem Impulsstrom einen Energiestrom zuordnen. Nimmt man alle drei Komponenten des Impulses, lautet die Zuordnung I W = v x I px + v y I py + v z I pz Der gesamte Ausdruck rechts des Gleichheitszeichens bildet ein Skalarprodukt. Der Wert des zugeordneten Energiestromes hängt folglich nicht von der Wahl des Koordinatensystems ab, obwohl die Aufteilung von Impuls und Geschwindigkeit bezüglich eines Koordinatensystems (Weltsystem) mit einer gewissen Willkür behaftet ist. Schreibt man die Impulsstromstärke bezüglich des Körpers als Kraftvektor, wird diese Invarianz noch besser sichtbar. Der zugeordnete Energiestrom geht dann über in die Leistung dieser Kraft Die Arbeit einer Kraft berechnet sich durch Integration über die Zeit Mit der letzten Umformung fällt die Zeit als Parameter heraus und man erhält eine rein statische Beschreibung. Die Arbeit einer Kraft ist gleich dem Wegintegral der Kraft. Um ein solches Integral auszuführen, muss man den Weg in viele kleine, gerichtete Streckenabschnitte unterteilen, auf jedem Abschnitt das Skalarprodukt zwischen mittlerem Kraftvektor und Strecke bilden und zum Schluss über alle Beiträge aufsummieren. Bewegt man den Körper längs einer Geraden und bleibt die Kraft konstant, ist die Arbeit dieser Kraft gleich Kraftkomponente in Bewegungsrichtung mal Verschiebung der Kraftangriffsfläche. Die Formulierung, wonach Arbeit gleich Kraft mal Weg ist, bezieht sich auf diesen Spezialfall. Ist die Kraft-Verformungs-Diagramm eines 3g-Puffers Kraft in Funktion des Weges gegeben, entspricht die Arbeit bei einer geradlinigen Bewegung der Fläche unter der Kurve im Kraft-Weg-Diagramm. Das Diagramm zeigt das Kraft-Verformungs-Diagramm eines Puffers für Güterwagen (3g-Puffer der Firma Schwab Verkehrstechnik AG in Schaffhausen). Um diese Daten aufzunehmen, hat man zwei Güterwagen (45 t und 40 t) mit unterschiedlichen Geschwindigkeiten gegeneinander prallen lassen. Statt vier Puffer auf zwei Stosslinien hat man aber nur zwei auf einer einzigen Stosslinie angeordneten. Deshalb steht im Titel der Graphik 90 Tonnen gegen 80 Tonnen. Anhand dieses Beispiels kann man die Problematik des Kraft- und Arbeitsbegriffes erkennen. Auf jeden Puffer wirken je zwei Kräfte (Ein- und Austritt des Impulsstromes). Zudem bezieht sich die Arbeit der Kraft auf die absolute Bewegung der Kraftangriffsfläche. Im Diagramm ist aber nur eine der beiden Kräfte (Impulsstromstärke) gegen die Verformung des Puffers (Relativbewegung der Endflächen) aufgetragen. Deshalb entspricht die Fläche unter der Kurve der im Puffer drin vom Impulsstrom freigesetzten Energie.

3 3 von :08 Potentielle Energie Ein Kran hebt eine Last mit konstanter Geschwindigkeit an. Wählt man die Bezugsrichtung nach unten, fliesst vom Gravitationsfeld Impuls mit konstanter Rate (F G = m g) in die Last hinein und von dort über Seil und Kran an die Erde weg. Die Stärke des aus der Last abfliessenden Impulsstromes kann man als auf die Last wirkende Seilkraft bezeichnen. Die Stärke des quellenartigen Zuflusses nennt man Gewichtskraft. Weil sich das Seil in negative Richtung bewegt, weil die Geschwindigkeit oder das Energiebeladungsmasse negativ ist, fliesst der Energiestrom im Seil gegen den Impulsstrom, also von der Seilwinde zur Last. Wie der Impuls durch das Gravitationsfeld von der Erde zur Last transportiert wird und was mit der durch das Heben der Last zugeführten Energie passiert, bleibt im Dunkeln. Von den beiden auf die Last einwirkenden Kräften, der Seilkraft und der Gewichtskraft, lässt sich nur erstere direkt nachweisen. Deshalb ordnet man auch nur dieser eine Arbeit zu. Man sagt dann, dass die Arbeit dieser Kraft gleich der Änderung der potenziellen Energie der Last ist W(F S ) = W(F G ) = F G h = mg h = W G Das Minuszeichen verschwindet bei der dritten Umformung wieder, weil die Gewichtskraft nach unten zieht, die Bewegung aber nach oben erfolgt. Nun kann man zeigen, dass diese Hubarbeit nicht vom Weg, auf dem die Last gehoben wird, sondern nur von der Hubhöhe abhängt. Nur deshalb darf man überhaupt den Begriff einer potentielle Energie einführen. Die potentielle Energie hängt von der Körpereigenschaft Masse, der Raumeigenschaft Gravitationsfeldstärke und der Höhe ab. Damit lässt sich die potentielle Energie analog zur Gewichtskraft in eine vom Körper festgelegte Grösse (Masse) und eine nur vom Raum abhängige Grösse zerlegen. Die raumabhängige Grösse nennt man Gravitationspotenzial Für das elektrische Feld ist eine analoge Aufteilung möglich Damit kann die Frage nach der Grösse der potentiellen Energie auf die Suche nach dem Wert des zugehörigen Potenzials reduziert werden. Potenzial Die Änderung der potenziellen Energie berechnet sich über die Hubarbeit der Kompensationskraft F Das Potenzial ist demnach gleich dem Wegintegral über der Feldstärke Wendet man diese Vorschrift auf ein homogenes Feld an, erhält man Bei einem Himmelskörper (Masse m 0 ) wird das Potenzial sehr weit aussen gleich Null gesetzt. Als Resultat erhält man

4 4 von :08 Übertragen auf das elektrische Feld, lautet die Berechnungsvorschrift für das elektrische Potenzial Auf hier integriert man vom jeweiligen Punkt zu dem Punkt, an dem das Potenzial gleich Null gesetzt wird. Für die Spannung gilt dann Diese Definition gilt auch dann noch, wenn das elektromagnetische Feld kein Potenzial mehr besitzt, wie das bei dynamischen Vorgängen (Induktionsgesetz, Strahlung, etc.) oft der Fall ist. Zusammenfassung Sollten Sie aus Mangel an mathematischen Kenntnissen nicht alles verstanden haben, ist das noch kein Unglück. Prägen Sie sich aber folgendes ein. Die Stärke einer Feldkraft berechnet sich immer als Produkt aus Körpereigenschaft und Raumeigenschaft (Feldstärke) Die potentielle Energie ist gleich Körpereigenschaft mal Raumeigenschaft (Potenzial) im Magnetismus gibt es weder Ladung noch Potenzial Das weiter oben erwähnte Integral, das aus der Feldstärke das Potenzial berechnet, lässt sich nur bei ganz einfach strukturierten Feldern formelmässig auswerten. Bei der Gravitation bestimmt man meist nur das Potenzial eines homogenen (Erdoberfläche) oder eines kugelsymmetrischen Feldes (Himmelskörper). Die zugehörigen Formeln finden Sie weiter oben. In der Elektrodynamik kommt zum homogenen Feld und dem Feld einer Punktladung noch das Feld eines sehr langen Drahtes dazu. Wählt man den Nullpunkt des Potenzials auf der ladungstragenden Metalloberfläche, gilt homogen Symmetrie Feldstärke Potenzial zylindisch (Draht) kugelförmig Die Feldstärke "verdünnt sich" mit dem Abstand wie das Licht eines leuchtenden Punktes (umgekehrt zur Fläche der umhüllenden Kugel), einer geraden Lichterkette (reziprok zur Mantelfäche des umhüllenden Zylinders) oder der Deckenbeleuchtung in einem Grossraumbüro (gar nicht).

5 5 von :08 Bewegung im Graviationsfeld Nach dieser kleinen Exkursion in die Feldlehre, bei der Sie den formalen Zusammenhang zwischen Potenzial und Feldstärke kennen gelernt haben, wenden wir uns noch zwei konkreten Beispielen zu. Achterbahn Der Wagen einer Achterbahn wurde früher mittels eines Seilzugs auf eine gewisse Höhe (h 0 ) gebracht. Danach ist der Wagen ohne Antrieb über die verschiedenen Hügel gerollt. Lässt man jegliche Reibung weg, kann die Geschwindigkeit des Wagens in Funktion der momentanen Höhe h angegeben werden. Dazu vergleicht man die Summe aus potentieller und kinetischer Energie zu zwei verschiedenen Zeitpunkten Setzt man die Geschwindigkeit auf der Höhe h 0 gleich Null, liefert die Auflösung der Gleichung die Geschwindigkeit in Funktion der Höhe h Diese Formel gilt natürlich auch für einen im Vakuum fallen gelassenen Stein. Moderne Bahnen verfügen über ein hydraulisch betriebenes Katapult. Die Wagen starten dann mit hoher Geschwindigkeit (v 0 ) am tiefsten Punkt. Hier gilt oder aufgelöst nach der Geschwindigkeit Diese Formel kann auch auf einen im Vakuum fort geworfenen Stein angewendet werden. Weil immer Reibung vorhanden ist, liefert die Energieüberlegung nur eine obere Grenze für die Geschwindigkeit. Satellit Nimmt man die Erde als ruhend an, bleibt die Energie eines um die Erde fallenden Satelliten konstant Das Gravitationspotenzial ist hier weit weg, also quasi im Unendlichen, gleich Null gesetzt worden. Deshalb ist die Gesamtenergie bei gebundenen Satelliten immer kleiner Null. Ist die Gesamtenergie eines Raumschiffes grösser als Null, kann es sich der Schwerkraft entziehen. Um die dazu notwendige, minimale Geschwindigkeit (v 0 ) auf der Erdoberfläche zu (r E ) berechnen, muss man die Gesamtenergie gleich Null setzen also ist

6 6 von :08 Nun gilt für die Feldstärke an der Erdoberfläche in guter Näherung Setzt man diese Beziehung oben ein, gewinnt man eine kompakte Formel für die sogenannte Fluchtgeschwindigkeit = 11.2 km/s Diese Beziehung darf auch auf andere Himmelskörper übertragen werden. Auf der Erde können Heliumatome durch thermische Anregung Geschwindigkeiten erreichen, die grösser als die Fluchtgeschwindigkeit sind. Deshalb enthält unsere Atmosphäre sehr wenig von diesem zweithäufigsten Element des Universums. Das doch recht schwache Gravitationsfeld des Mondes vermag überhaupt keine der leichten Gasmoleküle auf Dauer zu halten. Deshalb besitzt der Mond keine Atmosphäre. Um zu berechnen, wie viel Energie man aufwenden muss, um einen Satelliten in die Umlaufbahn zu bringen, könnte man auch mit diesen Formeln rechnen. Nur machen solche Überlegungen wenig Sinn, weil der Energieaufwand von der Bauweise und auch der Bahn der Trägerrakete abhängt. Würde man einen riesigen Turm bauen, um einen Satelliten mittels einer Seilwinde hinaufzuziehen, sähe die Energiebilanz nochmals anders aus. Dann muss man auch noch die Wirkung des Zentrifugalfeldes der rotierenden Erde berücksichtigen. Kontrollfragen Wie berechnet man die Gewichtskraft, wie die potentielle Energie? Wie hängt das Gravitationspotenzial im homogenen Feld von der Höhe ab? Wie stark ist das Gravitationsfeld der Erde 6'370 km (ein Erdradius) über der Erdoberfläche? Um wie viel ändert sich das Gravitationspotenzial zwischen Erdoberfläche und der oben genannten Höhe? Wie schnell bewegt sich eine reibungsfrei gleitende Luftkissenbahn auf der Höhe h, wenn sie auf der Höhe h 0 gestartet ist? Wie schnell bewegt sich ein Satellit, der im Abstand r auf einer Kreisbahn um die Erde fällt? Antworten zu den Kontrollfragen Die Gewichtskraft ist gleich Masse mal Stärke des Gravitationsfeldes F G = mg; die potentielle Energie ist gleich Masse mal Gravitationspotenzial. Das Gravitationspotenzial ist im homogenen Feld gleich Feldstärke mal Höhe. Im Abstand des doppelten Erdradius von der Erdmitte ist das Gravitationsfeld nur noch ein Viertel so stark wie an der Erdoberfläche. Der Betrag des Gravitationspotenzials ist dort oben nur noch halb so gross wie auf der Erdoberfläche. Die Geschwindigkeit ist gleich. Aus der Gleichsetzung der Beschleunigung mit der Gravitationsfeldstärke folgt. Die Geschwindigkeit ist gleich der Wurzel aus dem Betrag des Gravitationspotenzials.

7 7 von :08 Materialien Skript ( Seiten 9 und 15 Physik - Ein systemdynamischer Zugang für die Sekundarstufe II Seiten Zurück zum Inhalt Von Kategorie: VorAV Diese Seite wurde zuletzt am 8. Dezember 2008 um 13:41 Uhr geändert.

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler

Physik. Grundlagen der Mechanik. Physik. Graz, 2012. Sonja Draxler Mechanik: befasst sich mit der Bewegung von Körpern und der Einwirkung von Kräften. Wir unterscheiden: Kinematik: beschreibt die Bewegung von Körpern, Dynamik: befasst sich mit Kräften und deren Wirkung

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK?

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK? Impulsstrom Achim Rosch, Institut für Theoretische Physik, Köln zwei Fragen: Belegt das Gutachten wesentliche fachliche Fehler im KPK? Gibt es im Gutachten selbst wesentliche fachliche Fehler? andere wichtige

Mehr

Arbeit und Energie. Brückenkurs, 4. Tag

Arbeit und Energie. Brückenkurs, 4. Tag Arbeit und Energie Brückenkurs, 4. Tag Worum geht s? Tricks für einfachere Problemlösung Arbeit Skalarprodukt von Vektoren Leistung Kinetische Energie Potentielle Energie 24.09.2014 Brückenkurs Physik:

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine )

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine ) 6. Übung (KW 03/04) Aufgabe (M 9. Aufzugskabine ) In einem Aufzug hängt ein Wägestück der Masse m an einem Federkraftmesser. Dieser zeigt die Kraft F an. Auf welche Beschleunigung a z (z-koordinate nach

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte

Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Aufgaben 4 Translations-Mechanik Gleichförmige Kreisbewegung, Bezugssystem, Scheinkräfte Lernziele - die Grössen zur Beschreibung einer Kreisbewegung und deren Zusammenhänge kennen. - die Frequenz, Winkelgeschwindigkeit,

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7

Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Vorlesung 7 Definition: Ein Skalarfeld ordnet jedem Punkt im dreidimensionalen Raum R 3 eine ahl () zu. Unter einem räumlichen Vektorfeld

Mehr

Spezielle Relativitätstheorie

Spezielle Relativitätstheorie Spezielle Relativitätstheorie Proseminar: Kosmologie und Teilchenphysik von Evangelos Nagel Physik vor dem 20. Jhd. Newton (Principia Mathematica): Der absolute Raum bleibt vermöge seiner Natur und ohne

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.5 Beispiele 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Die grundlegenden Gesetze der Physik sind Verallgemeinerungen (manchmal auch Extrapolationen) von hinreichend häufigen und zuverlässigen

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Inhaltsverzeichnis Physikalisches Praktikum Versuchsbericht M4 Stoßgesetze in einer Dimension Dozent: Prof. Dr. Hans-Ilja Rückmann email: irueckm@uni-bremen.de http: // www. praktikum. physik. uni-bremen.

Mehr

Chemie Zusammenfassung KA 2

Chemie Zusammenfassung KA 2 Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

mentor Abiturhilfe: Physik Oberstufe Weidl

mentor Abiturhilfe: Physik Oberstufe Weidl mentor Abiturhilfen mentor Abiturhilfe: Physik Oberstufe Mechanik von Erhard Weidl 1. Auflage mentor Abiturhilfe: Physik Oberstufe Weidl schnell und portofrei erhältlich bei beck-shop.de DIE ACHBUCHHANDLUNG

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1

Arbeit, Energie, Leistung. 8 Arbeit, Energie, Leistung 2009 1 Arbeit, Energie, Leistung 8 Arbeit, Energie, Leistung 2009 1 Begriffe Arbeit, Energie, Leistung von Joule, Mayer und Lord Kelvin erst im 19. Jahrhundert eingeführt! (100 Jahre nach Newton s Bewegungsgesetzen)

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

5. Arbeit und Energie

5. Arbeit und Energie 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit

Mehr

It is important to realize that in physik today, we have no knowledge of what energie is.

It is important to realize that in physik today, we have no knowledge of what energie is. 9. Energie It is important to realize that in physik today, we have no knowledge of what energie is. Richard Feynmann, amerikanischer Physiker und Nobelpreisträger 1965. Energieformen: Mechanische Energie:

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1 Laborskript für WP-14 WS 13/14 Zugversuch Zugversuch 1) Theoretische Grundlagen: Mit dem Zugversuch werden im Normalfall mechanische Kenngrößen der Werkstoffe unter einachsiger Beanspruchung bestimmt.

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

Physikalische Grundlagen

Physikalische Grundlagen Physikalische Grundlagen Inhalt: - Bahn und Bahngeschwindigkeit eines Satelliten - Die Energie eines Satelliten - Kosmische Geschwindigkeiten Es wird empfohlen diese Abschnitte der Reihe nach zu bearbeiten.

Mehr

Zweidimensionale Beschleunigungsmessung

Zweidimensionale Beschleunigungsmessung Zweidimensionale Beschleunigungsmessung Wettbewerb "Jugend Forscht" 2006 Christopher Kunde (14 Jahre) David Strasser (15 Jahre) Arbeitsgemeinschaft "Jugend Forscht" des Christian-Gymnasiums Hermannsburg

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten

Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten An dieser Stelle müssen wir dringend eine neue physikalische Größe kennenlernen: den Druck. SI Einheit : Druck = Kraft Fläche p = F A 1 Pascal

Mehr

CURRICULUM 10 NOV. 2011

CURRICULUM 10 NOV. 2011 CURRICULUM 10 NOV. 2011 Diese Kompetenzen spielen in allen Unterrichts-Themen eine zentrale Rolle: 2. Physik als theoriegeleitete Erfahrungswissenschaft Die Schülerinnen und Schüler können die naturwissenschaftliche

Mehr

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 54 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 51 5.1 Arbeit Wird Masse

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

E1 Mechanik Lösungen zu Übungsblatt 3

E1 Mechanik Lösungen zu Übungsblatt 3 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik en zu Übungsblatt 3 WS 014 / 015 Prof. Dr. Hermann Gaub Aufgabe 1 Sonnensystem Abstände innerhalb des Sonnensystems werden häufig

Mehr

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN)

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN) Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN). Einleitung Kraftmaschinen geben ihre Arbeit meistens durch rotierende Wellen ab. Die Arbeit, die pro Zeiteinheit über die

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Stromdurchossene Leiter im Magnetfeld, Halleekt

Stromdurchossene Leiter im Magnetfeld, Halleekt Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Skalierung des Ausgangssignals

Skalierung des Ausgangssignals Skalierung des Ausgangssignals Definition der Messkette Zur Bestimmung einer unbekannten Messgröße, wie z.b. Kraft, Drehmoment oder Beschleunigung, werden Sensoren eingesetzt. Sensoren stehen am Anfang

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

6. Übungsblatt zur Experimentalphysik 1

6. Übungsblatt zur Experimentalphysik 1 6. Übungsblatt zur Experimentalphysik (Besprechung ab dem 3. Dezember 2006) Aufgabe 6. Loch in der Regentonne Eine h 2m hohe, voll gefüllte Regentonne steht ebenerdig. Versehentlich wird nun die Regentonne

Mehr

3. Kapitel Der Compton Effekt

3. Kapitel Der Compton Effekt 3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

Aufgaben zu den Bewegungen

Aufgaben zu den Bewegungen Aufgaben zu den Bewegungen 1. Im Märchen Rapunzel wird das Mädchen von einer Zauberin in einen Turm eingesperrt, der ohne Tür war und nur oben ein kleines Fenster hatte. Wenn die Zauberin hinein wollte,

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Arbeit Leistung Energie

Arbeit Leistung Energie Arbeit Leistung Energie manuell geistig Was ist Arbeit Wie misst man Arbeit? Ist geistige Arbeit messbar? Wann wird physikalische Arbeit verrichtet? Es wird physikalische Arbeit verrichtet, wenn eine Kraft

Mehr

Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Schriftliche Abschlussprüfung Physik Realschulbildungsgang Sächsisches Staatsministerium für Kultus Schuljahr 1992/93 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50)

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50) Physik 1, WS 015/16 Musterlösung 8. Aufgabenblatt (KW 50) Aufgabe (Bleistift) Ein dünner Bleistift der Masse m und der Länge L steht zunächst mit der Spitze nach oben zeigend senkrecht auf einer Tischplatte.

Mehr

Unterrichtsmaterialien:

Unterrichtsmaterialien: Unterrichtsmaterialien: Energieumwandlungen in der Halfpipe Fach: Physik Jahrgangstufe: 5./6. Inhaltsverzeichnis 2 Inhalt Seite 1. Lernziele und curriculare Bezüge 3 2. Die Lernsituation 4 3. Der Unterrichtsverlauf

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 2016/17 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 4 / 9.11.2016 1. May the force... Drei Leute A, B, C ziehen

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 8

Grundlagen der Physik 1 Lösung zu Übungsblatt 8 Grundlagen der Physik 1 Lösung zu Übungsblatt 8 Daniel Weiss 1. Dezember 29 Inhaltsverzeichnis Aufgabe 1 - inhomogener hängender Balken 1 a) Seilkräfte...................................... 1 b) Schwerpunkt....................................

Mehr

4 Dynamik der Rotation

4 Dynamik der Rotation 4 Dynamik der Rotation Fragen und Probleme: Was versteht man unter einem, wovon hängt es ab? Was bewirkt ein auf einen Körper einwirkendes? Welche Bedeutung hat das Massenträgheitsmoment eines Körpers?

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) Aufgabe 1: Tanzkurs ( * ) Zu einem Tanzkurs erscheinen dreimal so viele Mädchen wie Jungen. Nachdem 15 Mädchen gegangen sind, sind noch doppelt so viele

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand)

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand) l. Kinematik in der Mechatronik Ein tpisches mechatronisches Sstem nimmt Signale auf, verarbeitet sie und gibt Signale aus, die es in Kräfte und Bewegungen umsett. Mechanische Struktur Leistungsteil phsikalische

Mehr

2. Klausur in K1 am

2. Klausur in K1 am Name: Punkte: Note: Ø: Physik Kursstufe Abzüge für Darstellung: Rundung:. Klausur in K am 7.. 00 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: e =,60

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3).

Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3). Achterbahn Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3). a) Warum bewegt sich das Fahrzeug? sidee b) Welche

Mehr

11.1 Kinetische Energie

11.1 Kinetische Energie 75 Energiemethoden Energiemethoden beinhalten keine neuen Prinzipe, sondern sind ereinfachende Gesamtbetrachtungen an abgeschlossenen Systemen, die aus den bereits bekannten Axiomen folgen. Durch Projektion

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.) Lösungsmethoden gewöhnlicher Dierentialgleichungen Dgl) Allgemeine und partikuläre Lösung einer gewöhnlichen Dierentialgleichung Eine Dierentialgleichung ist eine Gleichung! Zum Unterschied von den gewöhnlichen

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376

EigenMath Howto. Beispiele: Was erhält man, wenn man 100 mal die Zahl 2 mit sich multipliziert? Antwort 1267650600228229401496703205376 EigenMath Howto EigenMath ist ein kleines Programm, das als 'Taschenrechner' für die Mathematik der Oberstufe verwendet werden kann. Es ist viel weniger mächtig als die großen Brüder Sage, Maxima, Axiom

Mehr

Frühjahr 2000, Thema 2, Der elektrische Widerstand

Frühjahr 2000, Thema 2, Der elektrische Widerstand Frühjahr 2000, Thema 2, Der elektrische Widerstand Referentin: Dorothee Abele Dozent: Dr. Thomas Wilhelm Datum: 01.02.2007 1) Stellen Sie ein schülergemäßes Modell für einen elektrisch leitenden bzw. nichtleitenden

Mehr

Transformation der Anregungsenergie zwischen Bezugssystemen.

Transformation der Anregungsenergie zwischen Bezugssystemen. Einsteins Relativitätstheorie kontra klassische Mechanik Paul Marmet übersetzt von Mathias Hüfner Kapitel Zwei letzte Durchsicht 01.08.12 Transformation der Anregungsenergie zwischen Bezugssystemen. 2.1

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Insiderwissen 2013. Hintergrund

Insiderwissen 2013. Hintergrund Insiderwissen 213 XING EVENTS mit der Eventmanagement-Software für Online Eventregistrierung &Ticketing amiando, hat es sich erneut zur Aufgabe gemacht zu analysieren, wie Eventveranstalter ihre Veranstaltungen

Mehr

5. Arbeit und Energie

5. Arbeit und Energie 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Energie = Fähigkeit Arbeit zu verrichten 5.1 Arbeit Wird Masse m von Punkt

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m

Klausur 2 Kurs 11Ph1e Physik. 2 Q U B m 2010-11-24 Klausur 2 Kurs 11Ph1e Physik Lösung 1 α-teilchen (=2-fach geladene Heliumkerne) werden mit der Spannung U B beschleunigt und durchfliegen dann einen mit der Ladung geladenen Kondensator (siehe

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Inertialsysteme keine keine

Inertialsysteme keine keine Inertialsysteme Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Der Beobachter wird i.d.r. mit dem Bezugssystem identifiziert, so dass das Koordinatensystem am Beobachter

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr