Einführung in statistische Testmethoden

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in statistische Testmethoden"

Transkript

1 Einführung in statistische Testmethoden und die Bearbeitung von Messdaten mit Excel 1. Beispielhafte Einführung in den Gebrauch von Testmethoden 2. Typen von Messwerten, Verteilungen 3. Mittelwert, Varianz, Standardfehler und Konfidenzintervall 4. Testverfahren 5. Beziehungen: Korrelation und Regression

2 Empfohlene Bücher Köhler, Schachtel, Voleske Biostatistik, 4. Auflage Eine Einführung für Biologen und Agrarwissenschaftler Springer Verlag Dytham Choosing and Using Statistics A biologist s Guide Blackwell Publishing

3 Statistikprogramme Sehr leistungsstark, aber teuer SAS SPSS Statistica Kostenlos, aber unhandlich R Mittlerer Umfang, aber gute Grafik Graphpad Prism Sigmaplot inkl. Sigmastat Mittlerer Umfang, wenig Grafik Minitab XLStat (ca. 53 für Studenten) Geringer Umfang, sehr gut verständlich Instat

4 Was kann Statistik? Vergleich zweier oder mehrerer Gruppen von Messwerten untereinander Vergleich von Messwerten mit einer erwarteten Verteilung Beschreibung von Daten Test einer Beziehung oder Korrelation zwischen Daten Erforschung von Zusammenhängen in einem multifaktoriellen System Anordnung von Daten in Gruppen (Clusteranalyse)

5 Wozu braucht man statistische Testverfahren? Wissenschaftliche Arbeitsweise: Hypothese Versuch Resultat Bewertung des Resultats

6 Beispiel Hypothese Sekundäre Flechtenstoffe schützen Flechten gegen Fraß Asseln erhalten nebeneinander Flechtenthalli mit und ohne Flechtenstoffe 0,035 Gefressene Masse, g 0,030 0,025 0,020 0,015 0,010 0,005 0,000 roh extrahiert Unterschied kann nicht zufällig sein, sondern beruht auf der Abwesenheit von Flechtenstoffen?

7 Beispiel Hypothese Sekundäre Flechtenstoffe schützen Flechten gegen Fraß Asseln erhalten nebeneinander Flechtenthalli mit und ohne Flechtenstoffe 0,035 Gefressene Masse, g 0,030 0,025 0,020 0,015 0,010 0,005 0,000 roh extrahiert Unterschied kann nicht zufällig sein, sondern beruht auf der Abwesenheit von Flechtenstoffen?

8 1. Wie wertet man Versuchsergebnisse mit Microsoft Excel aus? Übung 2. Test auf Signifikanz des Resultats oder Wie erfährt man die Wahrscheinlichkeit, dass das Ergebnis nicht auf Zufall beruht?

9 Zweites Beispiel Frage: Werden trockene Flechten durch die Extraktion mit Aceton geschädigt? Versuch: Extraktion, Bestimmung der photochemischen Quantenausbeute von Photosystem II (Fv/Fm) Resultat: Bearbeitung der Messwerte mit Excel 1. Eingabe der Messwerte - von Hand - Import aus Datei 2. Rechnen - Eingabe von Formeln - Kopieren von Formeln variabler Bezug, fester Bezug

10 Resultat Fv/Fm extr. 0,4080 0,5083 0,4741 0,5317 0,4805 roh 0,5129 0,5971 0,4805 0,5709 0,5404 roh - extr. 0,1049 0,0888 0,0064 0,0392 Wie wahrscheinlich ist der Versuchsausgang? Formulieren einer Nullhypothese: µ extr = µ roh

11 Vorgehensweise bei einem statistischen Test Formulieren einer Nullhypothese: µ extr = µ roh Berechnen einer Testgröße Berechnung der Wahrscheinlichkeit, mit der die Testgröße den gefundenen Wert annimmt unter der Annahme, dass die Nullhypothese richtig ist Ablehnung der Nullhypothese, wenn diese Wahrscheinlichkeit kleiner als eine vorher festgesetzte Grenze ist

12 Wahrscheinlichkeit für (+) in allen Versuchen Laplace: Wahrscheinlichkeit für ein Elementarereignis = Häufigkeit des Ereignisses in der Summe aller möglichen Elementarereignisse 1. Versuch (+) (-) 2. Versuch (+) (-) (+) (-) (+) (+) (+) (-) (-) (+) (-) (-)

13 Wahrscheinlichkeit für (+) in allen Versuchen 1. Versuch (+) 2. Versuch (+) (-) 3. Versuch (+) (-) (+) (-) 4. Versuch (+) (-) (-) (+) (-) (+) (-) (+) (-)

14 Hypothese: Wahrscheinlichkeit für (+) und (-) gleich = Acetonextraktion hat keinen Einfluss Wahrscheinlichkeit für (+) in allen Versuchen = 1 / 16 = 0,0667 = 6,67% = Wahrscheinlichkeit, für Fehler bei Ablehnung einer richtigen Nullhypothese 5 % * 1 % ** 0,1 % *** Unter Zugrundelegung einer Irrtumswahrscheinlichkeit von 5 % können wir einen Einfluss der Acetonextraktion nicht nachweisen

15 Fehlertypen Fehler 1. Art: Ablehnung einer richtigen Nullhypothese Fehler 2. Art: Nicht-Ablehnung einer falschen Nullhypothese Wahrscheinlichkeit für Fehler 1. Art wird gewählt: 5%, 1% oder 0,1%. In Statistikprogrammen wird diese Wahrscheinlichkeit p als Ergebnis ausgegeben Die Wahrscheinlichkeit für den Fehler 2. Art kann nur berechnet werden, wenn man die richtige Lösung kennt. Steigerung des Stichprobenumfangs verringert sie.

16 Auswahl des Testverfahrens - am Beispiel des Vergleichs zweier Mittelwerte Das Testverfahren soll vor der Durchführung des Experiments festgelegt werden! Abhängig von der Art der Messwerte der zugrunde liegenden Verteilung der Größe der Varianz

17 Art der Messwerte Kontinuierlich - Intervallskala Temperatur, C Verhältnisskala Körpergröße Temperatur K in Kategorien geordnet - Ordinalskala Schulnoten Medaillen ungeordnet Nominalskala Pflanzenart Geschlecht

18 Verteilung Die Variabilität der Messwerte entsteht aufgrund des Zufalls Meistens folgt die Verteilung der Messwerte einer Regel: Binomialverteilung, Normalverteilung, Poisson-Verteilung

19 Binomialverteilung 7 6 Häufigkeit Null Eins Zwei Drei Vier Anzahl von + Beide Ausgänge gleich oder ähnlich wahrscheinlich

20 Poisson-Verteilung ein Ausgang wesentlich häufiger als der andere bei seltenen Ereignissen, z.b. dem Vorkommen einer Art in einer Fläche oder dem Auftreten von Krankheiten pro Zeiteinheit 140 Häufigkeit theoretisch beobachtet 0 null eins zwei drei vier fünf sechs sieben acht neun Anzahl Hefezellen pro Quadrat aus Sokal & Rohlf 1995

21 Normalverteilung σ Mittelwert µ = Σx i / N Varianz V = Σ(x i -µ) 2 / N Standardabweichung σ = Σ(x i -µ) 2 / N

22 Grundgesamtheit und Stichprobe Beispiel Bundestagswahlen Auszählung aller Stimmzettel - Stichprobe Ergebnis Hochrechnung Meistens ist die Grundgesamtheit so groß, dass einzig die Stichprobe zur Verfügung steht

23 Stichproben Verteilungen gelten für Grundgesamtheit Stichproben schätzen die Parameter der Grundgesamtheit Regeln: Schätzwert für µ: x = Σx i / N Schätzwert für σ: s = Σ(x i x) 2 / (N - 1) Keine Standardabweichung angeben wenn n = 2! Überlappung der SD sagt nichts über Signifikanz der Unterschiede der Mittelwerte aus!!

24 Standardfehler Die Standardabweichung ist ein Maß für die Streuung der Einzelwerte Der Standardfehler SE ist ein Maß für die Abweichung des Mittelwertes x in der Stichprobe vom Mittelwert µ der Grundgesamtheit SE = s / n

25 Konfidenzintervall Das Konfidenzintervall enthält den wahren Mittelwert mit einer Sicherheitswahrscheinlichkeit von (1 α) (α = Irrtumswahrscheinlichkeit) x t Tab (n-1, a) SE x + t Tab (n-1, a) SE

26 Tests Vergleich von Differenzen Vergleich von Messwerten mit erwarteten Verteilungen Vergleich von Messwerten zweier Gruppen Vergleich von Messwerten mehrerer Gruppen Beziehungen Korrelationen Regression Multivariate Verfahren

27 Grundlegende Vorgehensweise bei Tests Null-Hypothese: Messwerte entsprechen den Erwartungen (oder die Mittelwerte sind gleich) Ablehnung der Null-Hypothese, wenn Testgröße außerhalb eines vorgegebenen Bereichs (abhängig von Fehlerwahrscheinlichkeit) Testresultat P = Wahrscheinlichkeit, die Null- Hypothese abzulehnen, obwohl sie richtig ist ( Fehler erster Art )

28 Beispiel: Aceton-extrahierte Flechten PS II - Quantenausbeute 0,60 0,50 0,40 0,30 0,20 0,10 0,00 extrahiert Behandlung roh Vergleich der beiden Mittelwerte H 0 : µ extr = µ roh t-test - kann nur bei Vorliegen der Normalverteilung und gleicher Varianz benutzt werden t = (x y)/s D (n 1 n 2 )/(n 1 +n 2 ) Test auf Normalverteilung und gleiche Varianz muss zuerst durchgeführt werden S D = gemeinsame Varianz Ablehnung der Nullhypothese, wenn t Versuch > t Tab

29 FG = Freiheitsgrad (n-1) t-tabelle

30 Was tun, wenn die Voraussetzungen für einen t-test nicht erfüllt sind? Parametrische Verfahren (z.b. t-test) können bei Vorliegen der Normalverteilung benutzt werden Nicht-parametrische Verfahren: - U-Test von Mann und Whitney - Vorzeichentest - Vorzeichenrangtest von Wilcoxon (bei gepaarten Messwerten)

31 aus Dytham, Choosing and Using Statistics Cat = kategorisch D = diskret C = kontinuierlich

32 Kann man mehr als zwei Mittelwerte gleichzeitig testen? Bei mehr als zwei Mittelwerten benutzt man eine Ein-Weg-Varianzanalyse (one way ANOVA) Warum kein multipler t-test? Risiko für falsche Ablehnung von H 0 : I Risiko

33 Beziehungen Korrelation: 2 Messgrößen, unbestimmte Ursache Beispiel: Haarfarbe und Hauttyp A B Regression: 1 Messgröße unabhängige Variable, 1 abhängige Variable : Ursache und Effekt A B Beispiel: Intensität eines Stressfaktors und Schädigung

34 Korrelation Korrelationskoeffizient r -1 r 1 Regression Regressionskoeffizient r 2 (Bestimmtheitsmaß) Aufpassen bei Excel: x-y-graphen niemals als Linien-Diagramm sondern als Punkt(XY)-Diagramm erstellen

35 Darstellung von Daten Kreisdiagramm Diskrete Kategorien AB Säulen-, Balkendiagramm geordnete diskrete Kategorien Modul Botanik III WS Anteile von Personen mit bestimmten Blutgruppen A B Anzahl Note

36 Box and Whiskers-Plot (Box-Plot) X1 kontinuierliche Daten (Intervall- oder Verhältnisskala) nicht normalverteilt Median oberes Quartil unteres Quartil Mittelwert 50% der Werte

37 Nutzung von Excel Aufgaben in Übungen - Daten importieren - Berechnungen durchführen - Balkendiagramm erstellen - XY-Diagramm erstellen - Box-Plot (XLstat) Raum E 7/8 Tests mit XLStat oder Excel - auf Normalverteilung (XLStat) - auf gleiche Varianz (XLStat) - t-test, gepaarte und ungepaarte Daten (Excel) - U-Test von Mann und Whitney (XLStat) - Korrelation (Excel) - Regression (Excel)

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Parametrische Statistik

Parametrische Statistik Statistik und ihre Anwendungen Parametrische Statistik Verteilungen, maximum likelihood und GLM in R Bearbeitet von Carsten F. Dormann 1. Auflage 2013. Taschenbuch. xxii, 350 S. Paperback ISBN 978 3 642

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Ein bisschen Statistik

Ein bisschen Statistik Prof. Dr. Beat Siebenhaar ein bisschen Statistik 1 Ein bisschen Statistik (orientiert an Hüsler/Zimmermann (006) mit Umsetzung auf die linguistische Fragen) 1. Datentypen und Grafik Grafische Darstellungen

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Statistische Grundlagen für die Versuchstierkunde

Statistische Grundlagen für die Versuchstierkunde Statistische Grundlagen für die Versuchstierkunde Prof. Peter Pilz Fachbereich Biologie Universität Tübingen So viele Tiere wie nötig, so wenig Tiere wie möglich Gliederung 1. Deskriptive Statistik & Power

Mehr

4. Erstellen von Klassen

4. Erstellen von Klassen Statistik mit Tabellenkalkulation 4. Erstellen von Klassen Mit einem einfachen Befehl lässt sich eine Liste von Zahlen auf die Häufigkeit der einzelnen Werte untersuchen. Verwenden Sie dazu den Befehl

Mehr

Statistik für Studenten der Sportwissenschaften SS 2008

Statistik für Studenten der Sportwissenschaften SS 2008 Statistik für Studenten der Sportwissenschaften SS 008 Aufgabe 1 Man weiß von Rehabilitanden, die sich einer bestimmten Gymnastik unterziehen, dass sie im Mittel µ=54 Jahre (σ=3 Jahre) alt sind. a) Welcher

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Statistik. Average requirement. deficiency. Sufficient supply for 97.5% of the population. 2 sd 2 sd

Statistik. Average requirement. deficiency. Sufficient supply for 97.5% of the population. 2 sd 2 sd Themenübersicht: Grundlegende statistische Verfahren: Mittelwert, Median,Standardabweichung, Standardfehler Regression mit Beispielen (Eichkurven, Korrelationskoeffizienten) t-tests, Normalverteilung,

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Marktforschung I. Marktforschung I 2

Marktforschung I. Marktforschung I 2 Marktforschung I Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt)

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes von Veränderungen Dr. Julia Kneer Universität des Saarlandes Veränderungsmessung Veränderungsmessung kennzeichnet ein Teilgebiet der Methodenlehre, das direkt mit grundlegenden Fragestellungen der Psychologie

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Ausgewählte Einstiegsbeispiele aus statistischen Methoden und SixSigma mit Visual-XSel 11.0 Multivar

Ausgewählte Einstiegsbeispiele aus statistischen Methoden und SixSigma mit Visual-XSel 11.0 Multivar Ausgewählte Einstiegsbeispiele aus statistischen Methoden und SixSigma mit Visual-XSel 11.0 Multivar Einstieg über Leitfaden Über das Symbol Leitfaden erhält man einen Überblick der statistischen Methoden.

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

(VU) Übungen zur Einführung in die statistische Datenanalyse II. Inhalte Statistik I. Inhalte Statistik I Deskriptive Statistik

(VU) Übungen zur Einführung in die statistische Datenanalyse II. Inhalte Statistik I. Inhalte Statistik I Deskriptive Statistik II Übungen zur II Organisatorische Hinweise Keine Anwesenheitspflicht (aber empfehlenswert) Einführung in die statistische Datenanalyse II (VU) Lehrinhalte (.ppt Folien): elearning.univie.ac.at 3 Prüfungstermine:

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Einführung in die statistische Ökologie

Einführung in die statistische Ökologie Einführung in die statistische Ökologie (Statistics in Ecology I) (mit Übungen) Dr. J.-P. Airoldi / Herbstsemester 2009 Zeit: Montag 9-10 (Theorie), 10-11 (Übungen) Beginn: 14.9.2009 Anmeldung: um am Kurs

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

Unsere Hilfe bei statistischen Analysen für wissenschaftliche Arbeiten

Unsere Hilfe bei statistischen Analysen für wissenschaftliche Arbeiten Unsere Hilfe bei statistischen Analysen für wissenschaftliche Arbeiten Sie schreiben eine wissenschaftliche Arbeit und müssen hierfür Daten statistisch analysieren? Sie haben bisher wenig Erfahrung im

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Academic Skills - Befragung und Auswertung

Academic Skills - Befragung und Auswertung Otto-von-Guericke University Magdeburg Allgemein Befragung Eine Befragung ist eine wissenschaftliche Maßnahme zur Erforschung von Verhalten, Einstellung oder Wissen Des Weiteren können auch demographische

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl

FAKTORIELLE VERSUCHSPLÄNE. Andreas Handl FAKTORIELLE VERSUCHSPLÄNE Andreas Handl 1 Inhaltsverzeichnis 1 Versuchsplanung 4 2 Einfaktorielle Varianzanalyse 6 2.1 DieAnnahmen... 6 2.2 Die ANOVA-Tabelle und der F -Test... 6 2.3 Versuche mit zwei

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Messwerte. 20 30 40 50 60 70 80 Gewicht in kg. Messwerte

Messwerte. 20 30 40 50 60 70 80 Gewicht in kg. Messwerte 2. Public Health Methoden 2.1 Epidemiologie Zusätzliche Abbildungen (1) Ergänzende Abbildung zu Kap. 2.1.4 Validität und Reliabilität Web-Abb. 2.1.1 Schematische Darstellung der Bestimmung des Körpergewichts

Mehr

Einführung in die statistische Datenanalyse I

Einführung in die statistische Datenanalyse I Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst Springer-Lehrbuch Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Franz Kronthaler Hochschule für Technik und Wirtschaft HTW Chur, Schweiz ISSN 0937-7433 ISBN 978-3-642-53739-4 DOI

Mehr

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25 Inhaltsverzeichnis Einleitung 19 Zu diesem Buch 19 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Falsche Voraussetzungen 21 Wie dieses Buch aufgebaut ist 21 Teil I: Datenanalyse und Grundlagen

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Maßzahlen für zentrale Tendenz, Streuung und andere Eigenschaften von Verteilungen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische

Mehr

7. Mai 2010. Ruhr-Universität Bochum. Methodenlehre II, SS 2009. Prof. Dr. Holger Dette

7. Mai 2010. Ruhr-Universität Bochum. Methodenlehre II, SS 2009. Prof. Dr. Holger Dette Ruhr-Universität Bochum 7. Mai 2010 1 / 95 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30-10.00

Mehr

Einführung in die statistische Denkweise: Was ist, was macht ein statistischer Test?

Einführung in die statistische Denkweise: Was ist, was macht ein statistischer Test? Statistik für Nutztierethologen Einführung in die statistische Denkweise: Was ist, was macht ein statistischer Test? Zentrum für tiergerechte Haltung Lorenz Gygax (Dr. sc. nat.) lorenz.gygax@fat.admin.ch

Mehr

Medizinische Physik und Statistik I. 2011/12, II. Semester. Prüfungskurs. Vorlesung: Kurscode: AOK-KN051-Prüfung,

Medizinische Physik und Statistik I. 2011/12, II. Semester. Prüfungskurs. Vorlesung: Kurscode: AOK-KN051-Prüfung, Medizinische Physik und Statistik I. 2011/12, II. Semester Prüfungskurs DATEN DES KURSES Titel des Kurses: Medizinische Physik und Statistik I. Kreditpunkte: 5 Kreditpunkte Vorlesung: Kurscode: AOK-KN051-Prüfung,

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

9. StatistischeTests. 9.1 Konzeption

9. StatistischeTests. 9.1 Konzeption 9. StatistischeTests 9.1 Konzeption Statistische Tests dienen zur Überprüfung von Hypothesen über einen Parameter der Grundgesamtheit (bei einem Ein-Stichproben-Test) oder über die Verteilung einer Zufallsvariablen

Mehr

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Die Poisson-Verteilung Jianmin Lu RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG Ausarbeitung zum Vortrag im Seminar Stochastik (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In der Wahrscheinlichkeitstheorie

Mehr

Visual-XSel 12.1 Einstiegsbeispiele & SixSigma Ausgewählte Einstiegsbeispiele aus statistischen Methoden und SixSigma mit Visual-XSel 12.

Visual-XSel 12.1 Einstiegsbeispiele & SixSigma Ausgewählte Einstiegsbeispiele aus statistischen Methoden und SixSigma mit Visual-XSel 12. Ausgewählte Einstiegsbeispiele aus statistischen Methoden und SixSigma mit Visual-XSel 12.1 Multivar Wie sollte man diese Leitfaden am besten nutzen? - Drucken Sie diese Seiten aus und legen diese neben

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller Physica-Lehrbuch Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch von Christine Duller Neuausgabe Einführung in die Statistik mit EXCEL und SPSS Duller schnell

Mehr

Erstellung der Grundgesamtheiten

Erstellung der Grundgesamtheiten Inhaltsverzeichnis Erstellung der Grundgesamtheiten... 2 Normalverteilte Zufallszahlen... 2 t-verteilte Zufallszahlen... 2 chi²-verteilte Zufallszahlen... 2 Erwartungstreue - Erweiterung... 3 Zusammenfassung

Mehr

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr