METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

Größe: px
Ab Seite anzeigen:

Download "METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER"

Transkript

1 METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede 1

2 Inferenzstatistik für Zusammenhänge Standardfehler Konfidenzintervalle Signifikanztest STANDARDFEHLER FÜR ZUSAMMENHÄNGE Zusammenhänge werden in der Regel durch Korrelationskoeffizienten ausgedrückt, am häufigsten durch die Pearson-Korrelation r ein in einer Stichprobe gefundener Zusammenhang r kann wieder auf die Population verallgemeinert werden der Schätzwert heißt ρ (Rho) auch für diese Schätzung fragen wir wieder nach der Güte und wollen daher inferenzstatistische Aussagen machen Beispiel: Wie groß ist der Zusammenhang zwischen der Anzahl von Störchen und der Anzahl Neugeborener? à Wir untersuchen als Stichprobe den Raum Chemnitz über 10 Jahre: Jahr Störche Geburten à r = ρ =.38 2

3 STANDARDFEHLER FÜR ZUSAMMENHÄNGE der Standardfehler für ρ berechnet sich wie folgt: für unser Beispiel: ρ ρ à bezogen auf die Skala von r ist das ein recht großer Standardfehler à anders als bei Mittelwerten wird der Standardfehler für Korrelationen normalerweise nicht in Abbildungen irgendeiner Art verwendet KI FÜR ZUSAMMENHÄNGE auch bei Korrelationen gilt: eigentlich müssten wir für jeden Koeffizienten eine Stichprobenverteilung erstellen, um die Grenzen des KI zu bestimmen auch hier könnte aber stattdessen die t-verteilung verwendet werden ABER: die t-verteilung ist nur gültig, wenn r = 0, ansonsten sind rs nicht symmetrisch verteilt und können nicht durch t repräsentiert werden da wir aber in der Regel Effekte ungleich 0 haben, kann die t-verteilung nicht verwendet werden à stattdessen ist ein anderer Umweg nötig, der die Fisher-z-Transformation benutzt: 1. das gefundene r wird in einen z-wert umgerechnet 2. die Grenzen des KI werden für diesen z-wert bestimmt 3. die Grenzen in z-werten werden wieder in rs zurückgerechnet 3

4 KI FÜR ZUSAMMENHÄNGE à da Korrelationskoeffizienten von -1 bis 1 begrenzt sind, ist ihre Stichprobenverteilung nur bei 0 symmetrisch; sie wird schiefer, je stärker die Korrelation von 0 abweicht à KI sind dann nicht mehr symmetrisch und können nicht mit Hilfe der t- Verteilung bestimmt werden KI FÜR ZUSAMMENHÄNGE Fisher s-r-to-z-tabelle SchriE 1 r =.38 in der Tabelle suchen à der entsprechende z r - Wert ist 0,40 4

5 KI FÜR ZUSAMMENHÄNGE z-tabelle Was sind die Grenzen des 95%-KI? SchriE 2 à wieder bei 97,5% nachsehen à z = 1,96 KI FÜR ZUSAMMENHÄNGE Bestimmung der Grenzen des KI ausgedrückt in z-werten: SchriE 2 für das Beispiel: à diese beiden Grenzen müssen nun wieder in rs umgerechnet werden 5

6 KI FÜR ZUSAMMENHÄNGE Fisher s-r-to-z-tabelle SchriE 3 für z = - 0,34: à r = - 0,327 à untere Grenze für z = 1,14: à r = 0,814 à obere Grenze Hinweis: negaove z- Werte führen auch zu negaoven rs! KI FÜR ZUSAMMENHÄNGE als Abbildung: à wir finden ein asymmetrisches KI 6

7 SIGNIFIKANZTESTS FÜR ZUSAMMENHÄNGE wieder die Logik des Signifikanztests: unterstellt wird die H0, dass der wahre Zusammenhang in der Population ρ = 0 ist die H0-Verteilung zeigt also mögliche Korrelationen ungleich 0, die man zufällig finden kann, auch wenn die H0 gilt da die H0 von ρ = 0 ausgeht (und Korrelationen unter dieser Voraussetzung normalverteilt sind), kann jetzt die t-verteilung verwendet werden ρ die Verteilung von KorrelaOonskoeffizienten kann durch die t- Verteilung repräsenoert werden t 0 0 SIGNIFIKANZTESTS FÜR ZUSAMMENHÄNGE für den Test muss also die Korrelation in einen t-wert umgerechnet werden: Formel t-test für Korrelationskoeffizienten dieser t-wert wird dann auf Signifikanz geprüft mit (n ist die Anzahl der Wertepaare) df t-test für Korrelationskoeffizienten für das Beispiel: à kritischer t-wert für Alpha = 5%, df = 8, zweiseitig: 2,31 à t empirisch < t kritisch à Korrelationskoeffizient nicht signifikant 7

8 SIGNIFIKANZTESTS FÜR ZUSAMMENHÄNGE t-verteilung Alpha- Niveau df = n 2 Beispiel: 10 2 = 8 à t kri)sch = 2,31 SIGNIFIKANZTESTS FÜR ZUSAMMENHÄNGE das Beispiel in SPSS: hier gibt es wieder den exakten p- Wert: 0,28 8

9 INFERENZSTATISTIK FÜR ZUSAMMENHÄNGE Verwendung der drei Aussagen für Korrelationskoeffizienten: Standardfehler im Fließtext: so gut wie nie in Abbildungen: so gut wie nie Konfidenzintervalle im Fließtext: zunehmend beliebt in Abbildungen: zunehmend beliebt Signifikanztests im Fließtext: nahezu immer in Abbildungen: sehr selten INFERENZSTATISTIK FÜR ZUSAMMENHÄNGE noch ein Hinweis auch Regressionskoeffizienten sind Zusammenhangsmaße für Regressionskoeffizienten können alle drei inferenzstatischen Maße bestimmt werden auch hier sind die Konfidenzintervalle asymmetrisch, wenn β 0 der Signifikanztest, der prüft, ob ein Regressionskoeffizient in der Population von 0 verschieden ist, ist auch ein t-test: Regressionskoeffizient Formel t-test für Regressionskoeffizienten Standardfehler des Koeffizienten mit df t-test für Regressionskoeffizienten (n SOchprobengröße; k Anzahl von Prädiktoren) 9

10 IS FÜR ZUSAMMENHÄNGE STECKBRIEF für Zusammenhänge werden inferenzstatische Aussagen recht häufig gemacht der Standardfehler wird aus der gefundenen Korrelation und der Stichprobengröße berechnet Konfidenzintervalle sind für ρ ungleich 0 nicht symmetrisch, daher wird die Fisher-r-in-z-Transformation genutzt, um die Grenzen des Intervalls zunächst in z- Werten zu bestimmen und dann in Korrelationen zurück zu rechnen Konfidenzintervalle für Korrelationen sind zunehmend beliebt und sind sehr empfehlenswert der Signifikanztest, der prüft, ob ein Korrelationskoeffizient in der Population größer ist als 0, ist wieder ein t-test auch für Regressionskoeffizienten können die drei inferenzstatistischen Maße bestimmt werden Inferenzstatistik für Unterschiede Standardfehler Konfidenzintervalle Signifikanztest 10

11 STANDARDFEHLER FÜR UNTERSCHIEDE wir beschränken uns auf Unterschiede von Mittelwerten wie jeder andere Parameter auch folgen die Differenzen von Mittelwerten einer Normalverteilung es lässt sich also wieder eine Stichprobenverteilung von Mittelwertsunterschieden ΔM erstellen, die die Grundlage für die Bestimmung von Standardfehler und KI bildet: ΔM gefundene Differenz die Logik: diese Verteilung entsteht, wann man immer wieder Studien machen und die Differenz von zwei MiEelwerten besommen würde à diese verteilen sich um den wahren MiEelwertsunterschied in der PopulaOon STANDARDFEHLER FÜR UNTERSCHIEDE prinzipiell müssen zwei Fälle unterschieden werden 1. die Differenzen stammen von Messwerten von verschiedenen Personen à Mittelwertsunterschiede von unabhängigen Stichproben 2. die Differenzen stammen von Messwiederholungen an denselben Personen à Mittelwertsunterschiede von abhängigen Stichproben Häufigkeitsverteilungen der Messwerte x A SOchprobenverteilung der Differenzwerte ΔM x B A und B können verschiedene Personen sein à unabhängige SP ODER A und B können Mess- wiederholungen an denselben Personen (oder sonsoge abhängige Messungen) sein à abhängige SP 11

12 STANDARDFEHLER FÜR UNTERSCHIEDE Beispiel Unterschied im Gewichtsverlust bei mehr oder weniger Schlaf Fall 1: verschiedene Personen in den beiden Bedingungen à unabhängige SP Fall 2: dieselben Personen in beiden Bedingungen à abhängige SP Gewichtsverlust in kg Nedeltcheva et al. (2010) A B 8.5h 5.5h Schlaf Beispieldaten für 22 (Fall1) bzw. 11 Personen (Fall 2): A B 1,0 0,9 0,9 1,0 1,6 1,0-0,4 0 1,1-0,1 1,3 0,4 3,3 0,3 1,0 2,5 1,6 1,8 1,6 1,2 2,1 0,9 ΔM = Δμ = 0,47 à Schätzwert für den MW- Unterschied in der PopulaOon SD A = 0,82 SD B = 0,70 STANDARDFEHLER FÜR UNTERSCHIEDE unabhängige Stichproben der Standardfehler des Mittelwertsunterschieds kann wieder durch die Streuungen innerhalb der Gruppen geschätzt werden: für das Beispiel: à bezogen auf die relevanten Gewichtsverluste, die sich hauptsächlich zwischen 0 und 2 kg bewegen, ist das ein mittelgroßer Standardfehler ΔM zur Erinnerung: das bedeutet, dass ca. 68% der Differenzwerte in dieser Verteilung zwischen 0,11 und 0,83 liegen 0,47 12

13 STANDARDFEHLER FÜR UNTERSCHIEDE abhängige Stichproben Design: within zur Erinnerung: bei abhängigen Messungen kommt es nicht auf die Streuungen innerhalb der Gruppen, sondern auf die Streuung der Differenzwerte an diese Streuung wird wieder für die Bestimmung des Standardfehlers verwendet: 8.5h 5.5h Schlaf für das Beispiel: Messwertedifferenzen pro Person à Interpretation wie bei unabhängigen Messungen KONFIDENZINTERVALLE FÜR UNTERSCHIEDE unabhängige Stichproben für die Bestimmung der Grenzen des KI wird wieder die t-verteilung verwendet die Grenzen in t-werten werden wieder mit dem Standardfehler der Mittelwertsdifferenz verknüpft, um die Länge des Intervalls in Rohwerten zu bestimmen: für das Beispiel (bei 95% Konfidenz): à das KI ist recht lang und reicht sogar in den negativen Bereich hinein à die Schätzung ist nicht besonders zuverlässig 13

14 KONFIDENZINTERVALLE FÜR UNTERSCHIEDE t-verteilung Alpha- Niveau df = (n A 1) + (n B 1) Beispiel: = 20 KONFIDENZINTERVALLE FÜR UNTERSCHIEDE unabhängige Stichproben Darstellung des Konfidenzintervalls: kg Hinweis: noch findet man solche Darstellungen von KI für Mittelwertsunterschiede recht selten meist werden nur die Mittelwerte der beiden Bedingungen mit ihren jeweiligen KI dargestellt (siehe KI für Mittelwerte) 14

15 KONFIDENZINTERVALLE FÜR UNTERSCHIEDE abhängige Stichproben die Grenzen des Konfidenzintervalls berechnen sich hier entsprechend: für das Beispiel (bei 95% Konfidenz): à Interpretation wie bei unabhängigen Messungen Hinweis: oft sind KI für abhängige Messungen kürzer, da hier der Standardfehler meist kleiner ist (in unserem Beispiel ist das nicht der Fall) KONFIDENZINTERVALLE FÜR UNTERSCHIEDE t-verteilung Alpha- Niveau df = n 1 Beispiel: 11 1 = 10 15

16 KONFIDENZINTERVALLE FÜR UNTERSCHIEDE abhängige Stichproben Darstellung des Konfidenzintervalls: kg Hinweis: noch findet man solche Darstellungen von KI für Mittelwertsunterschiede recht selten meist werden nur die Mittelwerte der beiden Bedingungen mit ihren jeweiligen KI dargestellt (siehe KI für Mittelwerte) die Logik wie gehabt: die Nullhypothese unterstellt, dass es in der Population keinen Unterschied gibt (genauer gesagt, dass beide Stichproben aus derselben Population stammen) auch Mittelwertsunterschiede sind t-verteilt, sodass jedem Mittelwertsunterschied ein t-wert zugewiesen werden kann, der dann auf Signifikanz geprüft wird die Bestimmung des t-wertes ist wieder abhängig vom Studiendesign generelles Prinzip: Mittelwertsdifferenz durch den Standardfehler teilen 16

17 unabhängige Stichproben Bestimmung des t-wertes: MiEelwertsunterschied Formel t-test für unabhängige Stichproben für das Beispiel: Standardfehler Bestimmung der Freiheitsgrade:!" =!! 1 + (!! 1)! df t-test für unabhängige Stichproben für das Beispiel: Signifikanzprüfung: was ist der kritische t-wert für Alpha = 5%? à nachsehen in der t-verteilung bei df = 20 bei einsei)gem Testen hier, bei zweisei)gem Testen hier ablesen H0 H0 17

18 Signifikanzprüfung: t empirisch = 1,31 t kritisch = 2,09 à nicht signifikant à das Ergebnis in SPSS: das Programm gibt den genauen p- Wert an abhängige Stichproben Bestimmung des t-wertes: MiEelwertsunterschied Formel t-test für abhängige Stichproben für das Beispiel:! = 0,47 0,35 = 1,34! Standardfehler Bestimmung der Freiheitsgrade:!" =! 1! df t-test für abhängige Stichproben für das Beispiel:!" = 11 1 = 10! 18

19 Signifikanzprüfung: was ist der kritische t-wert für Alpha = 5%? à nachsehen in der t-verteilung bei df = 10 bei einsei)gem Testen hier, bei zweisei)gem Testen hier ablesen H0 H0 Signifikanzprüfung: t empirisch = 1,34 t kritisch = 2,23 à nicht signifikant à das Ergebnis in SPSS: das Programm gibt den genauen p- Wert an (die Werte des KI weichen durch Rundungsfehler von den vorn berechneten etwas ab) 19

20 ein paar wichtige Hinweise es ist egal, welche Stichprobe man von welcher abzieht (A-B oder B-A) der berechnete t-wert kann entsprechend positiv oder negativ sein bei ungerichteten Hypothesen spielt das keine weitere Rolle bei gerichteten Hypothesen ist zunächst zu prüfen, ob der Unterschied in die richtige Richtung geht (das hängt nicht vom Vorzeichen des t- Wertes sondern davon ab, welche Stichprobe von welcher abgezogen wurde!) diese Prüfung geschieht deskriptiv durch die Mittelwerte und/oder eine Abbildung geht die Differenz in die falsche Richtung, erübrigen sich inferenzstatistische Angaben! generell gilt: immer zuerst eine deskriptive Darstellung (am besten Abbildung) und erst dann ein Signifikanztest Darstellung im Fließtext werden die Ergebnisse von Signifikanztests nahezu immer angegeben in Abbildungen wird manchmal der p-wert eingefügt: p =.20 20

21 Konfidenzintervalle und Signifikanztests eine interessante Faustregel da in Abbildungen häufig nur die Konfidenzintervalle der Mittelwerte angegeben sind, kann man mit Hilfe dieser Faustregel sehen, auf welchem Niveau ein Unterschied signifikant ist à das ist ein weiterer Grund, warum eine gute Abbildung einem Signifikanztest vorzuziehen ist! Zusammenhang von Effektgrößen und inferenzstatistischen Aussagen am Beispiel eines Mittelwertsunterschiedes bei unabhängigen SP: wird durch Standardisierung anhand der Streuungen zur Effektgröße Effekt drei mögliche inferenzstaososche Aussagen: 1. Schätzung des Standardfehlers des Effektes anhand dessen SOchprobenverteilung s e Verteilung möglicher Effekte beim wiederholten Ziehen s A s B 2. Angabe eines Konfidenzintervalls für den Effekt anhand dessen SOchprobenverteilung Verteilung möglicher Effekte beim wiederholten Ziehen zwei unabhängige SOchproben: N gesamt wird aufgeteilt in n A und n B 3. Berechnung der Prüfgröße t und Prüfen auf Signifikanz mit Hilfe der t- Verteilung (p < α?) α Verteilung der Prüfgröße t, falls die H0 zutrir p 21

22 Voraussetzungen für die Berechnung von t-tests Signifikanztests basieren auf Stichprobenverteilungen und damit auf der Betrachtung von Streuungen daher sind diese Tests nur sinnvoll, wenn intervallskalierte Daten vorliegen die Daten in der Population normalverteilt sind die Streuungen in beiden Stichproben in etwa gleich groß sind und bei unabhängigen Messungen die Stichproben auch tatsächlich unabhängig sind (gut durch Randomisieren zu erreichen) die Vergleichbarkeit der Streuungen bei unabhängigen Stichproben kann man rechnerisch prüfen (Tests auf Varianzhomogenität) t-tests gelten aber als robust: kleine bis moderate Abweichungen der Voraussetzungen führen dennoch zu guten Ergebnissen Bestimmung von Effektgrößen aus den Ergebnissen von t-tests aus den Signifikanztestergebnissen lassen sich Effektgrößen bestimmen (als Alternative zur Berechnung aus den Rohwerten) dies geschieht, indem die Stichprobengröße einbezogen wird Abstandsmaße Zusammenhangsmaße unabhängige SOchproben! =! 1!! + 1!!!! =!!!! +!"! abhängige SOchproben! =!!! - diese Berechnung wird nicht empfohlen, da sie zu verzerrten Schätzungen führen kann 22

23 INFERENZSTATISTIK FÜR UNTERSCHIEDE Verwendung der drei Aussagen für Mittelwertsunterschiede: Standardfehler im Fließtext: eher selten in Abbildungen: Konfidenzintervalle so gut wie nie im Fließtext: recht häufig in Abbildungen: Signifikanztests zunehmend beliebt im Fließtext: nahezu immer in Abbildungen: ab und zu IS FÜR UNTERSCHIEDE STECKBRIEF für Mittelwertsunterschiede werden so gut wie immer inferenzstatistische Aussagen gemacht hier muss darauf geachtet werden, ob das Studiendesign abhängige oder unabhängige Stichproben benutzt der Standardfehler wird recht selten benutzt Konfidenzintervalle nutzen den SE und die t-verteilung und werden dann um die Mittelwertsdifferenz herum aufgespannt der Signifikanztest, der prüft, ob ein Mittelwertsunterschied ungleich 0 in der Population vorhanden ist, ist der t-test, den es für unabhängige Stichproben und abhängige Stichproben gibt hier ist auch relevant, ob einseitig oder zweiseitig getestet werden soll jedem inferenzstatistischen Verfahren sollte eine deskriptive Analyse vorangestellt werden, am besten eine Abbildung 23

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße

INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE. Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße DAS THEMA: INFERENZSTATISTIK III INFERENZSTATISTISCHE AUSSAGEN FÜR LAGEMAßE UND STREUUNGSMAßE Inferenzstatistik für Lagemaße Inferenzstatistik für Streuungsmaße Inferenzstatistik für Lagemaße Standardfehler

Mehr

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler

14.01.14 DAS THEMA: INFERENZSTATISTIK II. Standardfehler Konfidenzintervalle Signifikanztests. Standardfehler DAS THEMA: INFERENZSTATISTIK II INFERENZSTATISTISCHE AUSSAGEN Standardfehler Konfidenzintervalle Signifikanztests Standardfehler der Standardfehler Interpretation Verwendung 1 ZUR WIEDERHOLUNG... Ausgangspunkt:

Mehr

12.1 Wie funktioniert ein Signifikanztest?

12.1 Wie funktioniert ein Signifikanztest? Sedlmeier & Renkewitz Kapitel 12 Signifikanztests 12.1 Wie funktioniert ein Signifikanztest? Zentrales Ergebnis eine Signifikanztests: Wie wahrscheinlich war es unter der Bedingung dass H0 gilt, diesen

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

E ektgrößen Metaanalysen. Zusammenhänge und Unterschiede quantifizieren E ektgrößen

E ektgrößen Metaanalysen. Zusammenhänge und Unterschiede quantifizieren E ektgrößen DAS THEMA: EFFEKTGRÖßEN UND METAANALYSE E ektgrößen Metaanalysen Zusammenhänge und Unterschiede quantifizieren E ektgrößen Was ist ein E ekt? Was sind E ektgrößen? Berechnung von E ektgrößen Interpretation

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene

Mehr

3. Der t-test. Der t-test

3. Der t-test. Der t-test 3 3. Der t-test Dieses Kapitel beschäftigt sich mit einem grundlegenden statistischen Verfahren zur Auswertung erhobener Daten: dem t-test. Der t-test untersucht, ob sich zwei empirisch gefundene Mittelwerte

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN

Mehr

Eine Einführung in R: Statistische Tests

Eine Einführung in R: Statistische Tests Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws12/r-kurs/

Mehr

Psychologische Methodenlehre und Statistik II

Psychologische Methodenlehre und Statistik II Psychologische Methodenlehre und Statistik II Pantelis Christodoulides & Karin Waldherr 9. Juni 2010 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik II 1/47 Allgemeines

Mehr

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten DAS THEMA: TABELLEN UND ABBILDUNGEN Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen Standardisierung von Daten z-standardisierung Standardnormalverteilung 1 DIE Z-STANDARDISIERUNG

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Herzlich Willkommen zur Vorlesung Statistik

Herzlich Willkommen zur Vorlesung Statistik Herzlich Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Kovarianz und Korrelation Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97.

Aufgabenblock 4. Da Körpergröße normalverteilt ist, erhalten wir aus der Tabelle der t-verteilung bei df = 19 und α = 0.05 den Wert t 19,97. Aufgabenblock 4 Aufgabe ) Da s = 8. cm nur eine Schätzung für die Streuung der Population ist, müssen wir den geschätzten Standardfehler verwenden. Dieser berechnet sich als n s s 8. ˆ = = =.88. ( n )

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

3 Konfidenzintervalle

3 Konfidenzintervalle 3 Konfidenzintervalle Konfidenzintervalle sind das Ergebnis von Intervallschätzungen. Sicheres Wissen über Grundgesamtheiten kann man anhand von Stichproben nicht gewinnen. Aber mit Hilfe der Statistik

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Statistische Auswertung der Daten von Blatt 13

Statistische Auswertung der Daten von Blatt 13 Statistische Auswertung der Daten von Blatt 13 Problemstellung 1 Graphische Darstellung der Daten 1 Diskussion der Normalverteilung 3 Mittelwerte und deren Konfidenzbereiche 3 Signifikanz der Behandlung

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Statistik & Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte

Mehr

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen Bildungsurlaub-Seminare: Lerninhalte und Programm Seminartitel SPSS für Psychologen/innen (BH15113) Termin Mo, den 18.05.bis Fr, den 22.05.2015 (40 UStd.) Veranstaltungsort Bildungsherberge der Studierendenschaft

Mehr

2.1 Die Normalverteilung

2.1 Die Normalverteilung . INFERENZSTATISTIK Inferenzstatistik bedeutet übersetzt schließende Statistik. Damit ist der Schluss von den erhobenen Daten einer Stichprobe auf Werte in der Population gemeint..1 Die Normalverteilung

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

1 Statistische Grundlagen

1 Statistische Grundlagen Konzepte in Empirische Ökonomie 1 (Winter) Hier findest Du ein paar Tipps zu den Konzepten in Empirische 1. Wenn Du aber noch etwas Unterstützung kurz vor der Klausur brauchst, schreib uns eine kurze Email.

Mehr

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)

Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36) Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1-

Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil 1- SPSSinteraktiv Signifikanztests (Teil ) - - Signifikanztests zur Prüfung von Unterschieden in der zentralen Tendenz -Teil - t-test bei einer Stichprobe - SPSS-Output Der t-test bei einer Stichprobe wird

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 3A Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit den Berechnungsfunktionen LG10(?) und SQRT(?) in "Transformieren", "Berechnen" können logarithmierte Werte sowie die Quadratwurzel

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09

Konfidenzintervalle. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Konfidenzintervalle Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Münzspiel Experiment 100 Münzwürfe: Stefan gewinnt bei "Kopf" Hypothesen H 0 : Stefan wird so oft gewinnen

Mehr

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167

Multivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.167 Multivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.167 Multivariate Regression Verfahren zur Prüfung des gemeinsamen linearen Einflusses mehrerer unabhängiger Variablen auf eine

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:..

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:.. Institut für Erziehungswissenschaft der Philipps-Universität Marburg Prof. Dr. Udo Kuckartz Arbeitsbereich Empirische Pädagogik/Methoden der Sozialforschung Wintersemester 004/005 KLAUSUR FEBRUAR 005 /

Mehr

Einführung in statistische Testmethoden

Einführung in statistische Testmethoden Einführung in statistische Testmethoden und die Bearbeitung von Messdaten mit Excel 1. Beispielhafte Einführung in den Gebrauch von Testmethoden 2. Typen von Messwerten, Verteilungen 3. Mittelwert, Varianz,

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

Medizinische Physik und Statistik I. 2011/12, II. Semester. Prüfungskurs. Vorlesung: Kurscode: AOK-KN051-Prüfung,

Medizinische Physik und Statistik I. 2011/12, II. Semester. Prüfungskurs. Vorlesung: Kurscode: AOK-KN051-Prüfung, Medizinische Physik und Statistik I. 2011/12, II. Semester Prüfungskurs DATEN DES KURSES Titel des Kurses: Medizinische Physik und Statistik I. Kreditpunkte: 5 Kreditpunkte Vorlesung: Kurscode: AOK-KN051-Prüfung,

Mehr

Ein bisschen Statistik

Ein bisschen Statistik Prof. Dr. Beat Siebenhaar ein bisschen Statistik 1 Ein bisschen Statistik (orientiert an Hüsler/Zimmermann (006) mit Umsetzung auf die linguistische Fragen) 1. Datentypen und Grafik Grafische Darstellungen

Mehr

Überblick über die Tests

Überblick über die Tests Anhang A Überblick über die Tests A.1 Ein-Stichproben-Tests A.1.1 Tests auf Verteilungsannahmen ˆ Shapiro-Wilk-Test Situation: Test auf Normalverteilung H 0 : X N(µ, σ 2 ) H 1 : X nicht normalverteilt

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Statistik für Studenten der Sportwissenschaften SS 2008

Statistik für Studenten der Sportwissenschaften SS 2008 Statistik für Studenten der Sportwissenschaften SS 008 Aufgabe 1 Man weiß von Rehabilitanden, die sich einer bestimmten Gymnastik unterziehen, dass sie im Mittel µ=54 Jahre (σ=3 Jahre) alt sind. a) Welcher

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill.

Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Statistik Literatur: Glantz, S.A. (2002). Primer of Biostatistics. New York: McGraw-Hill. Maxwell, S.E. & Delaney, H.D. (2000). Designing Experiments and Analyzing Data. Mahwah, NJ: Erlbaum. Das Grundproblem

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Statistik II für Betriebswirte Vorlesung 3

Statistik II für Betriebswirte Vorlesung 3 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 3 5. November 2013 Beispiel: Aktiensplit (Aczel & Sounderpandan, Aufg. 14-28) Ein Börsenanalyst

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Lösungen zu den Übungsaufgaben in Kapitel 10

Lösungen zu den Übungsaufgaben in Kapitel 10 Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und

Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und Von der Untersuchungsfrage zu statistischen Hypothesen, und wie war das nochmal mit dem α- und β-fehler? Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

Robustheitsuntersuchung am Beispiel der rechnerischen Simulation der ECE-R14

Robustheitsuntersuchung am Beispiel der rechnerischen Simulation der ECE-R14 alt 1. Vergleich der Methoden Reine Monte-Carlo-Analyse Ersatzflächenbasierte Monte-Carlo-Analyse 2. Restriktionen nach ECE-R14 3. FEM-Modell 4. Bauteile/ Parameter 5. Anwendung beider Methoden auf ECE-R14

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Anpassungstests VORGEHENSWEISE

Anpassungstests VORGEHENSWEISE Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel

Mehr

(VU) Übungen zur Einführung in die statistische Datenanalyse II. Inhalte Statistik I. Inhalte Statistik I Deskriptive Statistik

(VU) Übungen zur Einführung in die statistische Datenanalyse II. Inhalte Statistik I. Inhalte Statistik I Deskriptive Statistik II Übungen zur II Organisatorische Hinweise Keine Anwesenheitspflicht (aber empfehlenswert) Einführung in die statistische Datenanalyse II (VU) Lehrinhalte (.ppt Folien): elearning.univie.ac.at 3 Prüfungstermine:

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

Statistik Musterlösungen

Statistik Musterlösungen Statistik Musterlösungen Regina Tüchler & Achim Zeileis Institut für Statistik & Mathematik Wirtschaftsuniversität Wien 1 Grundbegriffe (1.23) Skript Reaktionen auf Videofilm. Aussagen M, E, P, S h(m)

Mehr

Ein möglicher Unterrichtsgang

Ein möglicher Unterrichtsgang Ein möglicher Unterrichtsgang. Wiederholung: Bernoulli Experiment und Binomialverteilung Da der sichere Umgang mit der Binomialverteilung, auch der Umgang mit dem GTR und den Diagrammen, eine notwendige

Mehr

7. Mai 2010. Ruhr-Universität Bochum. Methodenlehre II, SS 2009. Prof. Dr. Holger Dette

7. Mai 2010. Ruhr-Universität Bochum. Methodenlehre II, SS 2009. Prof. Dr. Holger Dette Ruhr-Universität Bochum 7. Mai 2010 1 / 95 Methodenlehre II NA 3/73 Telefon: 0234 322 8284 Email: holger.dette@rub.de Internet: www.ruhr-uni-bochum.de/mathematik3/index.html Vorlesung: Montag, 8.30-10.00

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Kaplan-Meier-Schätzer

Kaplan-Meier-Schätzer Kaplan-Meier-Schätzer Ausgangssituation Zwei naive Ansätze zur Schätzung der Survivalfunktion Unverzerrte Schätzung der Survivalfunktion Der Kaplan-Meier-Schätzer Standardfehler und Konfidenzintervall

Mehr

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer

R-WORKSHOP II. Inferenzstatistik. Johannes Pfeffer R-WORKSHOP II Inferenzstatistik Johannes Pfeffer Dresden, 25.1.2011 01 Outline Lösung der Übungsaufgabe Selbstdefinierte Funktionen Inferenzstatistik t-test Kruskal-Wallis Test Übungsaufgabe TU Dresden,

Mehr

Varianzanalyse * (1) Varianzanalyse (2)

Varianzanalyse * (1) Varianzanalyse (2) Varianzanalyse * (1) Einfaktorielle Varianzanalyse (I) Die Varianzanalyse (ANOVA = ANalysis Of VAriance) wird benutzt, um Unterschiede zwischen Mittelwerten von drei oder mehr Stichproben auf Signifikanz

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 9B a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Man kann erwarten, dass der Absatz mit steigendem Preis abnimmt, mit höherer Anzahl der Außendienstmitarbeiter sowie mit erhöhten

Mehr

U0. Einführender Text: ein quickly prototyping

U0. Einführender Text: ein quickly prototyping U0. Einführender Text: ein quickly prototyping Mit der zunehmenden Computerunterstützung bei der Anwendung statistischer Verfahren haben sich zugleich die Schwierigkeiten beim Einsatz der Statistik verschoben.

Mehr

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik II Multiple

Mehr