Business Intelligence Praktikum 1

Größe: px
Ab Seite anzeigen:

Download "Business Intelligence Praktikum 1"

Transkript

1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: Business Intelligence Praktikum 1 1. Kurzbeschreibung In diesem Praktikum geht es hauptsächlich um die konzeptionelle Data Modellierung und Umsetzung in ein multidimensionales Datenmodell. Aus dem multidimensionalen Datenmodell soll dann ein Würfel erzeugt werden. Ferner sollen Daten mit SQL- Befehlen (GROUP BY ROLLUP, GROUP BY CUBE) abgefragt werden. Diese Aufgabe besteht aus 3 Teilen: A- Mit einem TOOL (Power Designer) soll das konzeptionelle Data Modell entwickelt und in das physische Data Modell transformiert werden. Aufgrund dieses physischen Data Modells soll ein multidimensionales Oracle Schema (SQL-Skript für Erstellung der Tabellen) erzeugt werden. Dadurch soll ein Würfel erstellt werden B- Mit dem Tool SQL DEVELOPER soll diese Skript-Datei dann ausgeführt werden. Die erzeugten Tabellen sollen mit Daten gefüllt und abgefragt werden. C- Die SQL-OLAP Funktionen (GROUP BY ROLLUP, GROUP BY CUBE) sollen angewandt werden Die folgenden Werkzeuge kommen zum Einsatz: Sybase Power Designer (Modellierungswerkzeug) SQL-Developer (Oracle Client) 2. Lernziele Die Studierenden sollen in die Lage versetzt werden: A. Eine reelle Welt mit Hilfe des ER-Modells abzubilden B. Das ER-Modell in ein relationales Modell zu transformieren C. DB-Tabellen mit Daten zu füllen D. Das erstellte relationale Modell in ein multidimensionales Datenmodell zu überführen E. Einen Cube (Würfel) zu erzeugen F. Die Daten aus einer Datenbank mit Hilfe von SQL-Befehlen (GROUP BY ROLLUP, GROUP BY CUBE) abzufragen. 3. Vorbereitung Wenn Sie Power Designer zu Hause haben, können Sie Ihr schon zu Hause erstelltes Modell mitbringen. Ferner sollen Sie mit den SQL-OLAP Befehlen (GROUP BY ROLLUP, GROUP BY CUBE) vertraut machen. 4. Abnahme Die Abnahme findet am Ende der Praktikumssitzung statt.

2 TEIL 1 Modellieren Sie auf dem Papier ein Data Warehouse für Informationen zur Produktion von Zügen, wobei ein Star- und ein Snowflake-Schema zu verwenden sind. Beschreibung der realen Welt: Das betrachtete Unternehmen hat mehrere Produktionsstätten in verschiedenen Ländern. Die Produktion der Züge findet dabei in den Produktionshallen einer solchen Produktionsstätte statt. Oft werden verschiedene Produktionsschritte auf verschiedene Produktionshallen innerhalb einer Produktionsstätte aufgeteilt. Die einzelnen Produktionsschritte beinhalten einige Arbeitsschritte. Es kommt vor, dass Mitarbeiter aus unterschiedlichen Teams zusammen an einem Produktionsschritt arbeiten. Ein Mechaniker kann in verschiedenen Produktionshallen eingesetzt werden. Mechaniker arbeiten in Teams. Der Status eines Arbeitsschrittes wird am Ende eines Arbeitstages vermerkt (z.b. dass der Produktionsschritt nicht komplett ist). Es soll eine Analyse mit der Genauigkeit von einem Tag und einer Woche möglich sein. Das Data Warehouse soll beispielsweise folgende Anfragen unterstützen: Was sind die durchschnittlichen Kosten für einen bestimmten Produktionsschritt? Wie lange dauert ein Produktionsschritt durchschnittlich in einer bestimmten Produktionshalle? In welcher Produktionsstätte sind die Produktionskosten für einen bestimmten Produktionsschritt am niedrigsten? Wie viele Züge vom Typ ICE wurden in Produktionsstätte W produziert? Wie viele Züge mit dem Baujahr 1980 wurden in Produktionsstätte X produziert? Welcher Mechaniker führt den Arbeitsschritt Y am schnellsten aus? Vorbereitung zu Hause: Das konzeptionelle Modell soll zu Hause auf dem Papier erstellt werden. Bevor Sie mit dem Powerdesigner modellieren, muss das konzeptionelle Model vom Betreuer abgenommen werden.

3 TEIL 2 Starten Sie die Software PowerDesigner. Auf der Homepage von Y. Orkunoglu finden Sie eine Anleitung zu PowerDesigner. Nun können Sie ihr konzeptionelles Modell mit PowerDesigner erstellen. Das Modell soll sowohl das Star- als auch das Snowflake-Schema (z.b. Tag, Monat, Jahr) beinhalten. I. Das konzeptionelle Modell soll ins logische Modell überführt werden. (Über den Menüpunkt Tools Generate Logical Data Model) II. III. Aus dem logischen Modell heraus soll ein physisches Modell für das DBMS Oracle Version 11g generiert werden. (Über den Menüpunkt Tools Generate Physical Data Model) (Siehe Bild) Aus dem physischen Modell sollen die Tabellen für das DBMS Oracle Version 11g generiert werden. (Über den Menü Database Generate Database) Nun wurde eine SQL-Datei erzeugt. Diese SQL-Datei beinhaltet die SQL- Anweisungen, die die nötigen Tabellen erzeugen. (Diese Datei werden Sie im 3. Teil benötigen) IV. Nun generieren Sie für die Tabellen Test Daten (jeweils mindestens 5 Datensätze) (Über den Menüpunkt Database Generate Test Data) (Auch diese Datei werden Sie im 3. Teil benötigen) TEIL 3 In diesem Teil soll das entstandene Modell in ein MULTIDIMENSIONALES MODELL MIT CUBE umgewandelt werden, so dass das Modell ungefähr wie folgt aussieht:

4 TEIL 4 Wechseln Sie zum SQL.DEVELOPER und erstellen Sie Tabellen und füllen Sie die Tabellen mit den Testdaten aus, die vom Powerdesigner aus generiert wurden. (Sie Aufgabe Teil 2 (III-IV)) Damit die folgende SQL-Anweisungen im Teil 5 unten durchführen können, sollten Sie an den generierten Testdaten entsprechende Änderungen vornehmen; D.h ändern Sie die Daten für die Attribute JAHR, BAUJAHR, LANDNAME, TEAMNAME, ZUGTYP, PRODUKTIONSSTÄTTE so, dass die sinnvollen Atributtwerte eingegeben werden. Z.B. für das Baujahr 2001 für den Zugtyp ICE und Landname DEUTSCHLAND usw. Es wäre sinnvoll, wenn für die bestimmte Atrribute BAUJAHR, LANDNAME DEUTSCHLAND gleiche Werte mehrmals (z.b. dreimal DEUTSCHLAND) eingetragen werden. (wegen GROUP BY Befehl.)

5 TEIL 5 Kleine Einführung in die SQL-OLAP Funktionen (GROUP BY ROLLUP, GROUP BY CUBE) Führen Sie die folgenden beiden SQL-Befehle auf der Datenbank aus: SELECT Qualifikation, Sum(Gehalt) as Gehälter FROM Mitarbeiter GROUP BY Qualifikation ORDER BY Qualifikation SELECT Qualifikation, Sum(Gehalt) as Gehälter FROM Mitarbeiter GROUP BY ROLLUP (Qualifikation) ORDER BY Qualifikation Welche Informationen liefern die beiden Abfragen? Wie arbeitet der group by rollup Operator? TEIL 6 Schreiben Sie SQL-Code für die folgenden Aufgaben: 1) Was sind die durchschnittlichen Kosten für einen bestimmten Produktionsschritt? 2) In welcher Produktionsstätte sind die Produktionskosten für einen bestimmten Produktionsschritt am niedrigsten? 3) Wie viele Züge vom Typ ICE Züge mit dem Baujahr 1980 wurden in Produktionsstätte W produziert? 4) Lassen Sie alle Mechaniker anzeigen, die an der Produktion des Zuges vom TYP ICE vom Baujahr 2001 beteiligt waren. 5) Lassen alle Produktionshallen und Teamnamen in Deutschland anzeigen. Optional 6) Lassen Anzahl der Meckaniker gruppiert nach Landname anzeigen. 7) In welchem Land sind die die Produktionskosten für einen bestimmten Produktionsschritt am teuersten? 8) Welcher Mechaniker führt den Arbeitsschritt Y am schnellsten aus?

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.10.2013 Business Intelligence Praktikum

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

Business Intelligence Praktikum 2

Business Intelligence Praktikum 2 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 2 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.05.2014 1. Kurzbeschreibung Business Intelligence

Mehr

Business Intelligence

Business Intelligence Hochschule Darmstadt Business Intelligence Fachbereich Informatik Praktikumsaufgabe 3 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2007 Business Intelligence Aufgabenstellung 1.

Mehr

3. Vorbereitung Es wär vorteilhaft, wenn die SQL-Abfragen in irgend einer Form schriftlich vorlegen würden.

3. Vorbereitung Es wär vorteilhaft, wenn die SQL-Abfragen in irgend einer Form schriftlich vorlegen würden. Hochschule Darmstadt DATENBANKEN Fachbereich Informatik Praktikum 2 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 10.12.2009 Aufgabenstellung SQL- Abfragen 1. Kurzbeschreibung Im ersten

Mehr

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015 Hochschule Darmstadt Data Warehouse SS2015 Fachbereich Informatik Praktikumsversuch 4 Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015 1. Kurzbeschreibung Dieses Praktikum

Mehr

Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3. Aufgabenstellung

Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3. Aufgabenstellung Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 18.12.2013 1. Kurzbeschreibung Dieses Praktikum

Mehr

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 Hochschule Darmstadt DATENBANKEN Fachbereich Informatik Praktikum 3 Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 PL/SQL Programmierung Anwendung des Cursor Konzepts und Stored Procedures Und Trigger

Mehr

Business Intelligence

Business Intelligence Hochschule Darmstadt Business Intelligence und Wissensmanagement Fachbereich Informatik Praktikumsversuch BI, Teil 1 Prof. Dr. C. Wentzel, Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 03.04.2006 1. Kurzbeschreibung

Mehr

Fachbereich Informatik Praktikumsaufgabe 3. Data Warehouse

Fachbereich Informatik Praktikumsaufgabe 3. Data Warehouse Hochschule Darmstadt Data Warehouse Fachbereich Informatik Praktikumsaufgabe 3 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 08.12.2008 Data Warehouse Aufgabenstellung 1. Kurzbeschreibung

Mehr

Business Intelligence Aufgabenstellung

Business Intelligence Aufgabenstellung Hochschule Darmstadt Business Intelligence (BI) Fachbereich Informatik Praktikum 2 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Sebastian Gobst Änderung: 15.06.2012 Datum: 30.05.2012 1. Einführung

Mehr

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 13.05.2013.

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 13.05.2013. Hochschule Darmstadt Data Warehouse Fachbereich Informatik Praktikumsversuch 4 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 13.05.2013 Data Warehouse Aufgabenstellung Aufgabe1: OLAP-Modellerstellung

Mehr

Fachbereich Informatik Praktikumsversuch 6. Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Christoph Gerold, B. Sc. Datum: 02.07.

Fachbereich Informatik Praktikumsversuch 6. Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Christoph Gerold, B. Sc. Datum: 02.07. Hochschule Darmstadt Data Warehouse Fachbereich Informatik Praktikumsversuch 6 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Christoph Gerold, B. Sc. Datum: 02.07.2013 Einleitung Data Warehouse

Mehr

Einteilung von Datenbanken

Einteilung von Datenbanken Datenbanksysteme (c) A.Kaiser; WU-Wien 1 Einteilung von Datenbanken 1. formatierte Datenbanken 2. unformatierte Datenbanken Information Retrieval Systeme 2 Wozu Datenbanken? Speicherung und Verwaltung

Mehr

Business Intelligence Aufgabenstellung

Business Intelligence Aufgabenstellung Hochschule Darmstadt Business Intelligence (BI) Fachbereich Informatik Praktikum 3 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Sebastian Gobst Datum: 30.05.2012 Business Intelligence Aufgabenstellung

Mehr

Christian Kurze BI-Praktikum IBM WS 2008/09

Christian Kurze BI-Praktikum IBM WS 2008/09 Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten.

Eine völlig andere Form Abfragen zu erstellen ist, sie mit Hilfe der Datenbankabfragesprache SQL zu gestalten. Einführung SQL 2010 Niko Becker Mit unseren Übungen zu ACCESS können Sie Aufbau und Struktur einer relationalen Datenbank kennenlernen. Wir zeigen Ihnen wie Sie Tabellen, Formulare und Berichte erstellen

Mehr

Dokumentation zur Anlage eines JDBC Senders

Dokumentation zur Anlage eines JDBC Senders Dokumentation zur Anlage eines JDBC Senders Mithilfe des JDBC Senders ist es möglich auf eine Datenbank zuzugreifen und mit reiner Query Datensätze auszulesen. Diese können anschließend beispielsweise

Mehr

Architekturen. Von der DB basierten zur Multi-Tier Anwendung. DB/CRM (C) J.M.Joller 2002 131

Architekturen. Von der DB basierten zur Multi-Tier Anwendung. DB/CRM (C) J.M.Joller 2002 131 Architekturen Von der DB basierten zur Multi-Tier Anwendung DB/CRM (C) J.M.Joller 2002 131 Lernziele Sie kennen Design und Architektur Patterns, welche beim Datenbankzugriff in verteilten Systemen verwendet

Mehr

Informatik 12 Datenbanken SQL-Einführung

Informatik 12 Datenbanken SQL-Einführung Informatik 12 Datenbanken SQL-Einführung Gierhardt Vorbemerkungen Bisher haben wir Datenbanken nur über einzelne Tabellen kennen gelernt. Stehen mehrere Tabellen in gewissen Beziehungen zur Beschreibung

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining 2 Cognos Report Net (CRN) Ermöglicht Erstellen von Ad-hoc-Anfragen (Query Studio) Berichten (Report Studio) Backend Data Cube Relationale Daten Übung: Cognos Report Net

Mehr

Oracle SQL Tutorium - Wiederholung DB I -

Oracle SQL Tutorium - Wiederholung DB I - Oracle SQL Tutorium - Wiederholung DB I - (Version 2.6 vom 24.2.2015) Einleitung Im Folgenden sind zur Wiederholung eine Reihe von SQL-Übungsaufgaben zu lösen. Grundlage für die Aufgaben ist die Mondial

Mehr

Kurzreferenz Sybase PowerDesigner

Kurzreferenz Sybase PowerDesigner FB 4 Wirtschaftsinformatik Prof. Dr. Peter Zschockelt 1. Einführung Kurzreferenz Sybase PowerDesigner Der Sybase PowerDesigner ist ein universelles Modellierungstool. Für das Fach "Datenmodellierung und

Mehr

Übungen zu Datenbanksysteme

Übungen zu Datenbanksysteme Institut für Informatik Universität Osnabrück, 19.05.2009 Prof. Dr. Oliver Vornberger http://www-lehre.inf.uos.de/ dbs Dipl.-Math. Patrick Fox Abgabe bis 02.06.2009, 12:00 Uhr Übungen zu Datenbanksysteme

Mehr

Seminar C02 - Praxisvergleich OLAP Tools

Seminar C02 - Praxisvergleich OLAP Tools C02: Praxisvergleich OLAP Tools Ein Seminar der DWH academy Seminar C02 - Praxisvergleich OLAP Tools Das Seminar "Praxisvergleich OLAP-Tools" bietet den Teilnehmern eine neutrale Einführung in die Technologien

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt.

Pivotieren. Themenblock: Anfragen auf dem Cube. Roll-up und Drill-down. Slicing und Dicing. Praktikum: Data Warehousing und Data Mining. Produkt. Zeit Pivotieren Themenblock: Anfragen auf dem Cube Praktikum: Data Warehousing und Data Mining Zeit Zeit 2 Roll-up und Drill-down Slicing und Dicing Drill-down Januar 2 3 33 1. Quartal 11 36 107 Februar

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Options- und Freitext-Modul Update-Anleitung

Options- und Freitext-Modul Update-Anleitung Options- und Freitext-Modul Update-Anleitung Hinweis... 2 Update für Versionen kleiner als 1.2.4 auf 1.3.x... 3 Update für Versionen ab 1.2.4 auf 1.3.x... 6 Update für Versionen ab 1.3.x auf 2.x.x... 7

Mehr

Developing SQL Data Models MOC 20768

Developing SQL Data Models MOC 20768 Developing SQL Data Models MOC 20768 In diesem Kurs lernen Sie das Implementieren von multidimensionale Datenbanken mithilfe der SQL Server Analysis Services (SSAS) und durch das Erstellen von tabellarische

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

SQL-Injection. Seite 1 / 16

SQL-Injection. Seite 1 / 16 SQL-Injection Seite 1 / 16 Allgemein: SQL (Structured Query Language) Datenbanksprache zur Definition von Datenstrukturen in Datenbanken Bearbeiten und Abfragen von Datensätzen Definition: SQL-Injection

Mehr

PostgreSQL unter Debian Linux

PostgreSQL unter Debian Linux Einführung für PostgreSQL 7.4 unter Debian Linux (Stand 30.04.2008) von Moczon T. und Schönfeld A. Inhalt 1. Installation... 2 2. Anmelden als Benutzer postgres... 2 2.1 Anlegen eines neuen Benutzers...

Mehr

Inhalt. 1. MySQL-Einführung 1. 2. Datenbankentwurf 27

Inhalt. 1. MySQL-Einführung 1. 2. Datenbankentwurf 27 Inhalt 1. MySQL-Einführung 1... 1.1 Geschichte von MySQL... 1 1.2 Entscheidungskriterien für MySQL... 2 1.3 Installation eines MySQL-Servers... 3 1.3.1 Linux... 5 1.3.2 Windows 9x/Me/NT/2000/XP... 7 1.3.3

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

Fachhochschule Kaiserslautern Labor Datenbanken mit MySQL SS2006 Versuch 1

Fachhochschule Kaiserslautern Labor Datenbanken mit MySQL SS2006 Versuch 1 Fachhochschule Kaiserslautern Fachbereiche Elektrotechnik/Informationstechnik und Maschinenbau Labor Datenbanken Versuch 1 : Die Grundlagen von MySQL ------------------------------------------------------------------------------------------------------------

Mehr

7. Übung - Datenbanken

7. Übung - Datenbanken 7. Übung - Datenbanken Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: DBS a Was ist die Kernaufgabe von Datenbanksystemen? b Beschreiben Sie kurz die Abstraktionsebenen

Mehr

Oracle 9i Einführung Performance Tuning

Oracle 9i Einführung Performance Tuning Kurs Oracle 9i Einführung Performance Tuning Teil 2 Tuning Werkzeuge Timo Meyer Wintersemester 2005 / 2006 Seite 1 von 16 Seite 1 von 16 Agenda 1. Einführung 2. DBA_- und V$-Sichten 3. Data Dictionary-Sichten

Mehr

Projektmanagement in Outlook integriert InLoox 5.x Konfigurationshilfe für Oracle Server

Projektmanagement in Outlook integriert InLoox 5.x Konfigurationshilfe für Oracle Server y Projektmanagement in Outlook integriert InLoox 5.x Konfigurationshilfe für Oracle Server Ein IQ medialab Whitepaper Veröffentlicht: Juni 2008 Copyright: IQ medialab GmbH 2008 Aktuelle Informationen finden

Mehr

Aufgaben zu Tabellenanalyse mit SQL

Aufgaben zu Tabellenanalyse mit SQL Aufgaben zu Tabellenanalyse mit SQL Die Tabelle unten enthält die Arbeitsaufträge für ein Team von Software Entwicklern. Jede Zeile entspricht einem Arbeitsauftrag (hier ohne die Beschreibung des Auftrages

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

GROUP BY, HAVING und Sichten

GROUP BY, HAVING und Sichten GROUP BY, HAVING und Sichten Tutorübungen 09/33 zu Grundlagen: Datenbanken (WS 14/15) Michael Schwarz Technische Universität München 11.11 / 12.11.2014 1/12 GROUP BY HAVING Sichten Eine Tabelle studenten

Mehr

ODM. ww w. syn t egris.de

ODM. ww w. syn t egris.de ODM ww w. syn t egris.de ODM - Oracle Data Modeler AGENDA Allgemeine Informationen Versionierung Repository anlegen Geschäftliche Informationen erfassen Workflows erstellen Versionierung Modelle abgleichen

Mehr

Access Grundkurs. M. Eng. Robert Maaßen

Access Grundkurs. M. Eng. Robert Maaßen Access Grundkurs M. Eng. Robert Maaßen Wer steht da? M. Eng. Robert Maaßen ich@robertmaassen.de www.robertmaassen.de Studium: Informatik Vertiefungsrichtung Medientechnik, Diplom Ingenieur (FH), HAWK,

Mehr

Produktinformation eevolution OLAP

Produktinformation eevolution OLAP Produktinformation eevolution OLAP Was ist OLAP? Der Begriff OLAP steht für Kurz gesagt: eevolution -OLAP ist die Data Warehouse Lösung für eevolution. Auf Basis verschiedener

Mehr

Knottenwäldchen Software

Knottenwäldchen Software Knottenwäldchen Software Installationsanleitung für die netzbasierte Lösung Knottenwäldchen Software März.2011 Knottenwäldchen Software Seite 2 1 Inhalt 1 Inhalt... 2 2 Übersicht... 3 3 Installation...

Mehr

QUICK-START EVALUIERUNG

QUICK-START EVALUIERUNG Pentaho 30 für 30 Webinar QUICK-START EVALUIERUNG Ressourcen & Tipps Leo Cardinaals Sales Engineer 1 Mit Pentaho Business Analytics haben Sie eine moderne und umfassende Plattform für Datenintegration

Mehr

Arbeiten mit ACCESS 2013

Arbeiten mit ACCESS 2013 Dipl.-Hdl., Dipl.-Kfm. Werner Geers Arbeiten mit ACCESS 2013 Datenbanken mit Datenmodellierung Tabellen, Abfragen, Formularen und Berichten Beziehungen Makros Datenaustausch SQL Structured Query Language

Mehr

Datenbanken & Informationssysteme Übungen Teil 1

Datenbanken & Informationssysteme Übungen Teil 1 Programmierung von Datenbankzugriffen 1. Daten lesen mit JDBC Schreiben Sie eine Java-Anwendung, die die Tabelle Books in der Datenbank azamon ausgibt. Verwenden Sie dabei die SQL-Anweisung select * from

Mehr

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Michael Hahne T&I GmbH Workshop MSS-2000 Bochum, 24. März 2000 Folie 1 Worum es geht...

Mehr

Oracle SQL Developer Data Modeling

Oracle SQL Developer Data Modeling Oracle SQL Developer Data Modeling DOAG Regio Rhein-Neckar Oracle Deutschland GmbH The following is intended to outline our general product direction. It is intended for information

Mehr

Projekt zur Lehrveranstaltung Informationssysteme

Projekt zur Lehrveranstaltung Informationssysteme Prof. Dr.-Ing. Thomas Kudraß Dipl.-Math. Dörte König HTWK Leipzig, F IMN Projekt zur Lehrveranstaltung Informationssysteme Das Projekt ist in drei Teile aufgeteilt, die den Phasen eines Data-Warehouse-Projekts

Mehr

-09- Arbeitsunterlagen

-09- Arbeitsunterlagen -09- Arbeitsunterlagen DVT LK13.1 2014/2015 Abfragen in Access SQL Lehrkraft: Kurs: 0 Wir haben im Unterricht alle relevanten Entwicklungsschritte einer Datenbank kennen gelernt. Anforderungsspezifikation

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Proseminar Datenbanken

Proseminar Datenbanken Proseminar Datenbanken Dominik Engel Fachbereich Computerwissenschaften Universität Salzburg Sommersemester 2008 0 Material zur Lehrveranstaltung http://www.cosy.sbg.ac.at/dengel/ teaching/psdb/ Webpage

Mehr

Datenbanken Datenbanken 1 Belegnummer Belegnummer

Datenbanken Datenbanken 1 Belegnummer Belegnummer Datenbanken Datenbanken 1 Belegnummer 30.7302 Belegnummer 30.7312 Blockkurs 31.08. 11.09.2015 Wintersemester 2015/16 (Bachelor) Materialien zur Vorlesung Michael Roth Inge Hochschule Darmstadt Fachbereich

Mehr

DB Restore mit SQL Server7

DB Restore mit SQL Server7 DB Restore mit SQL Server7 Dok.-Nr: MO-SQL7-RE Version: 1.2 Datum: 23.11.2001 Status: In Bearbeitung Klassifizierung: Unklassifiziert Autor: R. Peter Verteiler: Alle DB-Admin. & Inf. Verantwortliche Einleitung

Mehr

Datenbanken. Einführung. Tobias Galliat. Sommersemester 2012

Datenbanken. Einführung. Tobias Galliat. Sommersemester 2012 Datenbanken Einführung Tobias Galliat Sommersemester 2012 Basistext: A. Kemper, A. Eickler: Datenbanksysteme, Oldenbourg Verlag, München, 2011, 8. Auflage, Preis: 39,80 ebenfalls empfehlenswert: T. Kudraß

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

SQL. SQL = Structured Query Language, ist eine standardisierte Sprache zum Gebrauch im Zusammenhang mit Datenbanken.

SQL. SQL = Structured Query Language, ist eine standardisierte Sprache zum Gebrauch im Zusammenhang mit Datenbanken. Vorlesungsteil SQL Grundlagen - 1 / 8 - SQL SQL = Structured Query Language, ist eine standardisierte Sprache zum Gebrauch im Zusammenhang mit Datenbanken. Auf einem Server (Rechner im Netz, der Dienste

Mehr

CARL HANSER VERLAG. Christopher Allen. Oracle PL/SQL für Einsteiger Der Einsatz von SQL und PL/SQL in der Oracle-Datenbank 3-446-21801-7

CARL HANSER VERLAG. Christopher Allen. Oracle PL/SQL für Einsteiger Der Einsatz von SQL und PL/SQL in der Oracle-Datenbank 3-446-21801-7 CARL HANSER VERLAG Christopher Allen Oracle PL/SQL für Einsteiger Der Einsatz von SQL und PL/SQL in der Oracle-Datenbank 3-446-21801-7 www.hanser.de Inhaltsverzeichnis Danksagung...XI Einleitung...XIII

Mehr

Aufgabensammlung SQL SW4 1. Einfache Anfragen

Aufgabensammlung SQL SW4 1. Einfache Anfragen Aufgabensammlung SQL SW4 1. Einfache Anfragen Buch: Kapitel 4.6 und 4.7. Datenbank: Die folgenden Anfragen beziehen sich auf die Universitätsdatenbank des Buches. Alle Umlaute werden umschrieben (hören

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

MaxDB Einführung in die Installation und Nutzung von MaxDB (Version 7.5.0.5)

MaxDB Einführung in die Installation und Nutzung von MaxDB (Version 7.5.0.5) MaxDB Einführung in die Installation und Nutzung von MaxDB (Version 7.5.0.5) Hinweise: Diese Installation bezieht sich auf die Version 7.5.0.5, bei Nachfolgern kann sich einiges ändern Herunter geladen

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

Informatik für Ökonomen II Übung 0

Informatik für Ökonomen II Übung 0 Informatik für Ökonomen II Übung 0 Ausgabe: Donnerstag 17. September 2009 Abgabe: Die Übung muss nicht abgegeben werden. A. Einleitung In der Vorlesung wurde MySQL vorgestellt. Das Ziel dieser Übung ist

Mehr

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter bersicht Niels Schršter EinfŸhrung GROUP BY Roll UpÔs Kreuztabellen Cubes Datenbank Ansammlung von Tabellen, die einen ãausschnitt der WeltÒ fÿr eine Benutzergruppe beschreiben. Sie beschreiben die funktionalen

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

SQL-Befehlsliste. Vereinbarung über die Schreibweise

SQL-Befehlsliste. Vereinbarung über die Schreibweise Vereinbarung über die Schreibweise Schlüsselwort [optionale Elemente] Beschreibung Befehlsworte in SQL-Anweisungen werden in Großbuchstaben geschrieben mögliche, aber nicht zwingend erforderliche Teile

Mehr

Model Klausel - Der Excel-Killer von Oracle?

Model Klausel - Der Excel-Killer von Oracle? Model Klausel - Der Excel-Killer von Oracle? Andrea Kennel Trivadis AG Glattbrugg, Schweiz Schlüsselworte: Model Klausel, SQL, Data Warehousing, OLAP Zusammenfassung Ein Data Mart kann als ein Würfel mit

Mehr

ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen

ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen ARIS II - Modellierungsmethoden, Metamodelle und Anwendungen C3: Structured Query Language Lernziele: Nach der Bearbeitung dieser Lektion haben Sie folgende Kenntnisse erworben: Sie können elementaren

Mehr

XQuery Implementation in a Relational Database System

XQuery Implementation in a Relational Database System Humboldt Universität zu Berlin Institut für Informatik XQuery Implementation in a Relational Database System VL XML, XPath, XQuery: Neue Konzepte für Datenbanken Jörg Pohle, pohle@informatik.hu-berlin.de

Mehr

Performance-Vergleich zwischen InterSystems Caché und Oracle in einer Data-Mart-Applikation

Performance-Vergleich zwischen InterSystems Caché und Oracle in einer Data-Mart-Applikation Performance-Vergleich zwischen InterSystems Caché und Oracle in einer Data-Mart-Applikation Kurzfassung Im Rahmen einer simulierten Data-Mart-Applikation testete ein globaler Anbieter von Software für

Mehr

3. Das Relationale Datenmodell

3. Das Relationale Datenmodell 3. Das Relationale Datenmodell Das Relationale Datenmodell geht zurück auf Codd (1970): E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. of the ACM 13(6): 377-387(1970) DBMS wie

Mehr

Multidimensionales Datenmodell, Cognos

Multidimensionales Datenmodell, Cognos Data Warehousing (II): Multidimensionales Datenmodell, Cognos Praktikum: Data Warehousing und Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Vereinfachte Sicht auf die Referenzarchitektur

Mehr

Installationsanleitung für die netzbasierte Variante Bis Version 3.5. KnoWau, Allgemeine Bedienhinweise Seite 1

Installationsanleitung für die netzbasierte Variante Bis Version 3.5. KnoWau, Allgemeine Bedienhinweise Seite 1 1 Installationsanleitung für die netzbasierte Variante Bis Version 3.5 Copyright KnoWau Software 2013 KnoWau, Allgemeine Bedienhinweise Seite 1 2 Seite absichtlich leer KnoWau, Allgemeine Bedienhinweise

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

A Datenbanken. A.1 Firebird. A.1.1 Installation des Servers. A.1.2 Installation der Beispieldatenbanken. Datenbanken 1

A Datenbanken. A.1 Firebird. A.1.1 Installation des Servers. A.1.2 Installation der Beispieldatenbanken. Datenbanken 1 Datenbanken 1 A Datenbanken A.1 Firebird Firebird ist als Datenbank konzipiert, die hauptsächlich in andere Anwendungsprogramme integriert wird. Die hier verwendete Oberfläche ist also eher untypisch für

Mehr

Vorwort. Aufbau und Struktur

Vorwort. Aufbau und Struktur Vorwort Herzlich willkommen zu einem Fachbuch aus dem Verlag Comelio Medien. Dieses Buch aus dem Bereich Datenbanken soll Sie dabei unterstützen, die Oracle SQL zu lernen, um DB-Objekte zu erstellen und

Mehr

Die Grundbegriffe Die Daten Die Informationen

Die Grundbegriffe Die Daten Die Informationen Die Grundbegriffe Die Daten sind diejenigen Elemente, die vom Computer verarbeitet werden. Die Informationen sind Wissenselemente, welche durch die Analyse von Daten erhalten werden können. Die Daten haben

Mehr

SQL Server 2012 und SharePoint im Unternehmenseinsatz. Referent Daniel Caesar

SQL Server 2012 und SharePoint im Unternehmenseinsatz. Referent Daniel Caesar SQL Server 2012 und SharePoint im Unternehmenseinsatz Referent Daniel Caesar sqlxpert Daniel Caesar Publikationen Themen SQL Server Admin, Entwicklung SharePoint Admin, Entwicklung.NET Entwicklung Rechtssichere

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

Institut für Informatik

Institut für Informatik Aufgaben für die 14. und 15. zur LV "Grundlagen der Informatik" Thema: Datenbanken ( ERM: Entity-Relationship-Modell und SQL: Structured Query Language ) sowie HTML (Hypertext Markup Language) -------------------------------------------------------------------------------------------------------------------------

Mehr

4. ArcView Anwendertreffen Datenbankanbindung mit ArcView. Daniel Fuchs

4. ArcView Anwendertreffen Datenbankanbindung mit ArcView. Daniel Fuchs 4. ArcView Anwendertreffen Daniel Fuchs Gliederung Teil 1: Grundbegriffe zu Datenbanken Teil 2: SQL menügesteuerte Datenabfragen aus ArcView Teil 3: SQL und Avenue Einstieg in die Programmierung Teil 4:

Mehr

Grundlagen der Informatik 2

Grundlagen der Informatik 2 Grundlagen der Informatik 2 Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 1 Gliederung 1. Einführung

Mehr

Datenbank Grundlagen. Performanceuntersuchungen

Datenbank Grundlagen. Performanceuntersuchungen Vorlesung Datenbanken, Entwurfsarbeit 1 Fachbereich Automatisierung und Informatik Wernigerode Datenbank Grundlagen Performanceuntersuchungen Entwicklung einer Datenbank zur Verwaltung eines Bestellwesens

Mehr

Projektbericht Gruppe 12. Datenbanksysteme WS 05/ 06. Gruppe 12. Martin Tintel Tatjana Triebl. Seite 1 von 11

Projektbericht Gruppe 12. Datenbanksysteme WS 05/ 06. Gruppe 12. Martin Tintel Tatjana Triebl. Seite 1 von 11 Datenbanksysteme WS 05/ 06 Gruppe 12 Martin Tintel Tatjana Triebl Seite 1 von 11 Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Datenbanken... 4 2.1. Oracle... 4 2.2. MySQL... 5 2.3 MS

Mehr

http://edb.gm.fh-koeln.de Ein kooperatives elearning Datenbankportal der FH Köln

http://edb.gm.fh-koeln.de Ein kooperatives elearning Datenbankportal der FH Köln Fachhochschule Köln logos08 Osnabrück Campus Gummersbach 08.10-10.10.08 Institut für Informatik http://edb.gm.fh-koeln.de Ein kooperatives elearning Datenbankportal der FH Köln Prof. Dr. Heide Faeskorn

Mehr

SQL, MySQL und FileMaker

SQL, MySQL und FileMaker SQL, MySQL und FileMaker Eine kurze Einführung in SQL Vorstellung von MySQL & phpmyadmin Datenimport von MySQL in FileMaker Autor: Hans Peter Schläpfer Was ist SQL? «Structured Query Language» Sprache

Mehr

Es geht also im die SQL Data Manipulation Language.

Es geht also im die SQL Data Manipulation Language. 1 In diesem Abschnitt wollen wir uns mit den SQL Befehlen beschäftigen, mit denen wir Inhalte in Tabellen ( Zeilen) einfügen nach Tabelleninhalten suchen die Inhalte ändern und ggf. auch löschen können.

Mehr

Die bisher bereits bekannten Aggregatsfunktionen MIN, MAX, SUM, AVG, COUNT, VARIANCE und STDDEV wurden um FIRST und LAST erweitert.

Die bisher bereits bekannten Aggregatsfunktionen MIN, MAX, SUM, AVG, COUNT, VARIANCE und STDDEV wurden um FIRST und LAST erweitert. Betrifft Autor FIRST, LAST Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002) Quelle Aus dem NF9i-Kurs, NF9i-Techno-Circle der Trivadis und Oracle9i Data Warehousing

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. noch einmal. XQuery... Andreas Schmidt Oracle XQuery 1/12

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. noch einmal. XQuery... Andreas Schmidt Oracle XQuery 1/12 noch einmal XQuery... Andreas Schmidt Oracle XQuery 1/12 Oracle XML DB Repository Fakultät für Informatik & Wirtschaftsinformatik Erlaubt Speichern von Dokumenten wie in einem Filesystem (Daten liegen

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr