Mehrstufige Spiele mit beobachtbaren Handlungen

Größe: px
Ab Seite anzeigen:

Download "Mehrstufige Spiele mit beobachtbaren Handlungen"

Transkript

1 3. Wiederhole Spiele und kooperives Verhlen Mehrsufige Spiele mi beobchbren Hndlungen Idee: Ds Spiel sez sich us K+ Sufen zusmmen, wobei eine Sufe k us einem Teilspiel mi simulner Whl von Akionen k i beseh und lle Spieler die Akionen uf den k dvor liegenden Sufen beobchen b können (führ uf hisory h k = (,,, k )). [(i) Beginn mi k = wegen vereinfcher Noion bei Anlyse mi Diskonierung; (ii) uch lernierende Akionen durch einelemenige Akionsmenge nichs un ] Beispiele: ourno Duopol (einsufig) Sckelberg Duopol (zweisufig, lernierende Akionen) sregischer F&E Webewerb (zweisufig, Sufenspiele simuln) Mrkeinrisspiel von Dixi (Akionsrum von hisory bhängig) Rubinsein Verhndlungsspiel (Sufen nich unbeding Zeipunke) K. Morsch Angewnde Spielheorie Wiederhole Spiele und kooperives Verhlen Beispiel F&E Invesiion sregischer Effek und Überinvesiion Beispiel: Duopol mi Mengensregien, DK=GK=, p(x)=4 X X Unernehmen knn in k= durch Invesiion f für Unernehmen beobchbr seine Kosen uf DK=GK= reduzieren Mengenwebewerb in k= Auswirkung F&E Invesiion: x A: Wegen geringerer DK höherer Gewinn für Un. bei gleichen Mengen (direker Effek) B:D die Grenzkosen sinken, beseh r (x ) r (x ) für Un. bei gegebenem x ein Anreiz zur Ausweiung der eigenen Abszmenge A B (Mengenusweiungseffek) : D Un. für jede gegebene Menge von r (x ) Un. mehr produzier, wird Un. seinen Absz reduzieren (sregischer Effek) x Überinvesiion: bei diskreer Enscheidung erfolg Invesiion uch für höheres f K. Morsch Angewnde Spielheorie 56

2 3. Wiederhole Spiele und kooperives Verhlen Rubinsein Verhndlungsspiel Annhmen: Zwei Spieler, Aufeilung eines Kuchens der Größe : z=(z,z ) mi z +z = Spieler mchen bwechselnd Vorschläge; kzepier oder Gegenvorschlg in +: =: Sp. : = (x, x); Sp. : =j Ergebnis z=(x, x) x), =nein weier = : Sp. : = (y, y) usw. bis ein Spieler ds Angebo des nderen kzepier Nuzen bhängig von z i und Verhndlungsduer: u i = i z i mi i endlich: K+= Dikorspiel, K += Ulimumspiel; hier: (poeniell) unendlich! Teilspielperfekes Gleichgewich ohne Endperiode? muss für jedes in beginnende Teilspiel ein Nsh Gleichgewich beinhlen bi bei unendlichem Horizon is Spiel lin gerden und ungerden Perioden idenisch i Spieler i, der über Annhme des Angebos enscheide, muss gerde indifferen sein zwischen Auszhlung in bei Annhme und Auszhlung in + bei Ablehnung: ( y) = + x x * =( )/( ) in =,, z * = [( )/( ), ( x) = + y y * =( )/( ) in =,3, ( ) /( )] Wegen Diskonierung für Spieler schon in Periode = opiml x * nzubieen! Frgen: (i) Auswirkung Reihenfolge und Diskonfkor? (ii) endlicher Horizon? K. Morsch Angewnde Spielheorie Wiederhole Spiele und kooperives Verhlen Kriik n Rückwärsindukion und Teilspielperfekhei Frgen: (i) Ergebniss immerplusibel? (ii) sächlichesverhlen wie vorhergesg? Drei (Bei)Spiele zur Vernschulichung kriischer Aspeke: s s N s N (,,..,) () viele Spieler s s s N (,,..,),, (½, ½,..,, ½) (⅟N, ⅟N,..,,, ⅟N) ) () zwei Spieler mehrmls (5,5) 3 4 (,,) 3 3 (,) (,) (3,) (,4) (6,3) (7,,7) (7,,7) 3 (,,) (3) mehrere (8,6,8) Nsh Gleichgewiche 3 4 (6,,6) K. Morsch Angewnde Spielheorie 58

3 . Einführung: Idee, Beispiele, formle Drsellung. Sische Spiele bei vollsändiger Informion 3. Dynmische Spiele und unvollsändige Informion Dynmische Spiele und unvollsändige Informion Mehrsufige Spiele mi beobchbren Hndlungen: Rückwärsindukion und Teilspielperfekhei Wiederhole Spiele und kooperives Verhlen Spiele mi unvollsändige Informion: Byes Nsh und sequenielles Gleichgewich Lierur zu 3.: Holler/Illing, 4. (ohne 4..7), Dixi/Skeh,. +. K. Morsch Angewnde Spielheorie Wiederhole Spiele und kooperives Verhlen Wiederhole Spiele und kooperives Verhlen Aufbu von Abschni 3.: Konzep wiederholes Spiel dynmisches Spiel mi sionärer Srukur, Akion in von Spielverluf l bhängig Gefngenendilemm ls wiederholes Spiel einsufiges vs. mehrsufig, ber endliches vs. unendlich of wiederholes Spiel Folkheoreme endlich vs. unendlich of wiederholes Spiel, Konzep individuell rionle Auszhlungen Probleme und Erweierungen sochsische Spiele, neuverhndlungssbile Gleichgewiche, LösungsnsäzefürDiskoninuiäzwischen zwischen beschränken und unendlichem Zeihorizon K. Morsch Angewnde Spielheorie 6

4 3. Wiederhole Spiele und kooperives Verhlen Konzep wiederholes Spiel Dynmisches Spiel mi sionärer Srukur, d.h. u ( ) = u( ) (Sonderfll der mehrsufigen Spiele mi beobchbren Akionen): Gesmspiel l (T ) beseh us Wiederholungen des Sufenspiels. Hndlungen in früheren Perioden wirken sich zwr nich uf die Auszhlungen im Sufenspiel us, die Spieler hben ber die Möglichkei, Akionen in vom bisherigen Spielverluf bhängig zu mchen (z.b. Besrfung bei Abweichung vom kooperiven Verhlen). Ob ndere Lösungen ls die Wiederholung der Nsh Gleichgewiche des Sufenspiels relisierbr sind, häng enscheidend vom Zeihorizon b (endlich vs. unendlich of wiederhole Spiele). Dneben spielen il ber uch die Srukur des Sufenspiels sowie die Annhmen bezüglich Rionliä und Informion eine wichige Rolle. K. Morsch Angewnde Spielheorie 6 3. Wiederhole Spiele und kooperives Verhlen Gefngenendilemm ls wiederholes Spiel Sufenspiel: (,) (,) Umsklierung (gleiche Präferenzen), um Aus wirkungen von Änderungen des Diskonfkors und des Zeihorizons leicher zu beureilen (, ) (,) Beche: Akionen s Sregien Auszhlungen nders normier (erleicher Berechnungen) Gesmspiel (T ): einheilicher Diskonfkor Orienierung n Durchschnilicher bdiskonierer Auszhlung (DAA) T T u i ( ) Vergleiche (i) einsufiges Spiel, (ii) mehrsufiges, ber endliches Spiel und (iii) unendliche Wiederholung K. K. Morsch Morsch Anwendungen der Spielheorie in Angewnde den Wirschfswissenschfen Spielheorie 6 6

5 3. Wiederhole Spiele und kooperives Verhlen Endlich vs. unendlich of wiederholes Spiel Theorem: Flls s ds einzige Nsh Gleichgewich eines Sufenspiels (N, S, u), so is die sändige Wiederholung von s ds einzige eilspielperfeke Gleichgewich des endlich of wiederholen Spiels (T ) Folkheorem: In einem unendlich of wiederholen Spiel (, ) läss sich für jede zulässige individuell rionle Auszhlungskombinion ls eilspielperfekes Gleichgewich relisieren (uch kooperives Verhlen) individuell rionle Auszhlungen: u V = {u(s) s S, u i u i für lle i N} mi u i ls Auszhlung, die sich ein Spieler mindesens sichern knn (mi Konflikpunk = (u,, u n ) V und preo opimlem Punk P ) P Preogrenze K. Morsch Angewnde Spielheorie 63 u 3. Wiederhole Spiele und kooperives Verhlen Probleme und Erweierungen Sochsische Spiele: Srfpfd ohne Abweichung wie zurück? Rückkehr zu Kooperion nch fesgeleger Srfperiode BiV Bei Vergelung uch geringere Auszhlung für Besrfende Drohung unglubwürdig Lösung: neuverhndlungssbile Gleichgewiche Diskoninuiä zwischen beschränker und unendlichem Zeihorizon Sufenspiel mi mehreren Beispiel: Nsh Gleichgewichen 3 (Folkheorem für T ) ) Möglichkei irrionler Mispieler (, ) (, ) (, ) (spielen immer kooperiv) beschränke Rionliä ( befriedigendes Ergebnis ) (, ) (, ) (, ) (, ) (, ) (, ) 3 K. Morsch Angewnde Spielheorie 64

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG)

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) 26. November 2007 DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) Informion zur Anwendung der gesezlichen Regelungen zur Zueilung von Kohlendioxid-Emissionsberechigungen

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

Der Zusammenhang zwischen Investitionsentscheidung, Finanzierung und steuerlichem Totalerfolg

Der Zusammenhang zwischen Investitionsentscheidung, Finanzierung und steuerlichem Totalerfolg Universiä Augsburg Prof. Dr. Hns Ulrich Buhl Kernkompeenzzenrum Finnz- & Informionsmngemen Lehrsuhl für BWL, Wirschfsinformik, Informions- & Finnzmngemen Diskussionsppier WI-7 Der Zusmmenhng zwischen Invesiionsenscheidung,

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

Mikro-Controller-Pass 1

Mikro-Controller-Pass 1 Mikro-Conroller-Pss Lernsyseme MC 85 eie: rdl. Logik_B rundlgen logische Verknüpfungen Inhlserzeichnis Vorwor eie Binäre Aussgen in der Technik eie Funkionseschreiungen der Digilechnik eie 5 Funkionselle

Mehr

Seminararbeitspräsentation Risiko und Steuern. On the Effects of Redistribution on Growth and Entrepreneurial Risk-taking

Seminararbeitspräsentation Risiko und Steuern. On the Effects of Redistribution on Growth and Entrepreneurial Risk-taking Seminararbeispräsenaion Risiko und Seuern On he Effecs of Redisribuion on Growh and Enrepreneurial Risk-aking aus der Vorlesung bekann: Posiionswahlmodell Selbssändigkei vs. abhängige Beschäfigung nun

Mehr

Sponsored Search Markets

Sponsored Search Markets Sponsored Serch Mrkets ngelehnt n [EK1], Kpitel 15 Seminr Mschinelles Lernen, WS 21/211 Preise Slots b c Interessenten y z 19. Jnur 211 Jn Philip Mtuschek Sponsored Serch Mrkets Folie 1 Them dieses Vortrgs

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

12 Schweißnahtberechnung

12 Schweißnahtberechnung 225 12 Schweißnherechnung 12 Schweißnherechnung Die Berechnung der ufreenden Spnnungen in Schweißnähen erfolg im Regelfll mi Hilfe der elemenren Gleichungen der esigkeislehre. Auf weierführende Berechnungsverfhren,

Mehr

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt

Nachtrag Nr. 71 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt London Brnch Nchrg Nr. 71 gemäß 10 Verkufsprospekgesez (in der vor dem 1. Juli 2005 gelenden Fssung) vom 6. Novemer 2006 zum Unvollsändigen Verkufsprospek vom 31. März 2005 üer Zerifike uf * üer FlexInves

Mehr

123 Familienausgleichskasse

123 Familienausgleichskasse 1 Fmilienzulgen: Anmeldung für Arbeitnehmende eines nicht beitrgspflichtigen Arbeitgebers (Anobg) Antrgstellerin / Antrgsteller Abrechnungsnummer (xxx.xxx) 123 Fmilienusgleichsksse Sozilversicherungsnstlt

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

Fallstudie zu Projektbezogenes Controlling :

Fallstudie zu Projektbezogenes Controlling : Projekbezogenes Conrolling SS 2009 Fallsudie zu Projekbezogenes Conrolling : Thema: Erfolgspoenzialrechnung Lehrsuhl für Beriebswirschafslehre, insb. Conrolling Projekbezogenes Conrolling SS 2009 LITERATUR

Mehr

Mathematik. Name, Vorname:

Mathematik. Name, Vorname: Kntonsschule Zürich Birch Fchmittelschule Aufnhmeprüfung 2007 Nme, Vornme: Nr.: Zeit: 90 Minuten erlubte Hilfsmittel: Tschenrechner us der Sekundrschule, lso weder progrmmierbr noch grfik- oder lgebrfähig

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Lösungen zu Kontrollfragen

Lösungen zu Kontrollfragen Lehrsuhl für Finanzwirschaf Lösungen zu Konrollfragen Finanzwirschaf Prof. Dr. Thorsen Poddig Fachbereich 7: Wirschafswissenschaf Einführung (Kapiel ) Sichweisen in der Finanzwirschaf. bilanzorieniere

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Ein Multiagentensystem zur Verhandlungsautomatisierung in elektronischen Märkten

Ein Multiagentensystem zur Verhandlungsautomatisierung in elektronischen Märkten Ein Muligenensysem zur Verhndlungsuomisierung in elekronischen Märken Von der Fkulä Mschinenbu der Universiä Sugr zur Erlngung der Würde eines Dokor-Ingenieurs (Dr.-Ing.) genehmige Abhndlung vorgeleg von

Mehr

Mathe Warm-Up, Teil 1 1 2

Mathe Warm-Up, Teil 1 1 2 Mthe Wrm-Up, Teil 1 1 2 HEUTE: 1. Elementre Rechenopertionen: Brüche, Potenzen, Logrithmus, Wurzeln 2. Summen- und Produktzeichen 3. Gleichungen/Ungleichungen 1 orientiert sich n den Kpiteln 3,4,6,8 des

Mehr

Großübung Balkenbiegung Biegelinie

Großübung Balkenbiegung Biegelinie Großüung Bkeniegung Biegeinie Es geen die in der Voresung geroffenen Annhmen: - Der Bken is unese gerde. - Ds eri sei üer den Querschni homogen und iner esisch. - Die Besung erfog durch Biegemomene und

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Mathematik schriftlich

Mathematik schriftlich WS KV Chur Abschlussprüfungen 00 für die Berufsmtur kufmännische Richtung Mthemtik schriftlich LÖSUNGEN Kndidtennummer Nme Vornme Dtum der Prüfung Bewertung mögliche erteilte Punkte Punkte. Aufgbe 0. Aufgbe

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Schritte international im Beruf

Schritte international im Beruf 1 Ws mchen die Leute uf dem Foto? Kreuzen Sie n. Die Leute sind ei der Berufsertung. mchen zusmmen ein Seminr. hen gerde Puse. pnthermedi / Werner H. Wer sind die Leute? Ergänzen Sie. die Referentin /

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

Value Based Management

Value Based Management Value Based Managemen Vorlesung 5 Werorieniere Kennzahlen und Konzepe PD. Dr. Louis Velhuis 25.11.25 Wirschafswissenschafen PD. Dr. Louis Velhuis Seie 1 4 CVA Einführung CVA: Cash Value Added Spezifischer

Mehr

Modern & individuell Kundenmagazin Bank BSU, Ausgabe 6, Frühling 2016

Modern & individuell Kundenmagazin Bank BSU, Ausgabe 6, Frühling 2016 Modern & individuell Kundenmgzin Bnk BSU, Ausgbe 6, Frühling 2016! b R 50%. r h J n e s r e m I chliessen k bs e h o p y h Jez Sr Jhre 3 i e z f u l Mindes 2 Mio. F H C l mxim Spren heue Jugend T WINT

Mehr

Limit Texas Hold em. Meine persönlichen Erfahrungen

Limit Texas Hold em. Meine persönlichen Erfahrungen Limit Texs Hold em Meine persönlichen Erfhrungen Dominic Dietiker c Drft dte 21. September 2010 Inhltsverzeichnis 1. Spielnleitung...................................... 1 1.1 Der Spielverluf....................................

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Makroökonomie 1. 2. Makroök. Analyse mit flexiblen Preisen. Gliederung. 2.4. Geld und Inflation

Makroökonomie 1. 2. Makroök. Analyse mit flexiblen Preisen. Gliederung. 2.4. Geld und Inflation Gliederung akroökonomie 1 rof. Volker Wieland rofessur für Geldheorie und -poliik J.W. Goehe-Universiä Frankfur 1. Einführung 2. akroökonomische Analyse mi Flexiblen reisen 3. akroökonomische Analyse in

Mehr

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10)

Musterlösung zu Aufgabe 1 (Klassenstufe 9/10) Musterlösung zu Aufgbe 1 (Klssenstufe 9/10) Aufgbe. Drei Freunde spielen mehrere Runden eines Spiels, bei dem sie je nch Rundenpltzierung in jeder Runde einen festen, gnzzhligen Betrg x, y oder z usgezhlt

Mehr

OPTIMA Hocheffizienzpumpen

OPTIMA Hocheffizienzpumpen Heizung OPTIMA Hocheffizienzpumpen Hocheffizien, lnglebig wirschflich Hndwerker Ab Lieferdum. Juli ¼ Jhre für unsere eigenen hocheffizienen Heizungsumwälz-, Trinkwsserzirkulions- Kondenspumpen ErP r edy

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Lehrstuhl für Finanzierung

Lehrstuhl für Finanzierung Lehrsuhl für Finanzierung Klausur im Fach Finanzmanagemen im Winersemeser 1998/99 1. Aufgabe Skizzieren Sie allgemein die von Kassenhalungsproblemen miels (sochasischer) dynamischer Programmierung! Man

Mehr

Wälzlagertoleranzen. Definitionen/Messprinzipien

Wälzlagertoleranzen. Definitionen/Messprinzipien Wälzlgerolernzen Definiionen/Messprinzipien Zeichnungseinrg n eispielen Messprinzip Merkml IN/FG (bisher) Scheffler Gruppe (neu) ds (ds) Ds (Ds) dmp (dmp) Dmp (Dmp) Vdp/2 Vp/2 VDp/2 ØD ØD (Dmp) 1 500 Welligkei

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2007 im Fach Mathematik Sentsverwltung für Bildung, Wissenschft und Forschung Schriftliche Prüfungsrbeit zum mittleren Schulbschluss 007 im Fch Mthemtik 30. Mi 007 Arbeitsbeginn: 10.00 Uhr Berbeitungszeit: 10 Minuten Zugelssene

Mehr

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg

Exponentialgleichungen 70 Exponentialgleichungen mit Ergebnissen und ausführlichen Lösungsweg Übungen zum Kurs Eponentilgleichungen Eponentilgleichungen 70 Eponentilgleichungen mit Ergebnissen und usführlichen Lösungsweg 7.technisch verbesserte Auflge vom.09.007 (Sonderzeichen wurden teilweise

Mehr

Prof. Dr. Paul J.J. Welfens

Prof. Dr. Paul J.J. Welfens Prof. Dr. Pul J.J. Welfens Präsident des uroäisches Instituts für interntionle Wirtschftsbeziehungen IIW n der Bergischen Universität Wuertl, ehrstuhl für Mkroökonomik; Jen Monnet ehrstuhl für uroäische

Mehr

Übungsblatt Gleichungssysteme Klasse 8

Übungsblatt Gleichungssysteme Klasse 8 Üungsltt Gleichungsssteme Klsse 8 Auge : Berechne die Lösungen des Gleichungspres: I II 7 Kontrolliere durch Einseten. Auge : Löse dem Additionsverhren: I 7-6 II 9 Auge : Gegeen ist olgendes linere Gleichungssstem

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006

Endliche Automaten. S. Kuske: Endliche Automaten; 6.Novenber 2006 1 Endliche Automten Einfches Modellierungswekzeug (z.b. UML-Sttechrts) Verrbeiten Wörter/Ereignisfolgen Erkennen Sprchen Erluben schnelle Sprcherkennung Anwendungsbereiche: Objektorientierte Modellierung,

Mehr

Ausbildung zum Passagement-Consultant

Ausbildung zum Passagement-Consultant M & MAICONSULTING Mngementbertung Akdemie M MAICONSULTING Mngementbertung & Akdemie MAICONSULTING GmbH & Co. KG Hndschuhsheimer Lndstrße 60 D-69121 Heidelberg Telefon +49 (0) 6221 65024-70 Telefx +49 (0)

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Saisik II Übung 4: Skalierung und asympoische Eigenschafen Diese Übung beschäfig sich mi der Skalierung von Variablen in Regressionsanalysen und mi asympoischen Eigenschafen von OLS. Verwenden Sie dazu

Mehr

Zahlungsverkehr und Kontoinformationen

Zahlungsverkehr und Kontoinformationen Zahlungsverkehr und Konoinformaionen Mulibankfähiger Zahlungsverkehr für mehr Flexibilä und Mobiliä Das Zahlungsverkehrsmodul biee Ihnen für Ihre Zahlungsverkehrs- und Konenseuerung eine Vielzahl mulibankenfähiger

Mehr

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung

nach der FIT-Methode HANDBALL LEKTÜRE Mannhard Bech Malte Gertenbach Mehr Stabilität Mehr Kraft Mehr Leistung Mnnhrd Bech Mlte Gertenbch Athletiktrining nch der FIT-Methode Mehr Stbilität Speziell für den Hndbllsport entwickelt Für bessere Körperbeherrschung, Leistungssteigerung und Verletzungsprävention Ab der

Mehr

Inaugural-Dissertation zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften mit dem Thema

Inaugural-Dissertation zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften mit dem Thema Inugurl-Disserion zur Erlngung des kdemischen Grdes eines Dokors der Wirschfswissenschfen mi dem Them Rechnungswesenorieniere Unernehmensbewerung Einsz und Eignung der kennzhlenorienieren Fundmenlnlyse

Mehr

Thema 3: Dynamischer versus statischer Vorteilhaftigkeitsvergleich

Thema 3: Dynamischer versus statischer Vorteilhaftigkeitsvergleich hema 3: Dynamischer versus saischer Voreilhafigkeisvergleich Vor allem in der Wirschafspraxis belieb: Gewinnorieniere sa zahlungsorieniere Ansäze zum reffen von Invesiionsenscheidungen. sogenanne saische

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB Inhltsverzeichnis Inhltsverzeichnis... Die Inverse einer Mtrix.... Definition der Einheitsmtrix.... Bedingung für die inverse Mtrix.... Berechnung der Inversen Mtrix..... Ds Verfhren nch Guß mit

Mehr

Aufgabe 5 (Lineare Nachfragefunktion): Gegeben sei die (aggregierte) Nachfragefunktion des Gutes x durch:

Aufgabe 5 (Lineare Nachfragefunktion): Gegeben sei die (aggregierte) Nachfragefunktion des Gutes x durch: LÖSUNG AUFGABE 5 ZUR INDUSTRIEÖKONOMIK SEITE VON 5 Aufgbe 5 (Linere Nchfrgefunktion): Gegeben sei die (ggregierte) Nchfrgefunktion des Gutes durch: ( = b, > 0, b > 0. Dbei bezeichnen den Preis des Gutes

Mehr

FernUniversität Gesamthochschule in Hagen

FernUniversität Gesamthochschule in Hagen FernUniversität Gesmthochschule in Hgen FACHBEREICH MATHEMATIK LEHRGEBIET KOMPLEXE ANALYSIS Prof. Dr. Andrei Dum Proseminr 9 - Anlysis Numerische Integrtion Ulrich Telle Mtrikel-Nr. 474 Köln, den 7. Dezember

Mehr

Reguläre Sprachen und endliche Automaten

Reguläre Sprachen und endliche Automaten 2 Reguläre Sprchen und endliche Automten Sei Σ = {, b,...} ein endliches Alphbet. Ein endliches Wort über Σ ist eine Folge w = 0... n 1, wobei i Σ für i = 0,...,n 1. Wir schreiben w für die Länge von w,

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

4 Die Integralfunktion*

4 Die Integralfunktion* Übungsmteril 1 Die Integrlfuntion* In den vorigen Kpiteln hben wir bereits ds unbestimmte und ds bestimmte Integrl und deren Eigenschften ennengelernt. Ersteres liefert die Menge der Stmmfuntionen einer

Mehr

Internationale Ökonomie I Vorlesung 3: Das Riccardo-Modell: Komparative Vorteile und Produktivität (Master)

Internationale Ökonomie I Vorlesung 3: Das Riccardo-Modell: Komparative Vorteile und Produktivität (Master) Interntionle Ökonomie I Vorlesung 3: Ds Riccrdo-Modell: Komprtive Vorteile und Produktivität (Mster) Dr. Dominik Mltritz Vorlesungsgliederung 1. Einführung 2. Der Welthndel: Ein Überblick 3. Ds Riccrdo-Modell:

Mehr

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w Clsscl Gs Mson Wlls rr: Cleens Huber / "Clsscl Gs" von Mson Wlls urde 9 zu Weltht I Ornl rd de Gtrre von ene Orchester t breten läsersound unterstützt uch ls Soloverson st ds Stück beknnt eorden und ehört

Mehr

Analysis mit dem Voyage 1

Analysis mit dem Voyage 1 Anlysis mit dem Voyge 1 1. Kurvendiskussion Gegeben ist die Funktionschr Den Nenner erhält mn mit Hilfe der Funktion getdenom. Zeros liefert die Nullstellen des Nenners und dmit die Werte, die us dem Definitionsbereich

Mehr

11.8 Digitale Filter. Vorteile digitaler Filter

11.8 Digitale Filter. Vorteile digitaler Filter Fachhochschule usbur Fachbereich Elekroechnik Pro. Dr. C. Clemen.8 Diiale Filer Nachrichenüberraunsechnik.8 Diiale Filer ls wichies Beispiel ür diiale Sinalverarbeiun sollen nun diiale Filer behandel werden.

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende

Grundwissen 7. Jahrgangsstufe 1. Symmetrie Wissen Können Beispiele a) Achsenspiegelung : Symmetrieachse Mittelsenkrechte Winkelhalbierende Grundwissen 7. Jhrgngsstufe 1. Symmetrie ) chsenspiegelung : Symmetriechse Mittelsenkrechte Winkelhlbierende Konstruktion Spiegelpunkt, Spiegelchse Mittelsenkrechte: Winkelhlbierende: Lot: Eigenschften

Mehr

5.3 Dynamisches Sitzen und Stehen

5.3 Dynamisches Sitzen und Stehen Dynmisches Sitzen und Stehen 5.3 Dynmisches Sitzen und Stehen Test Bewegen Sie sich eim Sitzen und Stehen kontinuierlich um den Mittelpunkt der senkrechten Oerkörperhltung (S. 39) mit neutrler Wirelsäulenschwingung

Mehr

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie

1. Motivation / Grundlagen 2. Sortierverfahren 3. Elementare Datenstrukturen / Anwendungen 4. Bäume / Graphen 5. Hashing 6. Algorithmische Geometrie Gliederun 1. Motivtion / Grundlen 2. Sortierverfhren 3. Elementre Dtenstrukturen / Anwendunen 4. Bäume / Grphen 5. Hshin 6. Alorithmische Geometrie 3/1, Folie 1 2010 Prof. Steffen Lne - HD/FbI - Dtenstrukturen

Mehr

Bestellformular - Adresslisten

Bestellformular - Adresslisten Industrie- und Hndelskmmer Heilbronn-Frnken Bestellformulr - Adresslisten Sehr geehrte Dmen und Herren, wie besprochen, erhlten Sie unser Bestellformulr für Adresslisten von Unternehmen in unserem Kmmerbezirk

Mehr

In diesem Handbuch für den Schnellstart finden Sie allgemeine Anweisungen zum Einrichten der McAfee Web Gateway-Appliance.

In diesem Handbuch für den Schnellstart finden Sie allgemeine Anweisungen zum Einrichten der McAfee Web Gateway-Appliance. Schnellstrt-Hndbuch Revision B McAfee Web Gtewy Version 7.3.2.2 In diesem Hndbuch für den Schnellstrt finden Sie llgemeine Anweisungen zum Einrichten der McAfee Web Gtewy-Applince. Bevor Sie beginnen,

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

FA Immobilienfonds der SFAMA, Swiss Fund Data AG

FA Immobilienfonds der SFAMA, Swiss Fund Data AG REGLEMENT SFA-ANLAGERENDITEINDIKATOR Daum 23.10.2015 Güligkeisdauer Auoren Unbeschränk SFAMA Swiss

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

Kapitel IX. Öffentliche Verschuldung. Einige Kenngrößen

Kapitel IX. Öffentliche Verschuldung. Einige Kenngrößen Kapiel IX Öffenliche Verschuldung a) Besandsgröße Einige Kenngrößen Öffenliche Verschuldung, ausgedrück durch den Schuldensand (Schuldner: Bund, Länder, Gemeinden, evenuell auch Unernehmen dieser Gebieskörperschafen,

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

5. Value at Risk als Instrument zur Risikomessung. 5.1. Allgemeines zum Value at Risk

5. Value at Risk als Instrument zur Risikomessung. 5.1. Allgemeines zum Value at Risk 5. Vlue Risk ls Insrumen zur Risikomessung 5.1. Allgemeines zum Vlue Risk Folien: Tnj Dresel, Luz Johnning,. Hns-Peer Burghof 61 5.1 Allgemeines zum Vlue--Risk Der Vlue--Risk einer Einzel- oder Gesmposiion

Mehr

Numerische Mathematik I

Numerische Mathematik I Numerische Mthemtik I Dr. Wolfgng Metzler Universität Kssel unter Mitwirkung von Dipl.-Mth. Mrtin Steigemnn Sommersemester 2005 ii c 2005 Dr. Wolfgng Metzler, Fchbereich Mthemtik und Informtik der Universität

Mehr

Ist die Kaufkrafttheorie der Lohnerhöhungen Unsinn?

Ist die Kaufkrafttheorie der Lohnerhöhungen Unsinn? Is die Kaufkrafheorie der Lohnerhöhungen Unsinn? Diplomarbei zur Erlangung des Grades eines Diplom-Volkswir an der Wirschafswissenschaflichen Fakulä der Humbold-Universiä zu Berlin vorgeleg von Thomas

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003 Personl und Finnzen der öffentlich estimmten Fonds, Einrichtungen, Betriee und Unternehmen (FEU) in privter Rechtsform im Jhr 003 Dipl.-Volkswirt Peter Emmerich A Mitte der 980er-Jhre ist eine Zunhme von

Mehr

Integralrechnung. www.mathe-total.de. Aufgabe 1

Integralrechnung. www.mathe-total.de. Aufgabe 1 Integrlrechnung Aufgbe Bestimme die Fläche zwischen der Kurve der Funktion f() = und -Achse über dem Intervll I = [; 3] näherungsweise. Bestimme die Obersumme und Teile ds Intervll I in drei gleich große

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

Die kleine Box für den großen Erfolg. Fragen und Antworten zur. GUSbox 16, 90* So einfach wie telefonieren. mtl.ab. a Fernwartung Ihrer Praxis -

Die kleine Box für den großen Erfolg. Fragen und Antworten zur. GUSbox 16, 90* So einfach wie telefonieren. mtl.ab. a Fernwartung Ihrer Praxis - So einfch wie telefonieren Frgen und Antworten zur Fxe von jedem Arbeitspltz senden und empfngen. DMP Bögen elektronisch versenden. ** Dle-UV BG Formulre und Abrechnung elektronisch übertrgen. Arztbriefe

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme

Bruchterme und gebrochen rationale Funktionen ================================================================== Der Quotient zweier Terme Bruchterme und gebrochen rtionle Funktionen Der Quotient zweier Terme Es ist ist 3 : 4 3 und. 4 : 3 4 3 4 Dehnt mn die Bruchschreibweise uf Terme us, dnn erhält mn sog. Bruchteme. ² ( + ) : (3 + 4) + 3

Mehr

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele)

5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5. Wiederholte Interaktion (Wiederholte Spiele Superspiele) 5.1 Endlich oft wiederholte Spiele 5.2 Unendlich oft wiederholte Spiele 5.3 Fallstudie: Wettbewerb und Kollusion an der NASDAQ-Börse 5 Beispiele

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Sicherheitssysteme Digitale Videoüberwachung

Sicherheitssysteme Digitale Videoüberwachung Sicherheitssysteme Digitle Videoüberwchung PM11 M11_A- 6-4- 1 Sie hben lles unter Kontrolle. Für Objekte ller Größen Viele Unternehmen benötigen mehr ls nur eine punktuelle Videoüberwchung. Kom- Lösungen.

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1

Die Sensitivität ist eine spezielle Form der Zinselastizität: Aufgabe 1 Neben anderen Risiken unerlieg die Invesiion in ein fesverzinsliches Werpapier dem Zinsänderungsrisiko. Dieses Risiko läss sich am einfachsen verdeulichen, indem man die Veränderung des Markweres der Anleihe

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher

REGSAM-Handbuch. für neue Facharbeitskreissprecherinnen und -sprecher REGSAM-Hndbuch für neue Fchrbeitskreissprecherinnen und -sprecher Inhlte Vorwort. 2 Über REGSAM. o Wozu REGSAM? o REGSAM holt lle Hndelnden n einen Tisch o Wie wird gerbeitet? Oder: Die Gremien o Zentrler

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr