Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Größe: px
Ab Seite anzeigen:

Download "Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1"

Transkript

1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte) Zeigen Síe, dass f für monoton wächst. Für welche Werte von ist K linksgekrümmt? Begründen Sie Ihre Antwort.. ( Punkte) Die Parallele zur -Achse durch den Hochpunkt von K begrenzt mit K eine Fläche, die von der y-achse in zwei Teilflächen zerlegt wird. Zeichnen Sie K und kennzeichnen Sie diese Flächen. Berechnen Sie das Verhältnis der Inhalte der beiden Teilflächen.. (6 Punkte) Die Gerade g hat die Gleichung y = m. Zeigen Sie, dass es nur ein positives m gibt, so dass g und K genau zwei gemeinsame Punkte besitzen. Geben Sie deren Koordinaten an.. (5 Punkte) Bestimmen Sie den Punkt auf K, der von Q(/) den kleinsten Abstand hat. Berechnen Sie diesen kleinsten Abstand..5 (6 Punkte) Bestimmen Sie die Ortskurve der Wendepunkte aller K t. Die Funktion h ist gegeben durch h() = + e ; R.. ( Punkte) Skizzieren Sie das Schaubild von h. Geben Sie die Gleichung der Asymptote an.. (9 Punkte) Das Schaubild von h, die y-achse, die Gerade mit der Gleichung y = und die Gerade mit der Gleichung = a mit a > begrenzen eine Fläche. Wie groß ist der Inhalt der Fläche für a = 6? Weisen sie nach, dass es keinen Wert für a gibt, für den die Fläche den Inhalt hat.

2 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (6 Punkte) Die in der Abbildung dargestellten Punkte P, P, P, P und P 5 haben ganzzahlige Koordinaten. Begründen Sie, dass man durch die Punkte sowohl das Schaubild einer Polynomfunktion dritten Grades als auch das Schaubild einer trigonometrischen Funktion legen kann.. * t R+ Gegeben sind für die Funktionen f t und t t ft () = + t + ; [ ; ] π g t () = + t sin ; [ ; ] Der Graph von f t heißt K t, der Graph von g t heißt g t durch G t... ( Punkte) Zeichnen Sie K. Zeigen Sie, dass alle K t genau drei gemeinsame Punkte haben. Geben Sie deren Koordinaten an. Ermitteln Sie die Etremstellen von f t... (6 Punkte) Zeichnen Sie G in das Koordinatensystem aus.. ein. Berechnen Sie den Inhalt A der Fläche, die von K und G für eingeschlossen wird... (6 Punkte) = und = sind die einzigen Schnittstellen von K t und G t in [ ;]. Begründen Sie, dass K t für < < oberhalb von G t verläuft. Berechnen Sie den Inhalt der Fläche, die von K t und G t für eingeschlossen wird. Wie lässt sich der Inhalt dieser Fläche mit Hilfe von A aus Teilaufgabe.. bestimmen?

3 .. (6 Punkte) Die Gerade mit der Gleichung = u ( < u < ) schneidet K im Punkt A und G im Punkt B. Die Punkte A, B und C(/) sind die Eckpunkte eines Dreiecks. Zeigen Sie, dass der Flächeninhalt dieses Dreiecks für alle u kleiner als ist...5 ( Punkte) Zeigen Sie, dass für von g (). [ ; ] der Mittelwert von f () genau so groß ist wie der Mittelwert. (6 Punkte) Die Abbildung zeigt den Graph der Ableitungsfunktion h einer Funktion h. Entscheiden Sie, ob folgende Aussagen wahr oder falsch sind, und begründen Sie Ihre Entscheidungen. Die Funktion h hat bei = 6 eine Etremstelle. Die Tangente an den Graphen von h im Schnittpunkt mit der y-achse ist parallel zur ersten Winkelhalbierenden. Der Graph der Stammfunktion von h ist für alle [- ; ] linksgekrümmt.

4 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Lösung Aufgabe. Es gilt f () = + und f () = + 6 = ( + ) Für gilt f () und daraus folgt, dass f monoton wächst. Das Schaubild von K ist linksgekrümmt, wenn f () > ist. f () = > < Für < ist das Schaubild von K linksgekrümmt.. Mit dem GTR ergibt sich als Hochpunkt H(/). Die Parallele zur -Achse durch H besitzt die Gleichung y =. A = ( ( + ))d = ( + )d = + = ( + A = + = + = Flächenverhältnis: A : A = : = : 6. + ) =

5 Die Geraden y = m verlaufen alle durch den Ursprung. Die gesuchte Gerade muss gemäß der Zeichnung eine Tangente an das Schaubild von f sein. Gesucht ist somit eine Tangente an das Schaubild von f, die durch den Ursprung verläuft. Der Berührpunkt der Tangente habe die Koordinaten B(u / f (u)). Die Tangentensteigung beträgt mtan g = f (u) = u + 6u. Allgemeine Tangentengleichung in B(u / f (u)) mit der Punkt-Steigungs-Form: y f(u) = f (u) ( u) y ( u + u ) = ( u + 6u)( u) Nun wird u so gewählt, dass der gegebene Tangentenpunkt O(/) auf der Gerade liegt. Einsetzen von O(/) ergibt ( u + u ) = ( u + 6u)( u) u u = u 6u u + u = u ( u + ) = u =, u =, 5 Aus u = ergibt sich als Berührpunkt B(/f()) = B(/) mit der Tangentengleichung y =. 7 9 Aus u =,5 ergibt sich als Berührpunkt B (,5 / f(,5)) = B(,5 / ) mit m = f (,5) =.. Gesucht ist der Punkt P(u / f (u)) auf dem Schaubild, der von Q(/) den kleinsten Abstand hat. Der Abstand zweier Punkte kann mit Hilfe der Punktkoordinaten und dem Satz des Pythagoras berechnet werden: PQ = d(u) = ( ) + ( y y ) = (u ) + ( u + u P Q P Q ) Mit dem GTR ergibt sich als Minimum für u =,5 einen minimalen Abstand von,55. Der Punkt auf dem Schaubild hat die Koordinaten P(,5 / f (,5)) = P(,5 /,5).5 Berechnung der Wendepunkte von K t : ft () = + t ft () = + t ft () = 6 + t ft () = 6 Bedingung für Wendepunkt: f t () = 6 + t = = t f t ( t) = 6, also WP( t / t ) 7 5

6 Ortskurve: = t t = y = t = () = 7 7 Die Ortskurve der Wendepunkte lautet y =.. Asymptote von h() = + e Für Für strebt e und damit ist y = die schiefe Asymptote. eistiert keine Asymptote, da e strebt.. 6 Inhalt für a = 6: (6) = ( + e )d = [ e ] A 6 = e + e = 7,7 FE a Für allgemeines a: A(a) = ( + e )d = [ e ] a a = e + e Da e a = 7,9 < ist und der Termin e immer positiv ist, gilt A(a) < für alle Werte von a. 6

7 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Lösung Aufgabe. Sowohl die Punkte P und P 5 als auch die Punkte P und P liegen symmetrisch bezüglich des Punktes P. Sowohl eine ganzrationale Funktion.Grades als auch eine Sinus- oder Kosinusfunktion haben punktsymmetrische Schaubilder, also können beide Kurven durch die gegebenen 5 Punkte laufen... Gemeinsame Punkte der Scharkurven: Das GTR-Schaubild lässt vermuten, dass sich die Scharkurven alle in den folgenden Punkten schneiden: P(/), Q(/) und R(/). Um dies zu beweisen, werden die Punktkoordinaten in die Funktionsgleichung eingesetzt: () f t () f t () f t = P( / ) liegt auf allen Scharkurven t t = t + = Q( / ) liegt auf allen Scharkurven t t = t + = R( / ) liegt auf allen Scharkurven Etremstellen: f () = t t + t = t ( t + ) = 7

8 ± 9 6 ±, = = = 6,9 und =, 69 f t () = t t f t (6,9) = t 6,9 t > TP f t (,69) = t,69 t < HP also handelt es sich bei beiden Stellen um Etremstellen.. Flächenberechnung mit dem GTR: A = π, 6 (f () g())d = ( + + ( + sin )d = FE.. Es sei bekannt das = und = die einzigen Schnittstellen von K t und G t im Intervall [;] sind. Es muss also nur gezeigt werden, dass für irgendeinen -Wert aus diesem Intervall ft () > gt () ist. t t Wähle z.b. = : f t () = + t + = t + =,65t + und g t () = +,t Man erkennt nun, dass ft () > gt () für t > gilt, was aber laut Aufgabe vorausgesetzt wird.

9 A = t = ( π (ft () gt ())d = ( t + t + ( + t sin t π t + t t sin )d = t = t t + t + t =,5t t =,6t FE π π Es gilt A t = t A. ) d π t + t + t cos π.. Dreiecksfläche = g h = AB CD = (f(u) g(u)) ( u) π A(u) = u u u sin u ( u) + für u Das Maimum der Funktion A(u) liefert der GTR: Die Fläche wird maimal für u =,659 und die maimale Dreiecksfläche beträgt,96. Diese Fläche ist kleiner als. 9

10 ..5 Mittelwert von f : m = f()d = 6 = Mittelwert von f g : mg = g()d = 6 =. An der Stelle = 6 besitzt die Ableitungsfunktion eine doppelte Nullstelle. D.h. das Schaubild von h besitzt an der Stelle = 6 eine waagrechte Tangente, allerdings ist die Steigung links und rechts von = 6 positiv. Das heißt an der Stelle = 6 hat das Schaubild von h einen Sattelpunkt und keine Etremstelle. Die Aussage ist falsch. Im Schnittpunkt mit der y-achse (an der Stelle = ) gilt h () =. Die Tangente an der Stelle = an das Schaubild von h besitzt die Steigung. Da die erste Winkelhalbierende die Steigung besitzt, liegt keine Parallelität vor. Die Aussage ist falsch. Die Stammfunktion H von h ist linksgekrümmt, wenn gilt: H (). Da H () = h () gilt und das Schaubild von h gemäß der Zeichnung immer oberhalb der -Achse verläuft, gilt h (). Damit ist die Aussage wahr.

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2013. Baden-Württemberg Hauptprüung Fachhochschulreie 3 Baden-Württemberg Augabe 3 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz www.mathe-augaben.com Dezember 3 3. Das Schaubild einer Funktion

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

Abiturprüfung 2000 LK Mathematik Baden-Württemberg

Abiturprüfung 2000 LK Mathematik Baden-Württemberg Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zur Integralrechnung Stammfunktionsberechnung, Flächenberechnung, Rotationsvolumen, Funktionen zu Änderungsraten (Bearbeitungszeit: 9 Minuten) Gymnasium J1 Aleander Schwarz www.mathe-aufgaben.com

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt:

Mathematik Name: Nr.4 K1 Punkte: /30 Note: Schnitt: K Punkte: / Note: Schnitt: 9.5.6 Pflichtteil (etwa 4 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die Formalsammlung verwendet werden

Mehr

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007 Senatsverwaltung für Bildung, Wissenschaft und Forschung Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr / 7 Name, Vorname: Klasse: Prüfungsfach: Mathematik Prüfungstag:

Mehr

x 2 x 1.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften. (Achsensymmetrie/ Punktsymmetrie)

x 2 x 1.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften. (Achsensymmetrie/ Punktsymmetrie) I. Grenzverhalten von Funktionen. Verhalten einer Funktion für bzw.. Bestimmen Sie den Grenzwert a) b) ) ( + ( ) c) ( + ) ( ) II. Symmetrie.Untersuchen Sie die Schaubilder der Funktion auf ihre Symmetrieeigenschaften.

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg Baden-Württemberg: Fachhochschulreie 2015 www.mathe-augaben.com Hauptprüung Fachhochschulreie 2015 Baden-Württemberg Augabe 1 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Bohner Ihlenburg Ott Deusch Mathematik für berufliche Gmnasien Jahrgangsstufen und Analsis und Stochastik Ausführliche Lösungen zu im Buch gekennzeichneten Aufgaben ab 5. Auflage 05 ISBN 978--80-8- Das

Mehr

Lösungen der Musteraufgaben 2017. Baden-Württemberg

Lösungen der Musteraufgaben 2017. Baden-Württemberg Baden-Württemberg: Musteraufgaben 07 Lösungen www.mathe-aufgaben.com Lösungen der Musteraufgaben 07 Baden-Württemberg allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Baden-Württemberg:

Mehr

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema

Mathematisches Thema Quadratische Funktionen 1. Art Anwenden. Klasse 10. Schwierigkeit x. Klasse 10. Mathematisches Thema Quadratische Funktionen 1 1.) Zeige, dass die Funktion in der Form f() = a 2 + b +c geschrieben werden kann und gebe a, b und c an. a) f() = ( -5) ( +7) b) f() = ( -1) ( +1) c) f() = 3 ( - 4) 2.) Wie heißen

Mehr

e-funktionen f(x) = e x2

e-funktionen f(x) = e x2 e-funktionen f(x) = e x. Smmetrie: Der Graph ist achsensmmetrisch, da f( x) = f(x).. Nullstellen: Bed.: f(x) = 0 Es sind keine Nullstellen vorhanden, da e x stets positiv ist. 3. Extrema: notw. Bed.: f

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen

5.3. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen .. Aufgaben zur Kurvenuntersuchung ganzrationaler Funktionen Aufgabe : Kurvendiskussion Untersuche die folgenden Funktionen auf Symmetrie, Achsenschnittpunkte, Etrem- und Wendepunkte und zeichne ein Schaubild

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Mündliches Abitur in IViathematik

Mündliches Abitur in IViathematik Mündliches Abitur in IViathematik Zusatzprüfung: Kurzvortrag mit Prüfungsgespräcti Ziele: Nachweis von fachlichem Wissen und der Fähigkeit, dies angemessen darzustellen erbringen fachlich überfachlich

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (B) Prüfungstag 5. April Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit x f(x) = (x + 5) e. Aufgabe : ( VP) Gegeben ist die Funktion

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

Ergänzungsheft Erfolg im Mathe-Abi

Ergänzungsheft Erfolg im Mathe-Abi Ergänzungsheft Erfolg im Mathe-Abi Hessen Prüfungsaufgaben Grundkurs 2012 Grafikfähiger Taschenrechner (GTR), Computeralgebrasystem (CAS) Dieses Heft enthält Übungsaufgaben für GTR und CAS sowie die GTR-

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Analysis 1 Gebrochenrationale Funktion - Laptop... 7 2 Gebrochenrationale

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Übungsaufgaben II zur Klausur 1

Übungsaufgaben II zur Klausur 1 Übungsaufgaben II zur Klausur. Ableitungen 0. Führen Sie für g mit f ( +,9 8 eine vollständige Kurvendiskussion (siehe S. 9f durch. Markieren Sie alle von Ihnen bestimmten Punkte in der abschließenden

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

Abiturprüfung 2008. Mathematik, Grundkurs

Abiturprüfung 2008. Mathematik, Grundkurs M GK HT 3 Seite 1 von Name: Abiturprüfung 008 Mathematik, Grundkurs Aufgabenstellung: Gegeben ist die Funktion f mit x f( x) = ( x+ 1) e, x IR. Der Graph von f ist in der nebenstehenden Abbildung dargestellt.

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 205 (ohne CAS) Baden-Württemberg Wahlteil Analysis Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com März 205 Aufgabe A

Mehr

Pflichtteil - Exponentialfunktion

Pflichtteil - Exponentialfunktion Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Demo: Mathe-CD. Integration Flächenberechnungen. Sammlung von Trainingsaufgaben. Friedrich Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Integration Flächenberechnungen Tet noch nicht fertig Vorabversion! Weitere Aufgaben folgen! Sammlung von Trainingsaufgaben Lösungen in 486 Datei Nr. 48 5 Stand 8. Dezember 008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

FH- Kurs Mathematik Übungsaufgaben für 2. Klausur

FH- Kurs Mathematik Übungsaufgaben für 2. Klausur Aufgabe 1: Gegeben ist die Funktion f mit 1 f x = x x x + x R 8 3 2 ( ) = ( 3 9 + 27);. a) Untersuchen sie das Schaubild K von f auf Schnittpunkte mit den Koordinatenachsen, Hoch- und Tiefpunkte. Zeichnen

Mehr

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

T Nach- bzw. Wiederholungsprüfung:

T Nach- bzw. Wiederholungsprüfung: Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Skizzieren Sie das Schaubild von f einschließlich der Asymptote.

Skizzieren Sie das Schaubild von f einschließlich der Asymptote. G13-2 KLAUSUR 24. 02. 2011 1. Pflichtteil (1) (2 VP) Bilden Sie die Ableitung der Funktion f(x) = e2x 1 e x und vereinfachen Sie gegebenenfalls. (2) (2 VP) Geben Sie für die Funktion f(x) = (5 + 3 ) 4

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

11 Üben X Affine Funktionen 1.01

11 Üben X Affine Funktionen 1.01 Üben X Aine Funktionen.0 Zeichne die Graphen zu olgenden Funktionsgleichungen! + + d c b a Augabenkarte von MUED Lösung X Aine Funktionen.0 + + d c b a Üben X Aine Funktionen.0 Bestimme die Funktionsgleichung

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/04 Fach (A) Prüfungstag 9. Mai 04 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Abitur 2011, Analysis I

Abitur 2011, Analysis I Abitur, Analysis I Teil. f(x) = x + 4x + 5 Maximale Definitionsmenge: D = R \ {,5} Ableitung: f (4x + 5) (x + ) 4 8x + 8x (x) = (4x + 5) = (4x + 5) = (4x + 5). F(x) = 4 x (ln x ); D F = R + F (x) = 4 x

Mehr

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR 2. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 2 06.12.2013 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 27 15 15 3 60 Punkte Notenpunkte PT 1 2 3 4 5 6 7 8 P. (max 2 3 2 4 5 3 4 4 Punkte WT Ana a b Summe P. (max 8 7

Mehr

3.3 Linkskurve, Rechtskurve Wendepunkte

3.3 Linkskurve, Rechtskurve Wendepunkte 166 FUNKTIONSUNTERSUCHUNGEN 3.3 Linkskurve, Rechtskurve Wendepunkte Einführung (1) Anschauliche Erklärung des Begriffs Wendepunkt Bei Motorradrennen lässt sich beobachten, wie sich die Motorradfahrer beim

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abiturprüfung Grundkurs 1995/96 und 1996/97

Abiturprüfung Grundkurs 1995/96 und 1996/97 Inhalt Vorwort............................................. Mecklenburg-Vorpommern 99/97....................... Aufgaben.................................... Erwartungsbilder.............................

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Schriftliche Abiturprüfung Grundkursfach Mathematik

Schriftliche Abiturprüfung Grundkursfach Mathematik Sächsisches Staatsministerium für Kultus Schuljahr 2000/01 Geltungsbereich: - Allgemein bildendes Gymnasium - Abendgymnasium und Kolleg - Schulfremde Prüfungsteilnehmer Schriftliche Abiturprüfung Grundkursfach

Mehr

Kurvenuntersuchungen und gemeinsame Punkte zweier Schaubilder (ganzrationaler) Funktionen:

Kurvenuntersuchungen und gemeinsame Punkte zweier Schaubilder (ganzrationaler) Funktionen: Kurvenuntersuchungen und gemeinsame Punkte zweier Schaubilder (ganzrationaler) Funktionen: Aufgabe I Gegeben sind die Schaubilder und die Funktionsterme zweier Funktionen f und g: 4 2 f ( x) = x x + 8

Mehr

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 000 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - GM1. INFINITESIMALRECHNUNG I. 10

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Graph der linearen Funktion

Graph der linearen Funktion Graph der linearen Funktion Im unten stehenden Diagramm sind die Grafen der Funktionen f und g gezeichnet (a) Stelle die Gleichungen von f und g auf und berechne die Nullstellen der beiden Funktionen (b)

Mehr

Ergänzungen zum Fundamentum

Ergänzungen zum Fundamentum Matura 2014 - Mathematik - Gymnasium Immensee 2 Ergänzungen zum Fundamentum Abstand eines Punktes zu einer Geraden d = AP v v Substitution ohne Grenzen Mit u = g(x) gilt: f(g(x))dx = 1 u f(u)du Matura

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

Testprüfung (Abitur 2013)

Testprüfung (Abitur 2013) Testprüfung (Abitur 2013) Steve Göring, stg7@gmx.de 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden.

Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. Analysis A Aufgabe 1 Ein Medikament kann mithilfe einer Spritze oder durch Tropfinfusion verabreicht werden. a) Bei Verabreichung des Medikaments mithilfe einer Spritze wird die Wirkstoffmenge im Blut

Mehr

Erfolg im Mathe-Abi 2012

Erfolg im Mathe-Abi 2012 Gruber I Neumann Erfolg im Mathe-Abi 2012 Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Windkraftanlage... 5 2 Heizkosten... 6 3

Mehr

1 Die natürliche Exponentialfunktion und ihre Ableitung

1 Die natürliche Exponentialfunktion und ihre Ableitung Schülerbuchseite 5 5 Lösungen vorläuig VI Natürliche Eponential- und Logarithmusunktion Die natürliche Eponentialunktion und ihre Ableitung S. 5 Durch Ausprobieren erkennt man, dass < a

Mehr

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04.

Differenzenquotient. f(x) Differenzialrechnung. Gegeben sei eine Funktion f(x). 197 Wegener Math/5_Differenzial Mittwoch 04.04. Gegeben sei eine Funktion f(). Differenzialrechnung Differenzenquotient f() 197 Wegener Math/5_Differenzial Mittwoch 04.04.2007 18:38:45 1 Differenzenquotient Gesucht ist die Tangente an der Stelle, wobei

Mehr

Schaubilderanalyse. Arbeiten mit Schaubildern von Funktionen. Funktionsgleichungen aufstellen - identifizieren uva.

Schaubilderanalyse. Arbeiten mit Schaubildern von Funktionen. Funktionsgleichungen aufstellen - identifizieren uva. Dieser Text ist noch in Arbeit. Jetzt also nur zur Vorinformation! Schaubilderanalyse Arbeiten mit Schaubildern von Funktionen Abitur-Vorbereitung Funktionsgleichungen aufstellen - identifizieren uva.

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben

Standardisierte kompetenzorientierte schriftliche Reifeprüfung. Mathematik. Probeklausur März 2014. Teil-1-Aufgaben Standardisierte kompetenzorientierte schriftliche Reifeprüfung Mathematik Probeklausur März 2014 Teil-1-Aufgaben Beurteilung Jede Aufgabe in Teil 1 wird mit 0 oder 1 Punkt bewertet, jede Teilaufgabe in

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen

Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnung mit Integralen. Flächenberechnungen mit Integralen Flächenberechnungen mit Integralen Aufgabe 1: Gegeben sei die Funktion = 44. = 44 Aufgaben und Lösungen a) Berechnen Sie die Fläche, die die Kurve mit den Koordinatenachsen einschließt. b) Berechnen Sie

Mehr

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Aufgabe : Eine zum Ursprung symmetrische ganzrationale Funktion.Ordnung hat im Ursprung die Tangente mit der Gleichung y = 7x und in

Mehr

Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Bestimmung ganzrationaler Funktionen

Bestimmung ganzrationaler Funktionen Bestimmung ganzrationaler Funktionen 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens? Wir führen

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie Übungsaufgaben Punkte, Vektoren, Geradengleichungen Gymnasium Klasse 0 Alexander Schwarz www.mathe-aufgaben.com März 04 Aufgabe : Gegeben sind die Punkte O(0/0/0), A(6/6/0), B(/9/0),

Mehr

1 Aufgaben. Aufgabe 1: f(x) = x Aufgabe 2: f(x) = x Aufgabe 4: f(x) = 2x 2 + 4

1 Aufgaben. Aufgabe 1: f(x) = x Aufgabe 2: f(x) = x Aufgabe 4: f(x) = 2x 2 + 4 1 Aufgaben Untersuche die folgende Funktionen auf Nullstellen, Schnittpunkte mit den Koordinatenachsen, Extremwerte, y-achsensymmetrie und Punktsymmetrie zum Ursprung (0 0) und zeichnen den Graph der Funktion.

Mehr

Matura2016-Lösung. Problemstellung 1

Matura2016-Lösung. Problemstellung 1 Matura-Lösung Problemstellung. Die Funktion f( = + 9k + müsste bei = den Wert annehmen, also gilt + 9k + = k =. Wir betrachten den Bereich mit positiven Werten. Dann gilt: f ( = 8 + 8 = = ; = Bei liegt

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26. 02. 2015 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl (max) 28 15 15 2 60 Notenpunkte PT 1 2 3 4 5 6 7 8 9 P. (max) 2 2 3 5 4 3 3 4 2 WT Ana A.1a) b) c) d) Summe P. (max) 6 4 3

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y x + x 6 b) y x x + x c) y (x + )(x + x ) d) y x 5x + e) y x + x x + 0 f) y x x 5x +50x

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig

Mehr

Mathematik Berufskolleg zur Erlangung der Fachhochschulreife

Mathematik Berufskolleg zur Erlangung der Fachhochschulreife Mathematik Berufskolleg zur Erlangung der Fachhochschulreife INHALTSVERZEICHNIS. GRUNDLAGEN. DAS KOORDINATENSYSTEM. DARSTELLUNG VON GERADEN. SEITENVERHÄLTNISSE IM RECHTWINKLIGEN DREIECK 4. WEITERE GERADENGLEICHUNGEN

Mehr

ÜBERBLICK ÜBER DAS KURS-ANGEBOT

ÜBERBLICK ÜBER DAS KURS-ANGEBOT ÜBERBLICK ÜBER DAS KURS-ANGEBOT Alle aufgeführten Kurse sind 100 % kostenfrei und können unter http://www.unterricht.de abgerufen werden. ANALYSIS / INFINITESIMALRECHNUNG Nullstellen * Nullstellen einer

Mehr

BADEN-WÜRTTEMBERG. Prüfung der Fachhochschulreife

BADEN-WÜRTTEMBERG. Prüfung der Fachhochschulreife MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG Prüfung der Fachhochschulreife an Berufskollegs zum Erwerb der Fachhochschulreife u.a. I Prüfungsfach I Mathematik Püfungstag 03. Juni 005 Bearbeitungszeit

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

Abitur - Übung 1 Glege 9/11

Abitur - Übung 1 Glege 9/11 Abitur - Übung 1 Glege 9/11 Aufgabe 1.1) ganz-rationale Funktion 1.1.a) Bestimmen Sie eine ganz-rationale Funktion 3.Grades, deren Graph bei =4 die -Achse berührt und an deren Punkt (2/f(2)) die Tangente

Mehr

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN)

ABITURPRÜFUNG 2002 GRUNDFACH MATHEMATIK (HAUPTTERMIN) ABITURPRÜFUNG 00 GRUNDFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 10 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig) Tafelwerk Der Prüfungsteilnehmer wählt von den Aufgaben

Mehr

Vorbereitung auf das Abitur: Sinusfunktionen

Vorbereitung auf das Abitur: Sinusfunktionen Niedersachsen 11./1. Schuljahr Grundlegendes und erhöhtes Niveau Herausgegeben von Heinz Griesel, Andreas Gundlach, Helmut Postel, Friedrich Suhr Vorbereitung auf das Abitur: Sinusfunktionen Vorbereitung

Mehr