Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at"

Transkript

1 Inhalt SWP Funktionale Programme (2. Teil) Einfache Ausdrücke Datentypen Rekursive funktionale Sprache Franz Wotawa Institut für Softwaretechnologie Interpreter für funktionale Sprache Halteproblem Semantik 2 Sprache EXPressions Funktionsvariablen Bisher: Terme Konditionale Funktionen vordefiniert (Built-in Functions) Zur Darstellung programmdefinierter Funktionen FVS.. Menge der Funktionsvariablen Name der Funktione = Funktionsvariable Aber keine Stelligkeit von Funktionen Iterativen Konstrukte Unterprogrammbegriff r: FVS N 0 Wenn r(x)=n dann ist X eine n-stellige Funktion 3 4 Beispiel (Nicht aus EXP) Anmerkung function X (x: integer, y: real) :real; var i := integer; begin for i:=1 to x do y:=2*y; X := y; end; 2 Arten von Funktionen: Funktionssymbole: Eingebaute Funktionen (+, -,..) Funktionsvariablen: Benutzerdefinierte Funktionen X.. Funktionsvariable r(x) =

2 Syntax von EXP Semantikdefinition? 1. IVS EXP (Variablen) 2. Γ EXP (Konstantensymbole) 3. Ist f ein n-stelliges Funktionensymbol und sind t i EXP (für i=1..n), dann f(t 1,..,t n ) EXP. 4. Ist p ein n-stelliges Prädikatensymbol, sind u i EXP (für i=1..n) und ist t 1,t 2 EXP dann ist if p(u 1,.., u n ) then t 1 else t 2 EXP. 5. Ist F eine n-stellige Funktionenvariable und ist t i EXP (für i=1..n) dann ist F(t 1,..,t n ) EXP. Syntax wurde erweitert! Auch Semantik muß erweitert werden. Insbesonders benötigen wir eine Interpretation der benutzerdefinierten Ausdrücke F(t 1,..,t n ) Müssen Zugriff auf die Definition der Funktion haben. 7 8 Funktionsumgebungen (I) Funktionsumgebungen (II) function X (x: integer):integer; begin X := (((x*x) + 1) x) * x; end; Wie bei Variablenumgebung führen wir Funktionenumgebung ein! FENV.. Menge der Funktionsumgebungen δ: FVS EXP wobei δ FENV δx.. Body der Funktion X Zugriff auf Funktionsdefinition über Funktion δ Weitere Annahme: Alle Variablen im Body sind formale Parameter der Funktion. Zum Beispiel ist die Variable x im letzten Beispiel ein formaler Parameter der Funktion X. Ist r(x)=n so gibt es maximal n Variablen in δx Funktionsumgebungen (III) Semantik von EXP Definition: FENV ist die Menge aller δ, δ: FVS EXP, sodaß, falls r(f)=n gilt, δf enthält keine anderen IVS als x 1,..,x n. 1. I(δ,ω,v) = ω(v) für v IVS 2. I(δ,ω,c) = c 0 für c Γund c 0 ist die Konstante zu c 3. I(δ,ω,f(t 1,..,t n )) = f 0 (I(δ,ω,t 1 ),..,I(δ,ω,t n )) (f 0 ist Funktion zu f) 4. Für Konditionale gilt: Ist p o (I(δ,ω,u 1 ),..,I(δ,ω,u n ), )=T, dann I(δ,ω,if p(u 1,..,u n ) then t 1 else t 2 ) = t 1 Ist p o (I(δ,ω,u 1 ),..,I(δ,ω,u n ), )=F, dann I(δ,ω,if p(u 1,..,u n ) then t 1 else t 2 ) = t

3 Semantik von EXP (cont.) Anmerkungen zur Semantik 5. Interpretation von F(t 1,..,t n ) a. Aufruf durch Wert (call-by-value) Definiere neues ω als ω (xi)=i(δ,ω,t i ) für i=1..n wobei x1,..,xn die formalen Parameter in δf sind. I(δ,ω, F(t 1,..,t n )) = I(δ,ω, δf) b. Aufruf durch Name (call-by-name) I(δ,ω, F(t 1,..,t n )) = I(δ,ω, δf[x1 t 1,..,xn t n ]) (Die Ausdrücke t i werden statt xi in Bei call-by-value werden die Argumentausdrücke zuerst ausgewertet und bestimmen das Variablenenvironment während der Auswertung des Funktionenbodies. Bei call-by-name werden die Argumentausdrücke in den Body der Funktion eingesetzt und danach wird der modifizierte Body ausgewertet Beispiel EXP-1 Beispiel EXP-2 Datentyp S (Stacks) Datentyp der natürlichen Zahlen inkl. Null t = F(sub(x)) δf = if ist0?(x1) then sub(x1) else add1(x1) Werte t für ω(x)=100 aus, d.h., berechne I(δ,ω,t)=? ℵ = (N 0,+,--,*,=0?,0,1) -- : x -- y = x y für x y und 0, sonst. =0?(x) x=0 Programm: t = F(x) δf = if =0?(x1) then 1 else *(x1,f(--(x1,1))) ω(x) = Induktives Programmieren Korrektheitsbeweise In EXP lassen sich wie in SML induktiv definierte Funktionen leicht implementieren. Über schrittweise bzw. vollständige Induktion (wie in der Einführung in die Informatik Vorlesung beschrieben). Aufteilung: Basisfälle Rekursive Zweige Terminierung!?

4 Datentyp der Listen Beispiele Listen enthalten Atome und andere Listen Atome: Menge At, wir schreiben Atome immer in Großbuchstaben Beispiele: ABC, ATOM, NAME,... Induktive Definition der Menge der Listen L 1. At L 2. [ ] L (Leere Liste) 3. Ist l 1,..,l k in L, dann ist auch [ l 1... l k ] L Listen: [ NAME [ NAME ] ] NAME [ ], [ [ ] ],... Keine Liste NAME NAME [ NAME Definiere Funktionen Formale Definition der Funktionen first: Liefert das erste Element einer Liste rest: Liefert alle Listen einer Liste mit Ausnahme des 1. Elements build: Baut eine Liste aus 2 gegebenen Listen auf first first(a) = [ ] für a At first([ ]) = [ ] first([ l 1... l k ]) = l 1 für l i L rest rest(a) = [ ] für a At rest([ ]) = [ ] rest([ l 1... l k ]) = [ l 2... l k ] für l i L, n >1 rest([ l 1... l k ]) = [ ] für l i L, n = Definitionen (cont.) Prädikate auf Listen build(l,a) = a für a At und l L build(l,[ ]) = [ l ] für l L build(l, [ l 1... l k ] ) = [ l l 1... l k ] für l, l i L atom?: Liefert T, wenn das Argument ein Atom ist und F, sonst. atom?(x) = T, wenn x At atom?(x) = F, wenn x At eq?: Liefert T, wenn die beiden Argumente gleich sind

5 Listen - Zusammenfassung Bisheriger Inhalt Ein Rückblick = (L,first,rest,build,atom?,eq?,[ ],...) Datentypen Alle Atome sind Konstanten Sprache EXP über [... ] wird repräsentiert durch [... ] nil für [ ] TRUE, FALSE sollen immer Atome sein TRUE, FALSE Γ Sprachen über Datentyp Konditionale, Rekursionen Unterscheidung zwischen Eingebauten und Benutzerdefinierten Funktionen Semantikdefinition (Operational) Erweiterung Erweiterungen (cont.) Sprache über mehreren Datentypen Beispiel: + N (Listen + Zahlen) Liste L mittels N 0 erweitern Funktionen, die nicht auf Argumente definiert sind, liefern konstanten Wert Prädikate, die nicht auf Argumente definiert sind, liefern T oder F. Die erweiterte Menge des Datentyps ist nun L N 0. Die Operationen first, rest, build operieren auch auf Listen von Elementen aus N 0. Die Variablensymbole brauchen nicht typisiert zu werden, denn x bezeichnet eine Zahl, wenn I(x) N 0. Beispiel: Funktion NTH..liefert n-tes Element einer Liste. δnth = if eq?(x1,nil) then ERROR else if =(x2,1) then first(x1) else NTH(rest(x1),-(x2,1)) Nur sinnvoll für x2> Repräsentation von Datentypen Codierungseigenschaften Im Grunde kann jeder Datentyp mit abzählbarem Bereich in repräsentiert werden. Für Datentyp R = (A, f 1,..,f n, p 1,..,p m, c 1,..,c k ) konstruiere Codierung : A L Für Funktionen f i konstruiere [f i ] über L Für Prädikate p i konstruiere [p i ] über L Für Konstante c i konstruiere [c i ] L Es muß gelten: A L 1. [f i ] ([a]) = (f i (a)) für a A 2. [p i ] ([a]) p i (a) für a A f i [f i ] A L A L p i [p i ] {T,F} {T,F}

6 Beispiel Beispiel (cont.) Abbildung des Datentyps der natürlichen Zahlen inkl. Null auf Listen [0]=[], [x] = build(1,[x-1]) [+(x,y)] = union([x], [y]) [-(x,y)] = diff([x], [y])... union und diff müssen noch definiert werden (z.b. als EXP Programm). Die Zahl 3 wird repräsentiert als [ ]. +(2,1) soll auf Funktion abgebildet werden, die [ ] zurückliefert

Programmierung in Python

Programmierung in Python Programmierung in Python imperativ, objekt-orientiert dynamische Typisierung rapid prototyping Script-Sprache Funktionales und rekursives Programmieren P raktische Informatik 1, W S 2004/05, F olien P

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Erwin Grüner 09.02.2006

Erwin Grüner 09.02.2006 FB Psychologie Uni Marburg 09.02.2006 Themenübersicht Folgende Befehle stehen in R zur Verfügung: {}: Anweisungsblock if: Bedingte Anweisung switch: Fallunterscheidung repeat-schleife while-schleife for-schleife

Mehr

SWP Prüfungsvorbereitung

SWP Prüfungsvorbereitung 20. Juni 2011 1 Grammatiken 2 LL(1) 3 EXP 4 Datentypen 5 LP Grammatiken Angabe Erstellen Sie First- und Follow-Mengen aller Non-Terminale der folgenden Grammatik. S a S S B y B A C A A b b A x A ɛ C c

Mehr

Grundprinzipien der funktionalen Programmierung

Grundprinzipien der funktionalen Programmierung Grundprinzipien der funktionalen Programmierung Funktionen haben keine Seiteneffekte Eine Funktion berechnet einen Ausgabewert der nur von den Eingabewerten abhängt: 12 inputs + output 46 34 2 Nicht nur

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

Grundlagen der Programmierung (Vorlesung 14)

Grundlagen der Programmierung (Vorlesung 14) Grundlagen der Programmierung (Vorlesung 14) Ralf Möller, FH-Wedel Vorige Vorlesung Verifikation von Anweisungen und Anweisungsfolgen Schleifen Inhalt dieser Vorlesung Funktionen und Prozeduren Lernziele

Mehr

Verträge für die funktionale Programmierung Design und Implementierung

Verträge für die funktionale Programmierung Design und Implementierung 1 Verträge für die funktionale Programmierung Design und Implementierung RALF HINZE Institut für Informatik III, Universität Bonn Römerstraße 164, 53117 Bonn, Germany Email: ralf@informatik.uni-bonn.de

Mehr

Beispiele: (Funktionen auf Listen) (3) Bemerkungen: Die Datenstrukturen der Paare (2) Die Datenstrukturen der Paare

Beispiele: (Funktionen auf Listen) (3) Bemerkungen: Die Datenstrukturen der Paare (2) Die Datenstrukturen der Paare Beispiele: (Funktionen auf Listen) (3) Bemerkungen: 5. Zusammenhängen der Elemente einer Liste von Listen: concat :: [[a]] -> [a] concat xl = if null xl then [] else append (head xl) ( concat (tail xl))

Mehr

Ausarbeitung des Interpreter Referats

Ausarbeitung des Interpreter Referats Ausarbeitung des Interpreter Referats Gliederung 1. Programmiersprache 1.2. Syntax 1.2.1. Konkrete Syntax 1.2.2. Abstrakter Syntax Baum (Abstrakte Syntax) 2. Parser 2.1. Syntaktische Struktur einer Sprache

Mehr

Einführung in das Programmieren Prolog Sommersemester 2006. Teil 2: Arithmetik. Version 1.0

Einführung in das Programmieren Prolog Sommersemester 2006. Teil 2: Arithmetik. Version 1.0 Einführung in das Programmieren Prolog Sommersemester 2006 Teil 2: Arithmetik Version 1.0 Gliederung der LV Teil 1: Ein motivierendes Beispiel Teil 2: Einführung und Grundkonzepte Syntax, Regeln, Unifikation,

Mehr

Funktionale Programmierung

Funktionale Programmierung Funktionale Programmierung Jörg Kreiker Uni Kassel und SMA Solar Technology AG Wintersemester 2011/2012 2 Teil II Typen mit Werten und Ausdruck, sogar listenweise 3 Haskell Programme Programm Module ein

Mehr

Inhalt. SWP Logische Programme. Motivation. Formalisierung. Wissensbasis. Bsp (Bibel)Verwandtschaften. Motivation Sprache LP

Inhalt. SWP Logische Programme. Motivation. Formalisierung. Wissensbasis. Bsp (Bibel)Verwandtschaften. Motivation Sprache LP Inhalt SWP Logische Programme Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Motivation Sprache LP Resolution Unifikation Datenbanken und logische Programme Semantik 2 Motivation Bsp

Mehr

Funktionale Programmierung

Funktionale Programmierung Schleifen 1 Funktionale Programmierung Jörg Kreiker Uni Kassel und SMA Solar Technology AG Wintersemester 2011/2012 3 Teil I Jedem Anfang wohnt ein Zauber inne 4 Über mich Diplom in Informatik in Saarbrücken

Mehr

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 11 (Kapitel 12)

Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 11 (Kapitel 12) Fachrichtung 6.2 Informatik Universität des Saarlandes Tutorenteam der Vorlesung Programmierung 1 Programmierung 1 (Wintersemester 2012/13) Lösungsblatt 11 (Kapitel 12) Hinweis: Dieses Übungsblatt enthält

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Formale Sprachen, reguläre und kontextfreie Grammatiken

Formale Sprachen, reguläre und kontextfreie Grammatiken Formale Sprachen, reguläre und kontextfreie Grammatiken Alphabet A: endliche Menge von Zeichen Wort über A: endliche Folge von Zeichen aus A A : volle Sprache über A: Menge der A-Worte formale Sprache

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Objektorientierte Programmierung 1 Geschichte Dahl, Nygaard: Simula 67 (Algol 60 + Objektorientierung) Kay et al.: Smalltalk (erste rein-objektorientierte Sprache) Object Pascal, Objective C, C++ (wiederum

Mehr

Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation

Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation Grundlagen der Programm- und Systementwicklung Funktionale Programmierung Teil 2 Methodik: Spezifikation, Implementierung, Verifikation Technische Universität München Institut für Informatik Software &

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Prof. Dr. Hans J. Schneider Lehrstuhl für Programmiersprachen und Programmiermethodik Friedrich-Alexander-Universität Erlangen-Nürnberg Sommersemester 2011 I. Die

Mehr

Entwicklung eines korrekten Übersetzers

Entwicklung eines korrekten Übersetzers Entwicklung eines korrekten Übersetzers für eine funktionale Programmiersprache im Theorembeweiser Coq Thomas Strathmann 14.01.2011 Gliederung 1 Einleitung

Mehr

Modul 122 VBA Scribt.docx

Modul 122 VBA Scribt.docx Modul 122 VBA-Scribt 1/5 1 Entwicklungsumgebung - ALT + F11 VBA-Entwicklungsumgebung öffnen 2 Prozeduren (Sub-Prozeduren) Eine Prozedur besteht aus folgenden Bestandteilen: [Private Public] Sub subname([byval

Mehr

Kapitel 5: Applikative Programmierung

Kapitel 5: Applikative Programmierung Kapitel 5: Applikative Programmierung In der applikativen Programmierung wird ein Programm als eine mathematische Funktion von Eingabe-in Ausgabewerte betrachtet. Das Ausführen eines Programms besteht

Mehr

5 Logische Programmierung

5 Logische Programmierung 5 Logische Programmierung Logik wird als Programmiersprache benutzt Der logische Ansatz zu Programmierung ist (sowie der funktionale) deklarativ; Programme können mit Hilfe zweier abstrakten, maschinen-unabhängigen

Mehr

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr.

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr. ALP I Funktionen höherer Ordnung Teil 2 SS 2013 Funktionen höherer Ordnung Nehmen wir an, wir möchten alle Zahlen innerhalb einer Liste miteinander addieren addall:: (Num a) => [a -> a addall [ = 0 addall

Mehr

5. Spezifikation und Verifikation von Programmen. Hier: Spezifikation einfacher Programme

5. Spezifikation und Verifikation von Programmen. Hier: Spezifikation einfacher Programme 5. Spezifikation und Verifikation von Programmen Programmentwicklung: genaue Kenntnis der gewünschten Leistungen offensichtlich unabdingbar In größeren Systemen: Anforderungsdefinition legt fest: - Funktionalität

Mehr

Programmieren. 10. Tutorium 4./ 5. Übungsblatt Referenzen

Programmieren. 10. Tutorium 4./ 5. Übungsblatt Referenzen Programmieren 10. Tutorium 4./ 5. Übungsblatt Inhalt I. Übungsblatt 4 II. III. - Rückgabe und Besprechung - Vorbereitung auf Wiederholung/ Nachtrag - Operatorpräzedenzen IV. Übungsblatt 5 - Vorstellung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK WS 11/12 Einführung in die Informatik II Übungsblatt 2 Univ.-Prof. Dr. Andrey Rybalchenko, M.Sc. Ruslán Ledesma Garza 8.11.2011 Dieses Blatt behandelt

Mehr

Proseminar Funktionales Programmieren. Stephan Kreutzer

Proseminar Funktionales Programmieren. Stephan Kreutzer Proseminar Funktionales Programmieren Die Programmiersprache LISP Stephan Kreutzer Teil I: Funktionales Programmieren Imperative Sprachen Imperative Sprachen: Befehlsorientiert Imperative Sprachen orientieren

Mehr

Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen

Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen Rev. 1152 1 [23] Praktische Informatik 3: Einführung in die Funktionale Programmierung Vorlesung vom 10.11.2010: Rekursive Datentypen Christoph Lüth & Dennis Walter Universität Bremen Wintersemester 2010/11

Mehr

Praktikum Funktionale Programmierung Teil 1: Lexen und Parsen

Praktikum Funktionale Programmierung Teil 1: Lexen und Parsen Praktikum Funktionale Programmierung Teil 1: Lexen und Parsen Professur für Künstliche Intelligenz und Softwaretechnologie Sommersemester 2009 Überblick Teil 1: Lexen und Parsen Die Sprache LFP +C Professur

Mehr

Fortgeschrittene Konzepte

Fortgeschrittene Konzepte advanced.nb 1 Fortgeschrittene Konzepte Funktionen und Optionen Optionen in eigenen Funktionsdefinitionen ClearAll"Global " Sin2x Sin3x PlotSinx,,,x, 0, 2Π 2 3 1.0 0.5 1 2 3 4 5 6 0.5 1.0 advanced.nb 2

Mehr

SOMA Reverse Engineering

SOMA Reverse Engineering SOMA Reverse Engineering Univ.Prof. Dr. Franz Wotawa Institut für Softwaretechnologie wotawa@ist.tugraz.at Inhalt Was versteht man unter Reverse Engineering? Techniken/Methoden Probleme VU Software Maintenance

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen

Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Was bisher geschah Formale Methoden in der Informatik Wiederholung klassische Logik Konkrete Datentypen (algebraische Strukturen) Abstrakte Datentypen Syntax: Signatur Semantik: Axiome (FOL-Formeln, meist

Mehr

In Erlang(en) Concurrency Oriented Programming. Jan Hermanns

In Erlang(en) Concurrency Oriented Programming. Jan Hermanns In Erlang(en) Concurrency Oriented Programming Jan Hermanns 1 Motivation Carrier Class Systeme massiv parallel 99.9999999% Uptime d.h. 31ms Downtime pro Jahr Wie sieht eine Programmiersprache aus, mit

Mehr

MIKROPROZESSOR PROGRAMMIERUNG 8. VORLESUNG. LV-Nr. 439.026 SS2007 1 INSTITUT FÜR ELEKTRONIK BIT

MIKROPROZESSOR PROGRAMMIERUNG 8. VORLESUNG. LV-Nr. 439.026 SS2007 1 INSTITUT FÜR ELEKTRONIK BIT MIKROPROZESSOR PROGRAMMIERUNG 8. VORLESUNG BIT LV-Nr. 439.026 SS2007 1 Datendefinitionen b) Unterteilung nach Typen: (Teil 2) void leer Pointer 2/4 Bytes Adresse von Objekten Arrays bei allen Datentypen

Mehr

Scala kann auch faul sein

Scala kann auch faul sein Scala kann auch faul sein Kapitel 19 des Buches 1 Faulheit Faulheit ( lazy evaluation ) ist auch in C oder Java nicht unbekannt int x=0; if(x!=0 && 10/x>3){ System.out.println("In if"); } Nutzen der Faulheit?

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 12: Termersetzungssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A ist eine

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Programmieren Formulierung eines Algorithmus in einer Programmiersprache

Programmieren Formulierung eines Algorithmus in einer Programmiersprache Zum Titel der Vorlesung: Programmieren Formulierung eines in einer Programmiersprache Beschreibung einer Vorgehensweise, wie man zu jedem aus einer Klasse gleichartiger Probleme eine Lösung findet Beispiel:

Mehr

Kontrollstrukturen, Pseudocode und Modulo-Rechnung

Kontrollstrukturen, Pseudocode und Modulo-Rechnung Kontrollstrukturen, Pseudocode und Modulo-Rechnung CoMa-Übung III TU Berlin 29.10.2012 CoMa-Übung III (TU Berlin) Kontrollstrukturen, Pseudocode und Modulo-Rechnung 29.10.2012 1 / 1 Themen der Übung 1

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die

Mehr

Auswahl von Klauseln und Atomen in Prolog

Auswahl von Klauseln und Atomen in Prolog 5.6 Prolog... ist die bekannteste Implementierung einer LP-Sprache; wurde Anfang der 1970er von Alain Colmerauer (Marseille) und Robert Kowalski (Edinburgh) entwickelt. konkretisiert den vorgestellten

Mehr

Ruby. Programmieren mit Zucker. Thomas Kühn

Ruby. Programmieren mit Zucker. Thomas Kühn Ruby Programmieren mit Zucker Thomas Kühn Gliederung Geschichte Philosophie Syntax mit Zucker Sprachkonzepte Pakete und Frameworks Ausblick Beispiele Yukihiro Matz Matsumoto Geboren am 14.April 1965 Geschichte

Mehr

Informatik Repetitorium SS 2009. Volker Jaedicke Volker.Jaedicke@web.de 0179 1322692

Informatik Repetitorium SS 2009. Volker Jaedicke Volker.Jaedicke@web.de 0179 1322692 Informatik Repetitorium SS 2009 Volker Jaedicke Volker.Jaedicke@web.de 0179 1322692 Operatoren und Datentypen Beispiel: Anweisungen Variable int a float b int c a= a % (int) (++b-1/4) Vorher 36 3.5 c=b

Mehr

Softwareentwicklung 1. Übungsaufgabe 4 Kontrollstrukturen

Softwareentwicklung 1. Übungsaufgabe 4 Kontrollstrukturen Softwareentwicklung Übungsaufgabe 4 Kontrollstrukturen Wintersemester 2006/2007 Prof. Dr. rer.nat. Richard Alznauer Dipl.-Ing. (FH) Joachim Hampel Dipl.-Ing. (FH) Marc Jüttner Version.0.., 2. Dezember

Mehr

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java:

II. Grundlagen der Programmierung. 9. Datenstrukturen. Daten zusammenfassen. In Java (Forts.): In Java: Technische Informatik für Ingenieure (TIfI) WS 2005/2006, Vorlesung 9 II. Grundlagen der Programmierung Ekkart Kindler Funktionen und Prozeduren Datenstrukturen 9. Datenstrukturen Daten zusammenfassen

Mehr

SWP Logische Programme

SWP Logische Programme SWP Logische Programme Alexander Felfernig, Stephan Gspandl Institut für Softwaretechnologie {alexander.felfernig,sgspandl}@ist.tugraz.at Institute for Software Technology Inhalt Motivation Logische Programme

Mehr

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel.

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel. Java Crashkurs Kim-Manuel Klein (kmk@informatik.uni-kiel.de) May 7, 2015 Quellen und Editoren Internet Tutorial: z.b. http://www.java-tutorial.org Editoren Normaler Texteditor (Gedit, Scite oder ähnliche)

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 A1 (15) A2 (10) A3 (10) A4

Mehr

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik Informatik I WS 2012/13 Tutorium zur Vorlesung 1. Alexander Zietlow zietlow@informatik.uni-tuebingen.de Wilhelm-Schickard-Institut für Informatik Eberhard Karls Universität Tübingen 11.02.2013 1. 2. 1.

Mehr

1. Probeklausur zu Programmierung 1 (WS 07/08)

1. Probeklausur zu Programmierung 1 (WS 07/08) Fachschaft Informatikstudiengänge Fachrichtung 6.2 Informatik Das Team der Bremser 1. Probeklausur zu Programmierung 1 (WS 07/08) http://fsinfo.cs.uni-sb.de Name Matrikelnummer Bitte öffnen Sie das Klausurheft

Mehr

Shell-Programmierung

Shell-Programmierung Shell-Programmierung Dr.-Ing. Matthias Sand Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2009 Shell-Programmierung 1/34 2009-04-27 Inhalt Einleitung

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Übersicht. Einführung in die Funktionale Programmierung: Einleitung & Motivation. Klassifizierung von Programmiersprachen (1)

Übersicht. Einführung in die Funktionale Programmierung: Einleitung & Motivation. Klassifizierung von Programmiersprachen (1) Motivation Funktionale Programmiersprachen Haskell Übersicht Einführung in die Funktionale Programmierung: Einleitung & Motivation Prof Dr. Manfred Schmidt-Schauß 1 Motivation Übersicht Programmierparadigmen

Mehr

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren)

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren) Was bisher geschah Wissensrepräsentation und -verarbeitung in Logiken klassische Aussagenlogik klassische Prädikatenlogik: Wiederholung Syntax, Semantik Normalformen: bereinigt Pränex Skolem ( -Eliminierung)

Mehr

Linux Tutorium. 12. Shellprogrammierung. Version vom 02.07.2008 13:38:56

Linux Tutorium. 12. Shellprogrammierung. Version vom 02.07.2008 13:38:56 Linux Tutorium 12. Shellprogrammierung Version vom 02.07.2008 13:38:56 im Grunde ist ein Shell-Skript nichts anderes als eine Textdatei, welche Befehlsfolgen enthält Shell-Skripte werden im Wesentlichen

Mehr

Funktionales Programmieren in Python

Funktionales Programmieren in Python Wintersemester 2008/2009 1 Funktionen sind Objekte 2 lambda Funktionen 3 apply 4 map 5 zip 6 filter 7 reduce 8 List Comprehension Funktionales Programmieren Wer nicht funktional programmiert, programmiert

Mehr

Algorithmen und Programmierung

Algorithmen und Programmierung Algorithmen und Programmierung Kapitel 5 Formale Algorithmenmodelle A&P (WS 14/15): 05 Formale Algorithmenmodelle 1 Überblick Motivation Formale Algorithmenmodelle Registermaschine Abstrakte Maschinen

Mehr

6 Datenstrukturen und abstrakte Datentypen. Datenstrukturen = Werkzeuge für die Buchhaltung

6 Datenstrukturen und abstrakte Datentypen. Datenstrukturen = Werkzeuge für die Buchhaltung Überblick 6 Datenstrukturen und abstrakte Datentypen 6.1 Datenstrukturen - alt und neu 6.2 Abstrakte Datentypen: Grundlagen 6.3 ADTs für Paare und Listen in Scheme 6.4 Stack und First-In-First-Out Queue

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Jürgen Bayer. Anonyme Methoden, Lambda-Ausdrücke und Ausdrucksbäume in.net

Jürgen Bayer. Anonyme Methoden, Lambda-Ausdrücke und Ausdrucksbäume in.net Jürgen Bayer Anonyme Methoden, Lambda-Ausdrücke und Ausdrucksbäume in.net Inhaltsverzeichnis 1 Einleitung 1 2 Anonyme Methoden 2 3 Lambda-Ausdrücke 4 4 Ausdrucksbäume 6 4.1 Was sind Ausdrucksbäume? 6 4.2

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Funktionale Programmierung mit Haskell. Jan Hermanns

Funktionale Programmierung mit Haskell. Jan Hermanns Funktionale Programmierung mit Haskell Jan Hermanns 1 Programmiersprachen imperativ deklarativ konventionell OO logisch funktional Fortran Smalltalk Prolog Lisp C Eiffel ML Pascal Java Haskell 2 von Neumann

Mehr

Visual Basic Basisbefehle Hinweis: Der Text in eckigen Klammern [ ] ist variabel, z.b. [var] => 5.3. Eckige Klammern sind stets wegzulassen!

Visual Basic Basisbefehle Hinweis: Der Text in eckigen Klammern [ ] ist variabel, z.b. [var] => 5.3. Eckige Klammern sind stets wegzulassen! Visual Basic Basisbefehle Hinweis: Der Text in eckigen Klammern [ ] ist variabel, z.b. [var] => 5.3. Eckige Klammern sind stets wegzulassen! Grundstrukturen: Sub [name]([übergabe]) End Sub [Übergabe] ist

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Prof. Dr. Hans J. Schneider Lehrstuhl für Programmiersprachen und Programmiermethodik Friedrich-Alexander-Universität Erlangen-Nürnberg Sommersemester 2011 I. Die

Mehr

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Informatik I 2 Übung 9 Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Quellcode Strukturieren Wenn alle Funktionen in einer Datei zusammengefasst sind wird es schnell unübersichtlich Mehrere

Mehr

Arrays und Methoden. Programmiervorkurs WS 2010 / 11

Arrays und Methoden. Programmiervorkurs WS 2010 / 11 Arrays und Methoden Programmiervorkurs WS 2010 / 11 Einleitung Bisher sind einfach Programme möglich Nun wollen wir Organisation und Stil verbessern Gesamter Code sollte nicht an einer Stelle stehen Nicht

Mehr

Softwarelösungen: Versuch 4

Softwarelösungen: Versuch 4 Softwarelösungen: Versuch 4 Nichtstun in Schleife wird ersetzt durch zeitweilige Zurücknahme der Anforderung, um es anderen Prozessen zu erlauben, die Ressource zu belegen: /* Prozess 0 */ wiederhole flag[0]

Mehr

Compiler. Kapitel. Syntaktische Analyse. Kapitel 4. Folie: 1. Syntaktische Analyse: LL Parsing. Autor: Aho et al.

Compiler. Kapitel. Syntaktische Analyse. Kapitel 4. Folie: 1. Syntaktische Analyse: LL Parsing. Autor: Aho et al. Folie: 1 Kapitel 4 : LL Parsing Was ist Parsing? 2 E num E CFG E+E G E (E) Token String s Parser s L(G) Fehlermeldung No Yes Parsebaum für S in G Beispiel S (S)S ε Was ist die generierte Sprache? Beweis?

Mehr

BAUINFORMATIK. SS 2013 Vorlesung 1 Johannes Lange

BAUINFORMATIK. SS 2013 Vorlesung 1 Johannes Lange BAUINFORMATIK SS 2013 Vorlesung 1 Johannes Lange Vorstellung 2 Dr.-Ing. Johannes Lange Softwareentwicklung, Organisation Projekt-, Qualitätsmanagement CAD Gebäudebetrachtung Technische Ausrüstung (TGA)

Mehr

Access-Benutzeroberfläche

Access-Benutzeroberfläche Mit Access 2007 hat Microsoft das Ribbon eingeführt und Access seiner Werkzeuge beraubt, Menüleisten und über die Benutzeroberfläche zu erstellen. Nun gut: Menüleisten gibt es nicht mehr, aber können in

Mehr

Java Kurs für Anfänger Einheit 5 Methoden

Java Kurs für Anfänger Einheit 5 Methoden Java Kurs für Anfänger Einheit 5 Methoden Ludwig-Maximilians-Universität München (Institut für Informatik: Programmierung und Softwaretechnik von Prof.Wirsing) 22. Juni 2009 Inhaltsverzeichnis Methoden

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2007/08 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

Algorithmische Kernsprache. Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging.

Algorithmische Kernsprache. Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging. Algorithmische Kernsprache Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging. Ausdrücke Anweisungen Ausdrücke bezeichnen einen Wert Kontext stellt Werte von Variablen Werte

Mehr

Objektorientierte Programmierung mit Python Polymorphismus und Vererbung. Eltern

Objektorientierte Programmierung mit Python Polymorphismus und Vererbung. Eltern Objektorientierte Programmierung mit Python Polymorphismus und Vererbung Eltern Kind Kind Kind Kind Prinzipien der objektorientierten Programmierung Vererbung Strukturierung von Klassen. Oberbegriffe beschreiben

Mehr

Kurs 1613 Einführung in die imperative Programmierung

Kurs 1613 Einführung in die imperative Programmierung Aufgabe 1 Gegeben sei die Prozedur BubbleSort: procedure BubbleSort(var iofeld:tfeld); { var hilf:integer; i:tindex; j:tindex; vertauscht:boolean; i:=1; repeat vertauscht := false; for j := 1 to N - i

Mehr

Kode-Erzeugung, Abstrakte Maschinen, Rechnerarchitekturen

Kode-Erzeugung, Abstrakte Maschinen, Rechnerarchitekturen Kode-Erzeugung, Abstrakte Maschinen, Rechnerarchitekturen Kode-Erzeugung: Syntaxbaum Ausgabeprogramm Starte mit Syntaxbaum: Darstellung des eingegebenen Programms Wähle Zielarchitektur Wähle abstrakte

Mehr

Logische Programmierung

Logische Programmierung Logische Programmierung B-82 Deklaratives Programmieren in Prädikatenlogik: Problem beschreiben statt Algorithmus implementieren (idealisiert). Grundlagen: Relationen bzw. Prädikate (statt Funktionen);

Mehr

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract:

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract: Spezifikation der zulässigen Parameter Bemerkungen: Bei jeder (partiellen) Funktion muss man sich überlegen und dokumentieren, welche aktuellen Parameter bei einer Anwendung zulässig sein sollen. Der Anwender

Mehr

Klausurteilnehmer. Wichtige Hinweise. Note: Klausur Informatik Programmierung, 17.09.2012 Seite 1 von 8 HS OWL, FB 7, Malte Wattenberg.

Klausurteilnehmer. Wichtige Hinweise. Note: Klausur Informatik Programmierung, 17.09.2012 Seite 1 von 8 HS OWL, FB 7, Malte Wattenberg. Klausur Informatik Programmierung, 17.09.2012 Seite 1 von 8 Klausurteilnehmer Name: Matrikelnummer: Wichtige Hinweise Es sind keinerlei Hilfsmittel zugelassen auch keine Taschenrechner! Die Klausur dauert

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Schmitt, Günter (1996): Fortran 90 Kurs technisch orientiert, R. Oldenbourg Verlag, München

Schmitt, Günter (1996): Fortran 90 Kurs technisch orientiert, R. Oldenbourg Verlag, München MANUEL KALLWEIT & FABIAN KINDERMANN Literaturempfehlung: Vorlesungsskript von Heidrun Kolinsky zu FORTRAN 90/95: http://www.rz.uni-bayreuth.de/lehre/fortran90/vorlesung/index.html Schmitt, Günter (1996):

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Lua Grundlagen Einführung in die Lua Programmiersprache

Lua Grundlagen Einführung in die Lua Programmiersprache Lua Grundlagen Einführung in die Lua Programmiersprache 05.05.2014 Ingo Berg berg@atvoigt.de Automatisierungstechnik Voigt GmbH Die Lua Programmiersprache Was ist Lua? freie Programmiersprache speziell

Mehr

Nachweis der Verhaltensäquivalenz von Feldbus-Komponenten auf unterschiedlichen Abstraktionsebenen

Nachweis der Verhaltensäquivalenz von Feldbus-Komponenten auf unterschiedlichen Abstraktionsebenen Nachweis der Verhaltensäquivalenz von Feldbus-Komponenten auf unterschiedlichen Abstraktionsebenen Diplomarbeit Martin Pitt martin@piware.de Technische Universität Dresden 11. November 2004 1 Aufgabenstellung

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Kapitel MK:IV. IV. Modellieren mit Constraints

Kapitel MK:IV. IV. Modellieren mit Constraints Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren

Mehr

Graphic Coding. Klausur. 9. Februar 2007. Kurs A

Graphic Coding. Klausur. 9. Februar 2007. Kurs A Graphic Coding Klausur 9. Februar 2007 Kurs A Name: Matrikelnummer: Hinweise - Es sind keine Hilfsmaterialien erlaubt. (Keine Bücher, Taschenrechner, Handys) - Sie haben zwei Stunden Zeit. - Insgesamt

Mehr

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben.

Der Aufruf von DM_in_Euro 1.40 sollte die Ausgabe 1.40 DM = 0.51129 Euro ergeben. Aufgabe 1.30 : Schreibe ein Programm DM_in_Euro.java zur Umrechnung eines DM-Betrags in Euro unter Verwendung einer Konstanten für den Umrechnungsfaktor. Das Programm soll den DM-Betrag als Parameter verarbeiten.

Mehr

12. ArcView-Anwendertreffen 2010. Workshop Programmierung in ArcGIS. Daniel Fuchs. Wo kann eigene Programmierung in ArcGIS verwendet werden?

12. ArcView-Anwendertreffen 2010. Workshop Programmierung in ArcGIS. Daniel Fuchs. Wo kann eigene Programmierung in ArcGIS verwendet werden? Wo kann eigene Programmierung in ArcGIS verwendet werden? 12. ArcView-Anwendertreffen 2010 Workshop Programmierung in ArcGIS Daniel Fuchs 1) Makros für die Automatisierung einzelner Arbeitsschritte im

Mehr

Behandeln Sie»undefined«als»nicht vorhanden«thema 54

Behandeln Sie»undefined«als»nicht vorhanden«thema 54 Behandeln Sie»undefined«als»nicht vorhanden«151 heitliche Schreibweisen erlauben es den Benutzern, zu erraten, welche Eigenschaften und Methoden zur Verfügung stehen, ohne dass sie sie nachschlagen müssen,

Mehr

Java Einführung VARIABLEN und DATENTYPEN Kapitel 2

Java Einführung VARIABLEN und DATENTYPEN Kapitel 2 Java Einführung VARIABLEN und DATENTYPEN Kapitel 2 Inhalt dieser Einheit Variablen (Sinn und Aufgabe) Bezeichner Datentypen, Deklaration und Operationen Typenumwandlung (implizit/explizit) 2 Variablen

Mehr

Kontextuelle Gleichheit, Korrektheit, Programmtransformationen, Auswertungsänderung

Kontextuelle Gleichheit, Korrektheit, Programmtransformationen, Auswertungsänderung Skript CEFP, WS 2013/14 Prof. Dr. Manfred Schmidt-Schauß Fachbereich Informatik Johann Wolfgang Goethe-Universität Postfach 11 19 32 D-60054 Frankfurt Germany E-mail:schauss@ki.informatik.uni-frankfurt.de

Mehr

Einführung in die Programmiertechnik

Einführung in die Programmiertechnik Einführung in die Programmiertechnik Funktionale Programmierung: Scheme Grundlagen funktionaler Programmierung Idee: Zu lösendes Problem wird als mathematische Funktion formuliert Beispiel Rechtschreibprüfung:

Mehr