Optische Systeme. Inhalte der Vorlesung. Aufgabe. Erzeugung eines aufrechten Bildes

Größe: px
Ab Seite anzeigen:

Download "Optische Systeme. Inhalte der Vorlesung. Aufgabe. Erzeugung eines aufrechten Bildes"

Transkript

1 Ihalte der Vorleug 5. Optiche Syteme Martia Gerke Grudlage der Welleoptik. Abbildede optiche Syteme. Fotograie. Plaplatte ud Releioprime.3 Schäretiee.4 Gaußcher Strahl.5 upe / Mikrokop.6 Blede / Aperture.7 Aberratioe.8 Bekate Mikrokope.9 Strahlauweiter.0 Telekope. Optikdeig 3. Optiche Metechik 4. Optiche Materialbearbeitug 5. Optik i der Datepeicherug 6. Mikro- ud Naooptiche Syteme Uiverität Karlruhe (TH) Augabe 5.3 Vergrößerug 5.4 Evaluiere Sie die olgede optiche Syteme zur Erzeugug eie aurechte Bilde mit möglicht hoher Vergrößerug bei gegebeer Ditaz! Erzeugug eie aurechte Bilde Gruppe ieabtad Objektabtad 8 mm ie 6 mm (plakove) 38 mm ie 60 mm (plakove) Vergröße rug 0 e e B 0 mm 5 mm (plakove) 70 mm 60 mm (bikove) 8 G 3 3 mm 3,5 mm (plakove) 45 mm 40 mm (plakove) 3 B 4 g b g b 5 Schlage Sie ei verbeerte Sytem vor!

2 -tuige Abbildug mit Streucheibe 5.5 -tuige Abbildug mit Feldlie 5.6 We -tuie Abbildug mit ur zwei ie durchgeührt wird, mu. ie große Durchmeer habe, um icht vo alle Objektpukte zu erhalte öug : Eiüge eier Streucheibe i Zwichebildebee Bild de geamte Objekte erzeugt Bild dukel augrud vo Streuverlute öug : Eiüge eier Feldlie i Zwichebildebee Geamte Objekt ercheit i hellem Bild Nachteil: Verureiiguge au Feldlie werde abgebildet upe Berechug der Vergrößerug 5.7 Mikrokop Berechug der Vergrößerug 5.8 Für etpate Sehe Objekt im Brepukt ud Auge au Uedlich adaptiert G α 0 Für etpate Sehe Auge au Uedlich adaptiert ud Zwichebild im Brepukt de Okular Tubuläge it Ditaz zwiche Objektivbrepukt ud Okularbrepukt (typich 0 cm) Objektiv ie Okular ie G Objekt a ie α Μ M α G G a M α 0 a G a Objektiv G' t + Objektiv t ( Tubuläge ) ( t + ) Zwichebild Obj M obj Obj G a Obj t + Obj M M M ge obj ocu t a Obj Ocu G Okular α Μ Okular t Obj

3 Okulare 5.9 Ihalte der Vorleug 5.0 Feldlie ud Augelie i Okulare kombiiert Modere Mikrokope beutze meite Poitivokulare, d.h. Okulare die ei reelle Bild erzeuge Bei Negativokulare mit virtuellem Bild it der Eiatz vo Marke icht möglich ud da Bild it uchar begrezt. Grudlage der Welleoptik. Abbildede optiche Syteme. Fotograie. Plaplatte ud Releioprime.3 Schäretiee.4 Gaußcher Strahl.5 upe / Mikrokop.6 Blede / Aperture.7 Aberratioe.8 Bekate Mikrokope.9 Strahlauweiter.0 Telekope. Optikdeig 3. Optiche Metechik 4. Optiche Materialbearbeitug 5. Optik i der Datepeicherug 6. Mikro- ud Naooptiche Syteme Augabe: Strahlauweiter 5. Ihalte der Vorleug 5. Um eie hohe Aulöug zu erreiche, werde i viele abbildede Syteme Strahlauweiter beutzt. Miimal aulöbarer Wikel: [rad] φ mi. λ D Fuktio: Ei kollimierter ichttrahl wird i eie kollimierte ichttrahl mit größerem Durchmeer umgewadelt. ege Sie die Optik ür eie -ie Strahlauweiter au! Baue Sie de Strahlauweiter au! Charakteriiere Sie Ihre Strahlauweiter! Breweite ud Durchmeer der ie Abtad der ie Eddurchmeer D eitugverlut Auweitugverhälti Bereche Sie de miimal aulöbare Wikel! π rad 360 ; 60 (Bogemiute); 60 (Bogeekude). Grudlage der Welleoptik. Abbildede optiche Syteme. Fotograie. Plaplatte ud Releioprime.3 Schäretiee.4 Gaußcher Strahl.5 upe / Mikrokop.6 Blede / Aperture.7 Aberratioe.8 Bekate Mikrokope.9 Strahlauweiter.0 Telekope. Optikdeig 3. Optiche Metechik 4. Optiche Materialbearbeitug 5. Optik i der Datepeicherug 6. Mikro- ud Naooptiche Syteme

4 Telekop: Kepler-Ferrohr 5.3 Telekop: Reraktore 5.4 Ziel: Vergrößerug eie weit eterte Gegetade Meit arbeite Telekope aokal: Ei im uedlich liegede Objekt wird au ei Bild im uedliche abgebildet Die Brepukte vo Objektiv ud Okular timme überei Keplerche Ferrohr Kombiatio au zwei Sammellie Verbeerug der chromatiche Aberratio: Verwedug eier zuätzliche Zertreuuglie (achromatiche Objektiv) Objektiv Okular Quelle: Die Vergrößerug it gegebe durch: M Objektiv Okular Telekop: Relektore 5.5 Telekop: Erderrohre 5.6 Newto-Spiegeltelekop Parabolicher Hauptpiegel zur Korrektur de phäriche Fehler Schräg eiallede Strahle erzeuge Bildehler, daher eigechräkte Bildeld Zweitpiegel reduziert Aulöug augrud vo Beugug Zur Beobachtug vo Objekte au der Erde it ot ei aurechte Bild erwücht (z.b. Me- oder Zielerrohr) Ka durch zuätzliche ie- oder Primeytem erreicht werde

5 Welche Weihachtgechek? 5.7 Welche Weihachtgechek? 5.8 BRASKO Telekop Hochwertige Reraktor-Telekop mit umagreichem Zubehör. Ikluive Autattug ür die Erdbeobachtug (Umkehrlie etc.), Modilter, Barlow-ie, tabilem Stativ mit Okularhalter ud Ablage ud vielem mehr. Breweite 700 mm Objektiv-Durchmeer 60 mm Maimalvergößerug 55 Uverb. Preiemp.:EUR 99,95 Breer Telekop Pluto 4/500 Große Newto Relektor Telekop i kompakter Bauweie. Für Beobachtuge ierhalb ud außerhalb uere Soeytem Breweite 500 mm Objektiv / Spiegel ø4 mm Maimalvergößerug ,00 Tree Sie bi ächte Motag eie begrüdete Kauetcheidug! Quelle: Quelle: Ihalte der Vorleug 5.9 Geometriche Optik / Strahleoptik 5.0. Grudlage der Welleoptik. Abbildede optiche Syteme. Fotograie. Plaplatte ud Releioprime.3 Schäretiee.4 Gaußcher Strahl.5 upe / Mikrokop.6 Blede / Aperture.7 Aberratioe.8 Bekate Mikrokope.9 Strahlauweiter.0 Telekope. Optikdeig 3. Optiche Metechik 4. Optiche Materialbearbeitug 5. Optik i der Datepeicherug 6. Mikro- ud Naooptiche Syteme ichttrahle bechreibe die Aubreitug i optiche Syteme (meite) hireiched gut, we die Abmeuge X der Objekte ud Bauteile deutlich größer id al: Die Welleläge Die Kohärezläge λ << X ξ << X Welleeigechate de ichte verachläigt keie Itererez, Beugug, Naheldeekte... Geometriche Optik au der Welleoptik al Grezall ür verchwidede Welleläge herleitbar Strahlaubreitugrichtug etpreched de Wellevektore

6 Paraiale Näherug Bei Aubreitug etlag kleier Wikel relativ zur optiche Ache vereiacht ich die Bechreibug vo reraktive optiche Bauteile ud e gibt aalytiche öuge. 5. Sphäriche Oberläche i Paraialäherug Näherugweie gilt r 5. α β iα i β α β A θ ϕ θ O S r C O Für achparallel eitreede Strahl gilt r Dicke ie mit phäriche Oberläche 5.3 Dicke ie: Brepukt 5.4 Berechug der Brechkrat eier ie mit icht verachläigbarer Dicke Brechkrat D [D]m - Dioptriedpt d B F B G d B F B G ' r r d + d d r d ' ' + r r ( ) + r d + d r ( r d + d ) ( ) [ ( r r ) + d ( ) ] Breweite it Abtad vom objekteitige Hauptpukt zum Brepukt

7 Objekteitige Hauptebee 5.5 Bildeitige Hauptebee 5.6 Objekteitige Hauptebee: Schittebee de divergierede/kovergierede Büdel mit autretedem Parallelbüdel Objekteitiger Hauptpukt: Schittpukt der objekteitige Hauptebee mit der optiche Ache Bildeite Hauptebee: Schittebee de achparallel eiallede Büdel mit kovergieredem/divergieredem auallede Büdel Bildeitiger Hauptpukt: Schittpukt der bildeitige Hauptebee mit der optiche Ache Dicke ie: Breweite ud Brechkrat 5.7 Mögliche ieorme 5.8 H B F B G ' ' D ( ) [ ( r r ) + d ( ) ] ( ) [ ( r r ) + d ( ) ] r r r r

8 Soderall: Plakove- ud Plakokavlie 5.9 Soderall: Kugellie 5.30 Für Plaläche gilt r Für Kugellie gilt r r r d r Damit ergibt ich r Damit ergibt ich r Breweite uabhägig vo d! Soderall: Düe ie 5.3 Dartellug abbildeder Fläche 5.3 Für düe ie gilt d ( ) << r r Damit ergibt ich ( )( r r ) r r ( ) r r HH ' d Für düe ie ka Abtad zwiche Hauptpukte verachläigt werde

9 Äquivaletlie 5.33 Optikdeig 5.34 Mehrtuige Sytem (z.b. mehrliige Objektiv) ka durch eie optiche Vierpol ( Äquivaletlie ) bechriebe werde Abtad der Eizelyteme ormalerweie zwiche H ud H gemee Bei Mikrokop Tubuläge zwiche Brepukte verwedet Optiche Syteme per Had aulege? Strahlegag eu aulege ud Abberatioe miimiere Aulöugvermöge begrezt durch Beugug Gitter au eue Welleläge apae Atirelechichte apae NA de Objektiv erhöhe (aerdiode ud Detektor autauche) Welleläge verriger λ/4-plättche au eue Welleläge apae Matrizeoptik / ABCD-Matrize 5.35 Optiche Sytem mit mehrere Kompoete 5.36 θ θ Aubreitug i eiem Pukt A au der optiche Ache wird volltädig bechriebe durch Abtad ud Wikel relativ zur optiche Ache. z i A B θi θ 3 θ θ θ M M'3 M3'4 M' M33' M44' z (, θ ) (, θ ) Optiche Sytem Traormatio M Geamtytem allgemei [ M M... M ] 5 44' 3'4 M Eigag i Augag i

10 . Tralatiomatri Brechug a ebeer Fläche 5.38 θ A B θ z + θ θ 0 + θ θ θ z + 0 θ θ 0 + θ M 0 Freiraum 0 M 0 EbeeFläche 3. Brechug a phäricher Fläche 5.39 Augabe: Düe ie 5.40 Selliu a Grezläche Wikel abhägig vom Radiu Kovetio ür Krümmug ud Aubreitug ρ > 0 Alle eiache wichtige optiche Elemete lae ich au de drei Matrize (Tralatio, ebee Fläche ud phäriche Fläche) zuammeetze Düe ie (kove, kokav) Dicke ie (kove, kokav) Spiegel (ebe, okuiered) θ θ ρ z Stelle Sie die Matri ür eie düe ie au! eite Sie darau de Zuammehag zwiche Breweite ud Krümmugradie her (iechleierormel)! 0 M ρ SphäricheFläche Stelle Sie die Matri ür eie Abbildug mit eier Sammellie au! eite Sie die Abbilduggleichug darau ab! Beachte Sie hierzu, da icht vom Wikel abhäge dar

11 Dicke ie 5.4 Eigechate vo Matrize i der paraiale Optik 5.4 Kombiatio vo phäriche Fläche ud eier Tralatio Breweite gerechet vo Hauptebee au M A B C D h h z Augrud vo Brechug- ud Releiogeetz gilt: det M AD BC M M M ( ρ, ) ( ) ( ρ, ) SF FR SF E id alo ur 3 vo 4 Matrielemete rei wählbar Optiche Bauelemete ud dere Sytemmatrize 5.43 Matrizeoptik ür Gaußtrahle ud Polariatio 5.44 Fokuierug: A 0 Bθ 0 B C D Optiche Abbildug: A B 0 A 0 C D Umlekug eie Parallelbüdel: θ Dθ Parallelrichter : θ C A 0 A C B D B 0 Matrizeoptik icht au geometriche Optik bechräkt, ebeall awedbar ür Gaußche Strahle. ABCD-Matrize idetich Statt Strahlvektor wird Strahlparameter q verwedet: q ( z) Aq Cq B + D i λ q R π w Polariatio lät ich ebeall über Matriverahre bereche Joe-Vektor bechreibt Polariatiozutad Joe-Matrize bechreibe optiche Elemete

12 Sequetielle Raytracig 5.45 Nicht-Sequetielle Raytracig 5.46 Strahle i vorgegebeer Reiheolge durch optiche Elemete propagiert Beutzt ür Aulegug abbildeder opticher Syteme Mikrokop, Telekop, Kamera... Strahle werde a Oberläche gepalte ud köe mehrach au optiche Elemete tree Durch Propagatio vo Gaußche Strahle köe Wellephäomee berückichtigt werde. Beutzt ür Aulegug ikluive Streulichtberechug Streulichtberechug Hitergrudbeleuchtug, euchte... Quelle: Quelle: FDTD: Fiite Dierece Time Domai 5.47 Gägige Optik-Deig Sotware 5.48 Eakte öug der Mawell-Gleichuge Beutzt ür Mikro- ud Naoyteme Itegrierte Optik, Photoiche Kritalle, Plamoik... Quelle: A der Ui zuätzlich COMSO Multiphyic Quelle:

13 Frageammlug 5.49 ege Sie ei -tuige Vergrößerugytem ür ei aurechte Bild au! Wa it die Augabe eier Feldlie? Wo wird eie Feldlie im optiche Sytem platziert? Bereche Sie die Vergrößerug ür eie upe mit 6,5 mm Breweite! Skizziere Sie ei optiche Sytem zur Strahlauweitug! eite Sie die Vergrößerug eie Kepler-Telekop her! Wa gilt die geometriche Optik? Wie id die Hauptebee eier dicke ie deiiert? Wa it eie düe ie? Wa id ABCD-Matrize ud woür werde ie verwedet? Wa it der Uterchied zwiche Sequetiellem ud Nicht-equetiellem Raytracig?

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Institut für Physik und Physikalische Technologien der TU Clausthal Okt. 2002 Experimentalphysik VI (Festkörperphysik) WS 2002/2003

Institut für Physik und Physikalische Technologien der TU Clausthal Okt. 2002 Experimentalphysik VI (Festkörperphysik) WS 2002/2003 Ititut ür Phyik ud Phyikaliche Techologie der TU Clauthal Okt. 00 Experimetalphyik VI (Fetkörperphyik) WS 00/00 4 Gitterdyamik 4. Gitterchwiguge Schwiguge der Gitteratome lae ich al Sytem vo gekoppelte

Mehr

2. Einführung in die Geometrische Optik

2. Einführung in die Geometrische Optik 2. Eiührug i die Geometrische Optik 2. Allgemeie Prizipie 2.. Licht ud Materie Optische Ssteme werde ür de Spektralbereich zwische dem extreme Ultraviolette ( m) ud dem thermische Irarote (Q-Bad bei 2

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004 Pro. Dr. F. Koch Dr. H. E. Porteanu koch@ph.tum.de porteanu@ph.tum.de WS 004-005 HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 1-19.11.004 OPTIK geometriche und phyikaliche Optik C. Polariation Al tranverale

Mehr

Nutzung der Ergebnisse von Ringvergleichen und Methodenvalidierungen zur Ermittlung der Messunsicherheit

Nutzung der Ergebnisse von Ringvergleichen und Methodenvalidierungen zur Ermittlung der Messunsicherheit Nutzug der Ergebie vo igvergleiche ud Methodevalidieruge zur Ermittlug der Meuicherheit Abtract Deutch Wolfgag ichter I der chemiche Aalytik werde ebe der Bottom-u -Methode ach GUM auch Todow -Verfahre

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik Foreau Ihatverzeihi: NAE Nahrihtetehi ud aewadte Eetroi hea Uterput Seite Grudae Beodere Merae vo LWL - Wee-eihe-Duaiu - Arte vo Lihttrahu - Weeäe de Lihte - Aubau ud Arte vo LWL -3 Brehuidex eie Mediu

Mehr

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58. eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive

Mehr

Optische Instrumente

Optische Instrumente Optiche Intrumente Für die verchiedenten Anwendunen werden Kombinationen au n und anderen optichen Elementen eineetzt. In dieem Abchnitt werden einie dieer optichen Intrumente voretellt. In vielen Fällen

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Rechensystem-Modelle zur Kapazitätsplanung

Rechensystem-Modelle zur Kapazitätsplanung 2. orddeutche Kolloquium Recheytem-Modelle zur Kapazitätplaug 2. orddeutche Kolloquium ordaademie Elmhor. Mai 2007 Güter Totzauer FH OL/Otfrielad/WHV Emde Kapazitätplaug DKoll2007 0 2. orddeutche Kolloquium

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

KAPITEL 8: RELATIVISTISCHE EFFEKTE

KAPITEL 8: RELATIVISTISCHE EFFEKTE 8. Grudlage: spezielle Relativitätstheorie 8. Relativitätstheorie ud Quatemechaik 8.3 Relativistische Effekte i der Chemie KAPITEL 8: RELATIVISTISCHE EFFEKTE 8. Grudlage: spezielle Relativitätstheorie

Mehr

unibasel VORLESUNG PROGRAMMIER- PARADIGMEN departement mathematik & informatik informatik.unibas.ch/lehre/fs16/prog#thorsten.

unibasel VORLESUNG PROGRAMMIER- PARADIGMEN departement mathematik & informatik informatik.unibas.ch/lehre/fs16/prog#thorsten. uibasel VORLESUNG PROGRAMMIER- PARADIGMEN departemet mathematik & iformatik iformatik.uibas.ch/lehre/fs16/prog#thorste.moeller 2 Team Dozet: Dr. Thorste Möller thorste.moeller@uibas.ch Chief Techical Officer

Mehr

Optische Abbildung. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: OA. Fachrichtung Physik

Optische Abbildung. Technische Universität Dresden. Inhaltsverzeichnis. Physikalisches Praktikum Versuch: OA. Fachrichtung Physik Techische Uivesität Desde achichtug Physik M. Lehma (07/005) Physikalisches Paktikum Vesuch: OA Optische Abbildug Ihaltsvezeichis Ziel des Vesuchs... Gudlage.... Dicke Lise ud Lisesysteme.... Gauß'sche

Mehr

Simulationsbasierte stochastisch dynamische Programmierung

Simulationsbasierte stochastisch dynamische Programmierung Simulaiobaiere ochaich dyamiche Programmierug OLIVER MUßHOFF, BERLIN NORBERT HIRSCHAUER, BERLIN Abrac Deciio ree, repreeig he backward recurive dyamic programmig approach, are ofe o flexible eough o aalyze

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrierter Studiegag Wirtschaftswisseschaft M. Sc. Wirtschaftswisseschaft Klausuraufgabe zur Hauptprüfug Prüfugsgebiet:

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

- - Forelalug EEOEH i achiebau (ad vo:.. ) Größe Forelzeiche Eihei Elekriche paug [ol] Elekriche roärke [pere] rodiche Elekricher Widerad, Wirkwiderad, eiaz Ω [Oh] Elekricher eiwer, G Wirkleiwer, odukaz

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern HARDWARE-PRAKTIKUM Versuch L-4 Komplexe Schaltwerke Fachbereich Iformatik Uiversität Kaiserslauter Seite 2 Versuch L-4 Versuch L-4 I diesem Versuch soll ei Rechewerk zur Multiplikatio vo zwei vorzeichelose

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima.

3. Bestimmen Sie die Gitterkonstante eines Transmissionsgitters durch Ausmessung der Lage der Maxima. Fakultät für Physik ud Geowisseschafte Physikalisches Grudpraktikum O 17a Beuu (Laserlicht) Aufabe 1. Bestimme Sie durch Beuu (Frauhofer, Fresel) vo Laserlicht am Eifachspalt desse Breite. Messe Sie hierzu

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Elektrostatische Lösungen für mehr Wirtschaftlichkeit

Elektrostatische Lösungen für mehr Wirtschaftlichkeit Elektrostatische Lösuge für mehr Wirtschaftlichkeit idustrie für igeieure, profis ud techiker i etwicklug, produktio ud motage. www.kerste.de Elektrostatische Lösuge kerste ist seit über 40 Jahre der führede

Mehr

cubus EV als Erweiterung für Oracle Business Intelligence

cubus EV als Erweiterung für Oracle Business Intelligence cubus EV als Erweiterug für Oracle Busiess Itelligece... oder wie Oracle-BI-Aweder mit Essbase-Date vo cubus outperform EV Aalytics (cubus EV) profitiere INHALT 01 cubus EV als Erweiterug für die Oracle

Mehr

Motordaten und Betriebsbereiche. von DC Motoren. DC-Motor als Energiewandler

Motordaten und Betriebsbereiche. von DC Motoren. DC-Motor als Energiewandler 2, maxo otordate ud Betriebsbereiche otordate ud Betriebsbereiche vo DC otore otorverhalte: Keliie, Strom otordate ud Betriebsbereiche 2010 maxo motor ag, Sachsel, Schweiz DC-otor als Eergiewadler Elektrische

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Formularkonzept DRG. Druck. Ausgereifte Formularkonzepte. Die kompakte Dokumentation für Medizin und Pflege.

Formularkonzept DRG. Druck. Ausgereifte Formularkonzepte. Die kompakte Dokumentation für Medizin und Pflege. Formularkozept DRG Ausgereifte Formularkozepte Die kompakte Dokumetatio für Medizi ud Pflege. Auf der Grudlage jahrzehtelager Erfahrug etwickel wir mit Ihe Formularsysteme, die alle Aforderuge gerecht

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

3.2 Die Schrödinger-Gleichung

3.2 Die Schrödinger-Gleichung 3. Die Schröiger-Gleichug Oer Wie fie ich ie Wellefuktio eies Teilches Lit: Simo/McQuarrie Die S.G. ka geauso weig hergeleitet were wie ie Newtosche Gesetze (Fma). Fuametales Postulat er Quatemechaik Wir

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

HANDBUCH Fettschichtsensor FAU-104

HANDBUCH Fettschichtsensor FAU-104 PROZESSAUTOMATION HANDBUCH Fettschichtsesor FAU-104 ISO9001 Es gelte die Allgemeie Lieferbediguge für Erzeugisse ud Leistuge der Elektroidustrie, herausgegebe vom Zetralverbad Elektroidustrie (ZVEI) e.v.

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

Aufnahmeprüfung FHNW 2013: Physik

Aufnahmeprüfung FHNW 2013: Physik Muterlöungen Phyik Aufnahmeprüfung FHW 03 Aufnahmeprüfung FHW 03: Phyik Aufgabe Da nebentehende Diagramm zeigt den Gechwindigkeit-Zeit-Verlauf für ein Schienenfahrzeug. a ) Skizzieren Sie qualitativ richtig

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

by Hasler, Heiniger, Lehmann

by Hasler, Heiniger, Lehmann by Hasler, Heiiger, Lehma Ihaltsverzeichis 4..005 Seite vo 7 Seite Nr: Ihalt: 0 - Ihaltsverzeichis 0 - Pflichteheft 03 - Drehmometberechug (Drehatrieb) 04 otoreauslegug (Drehatrieb) 05 Kotrollberechug

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Elektronikpraktikum: Digitaltechnik 2

Elektronikpraktikum: Digitaltechnik 2 Elektroikpraktikum: Digitaltechik 2 Datum, Ort: 16.05.2003, PHY/D-213 Betreuer: Schwierz Praktikate: Teshi C. Hara, Joas Posselt (beide 02/2/PHY/02) Gruppe: 8 Ziele Aufbau eier 3-Bit-Dekodierschaltug;

Mehr

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur.

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur. PS - OPTIK P. Redulić 2007 LICHT STRAHLENOPTIK LICHT. Lichtquelle ud beleuchtete Körper Sichtbare Körper sede teilweise Licht aus, teilweise reflektiere sie aber auch das auf sie fallede Licht. Lichtquelle

Mehr

Abiturprüfug Mathematik 008 Bade-Württemberg (ohe CAS) Wahlteil - Aufgabe Aalysis I Aufgabe I.: Ei Tal i de Berge wird ach Weste vo eier steile Felswad, ach Oste vo eiem flache Höhezug begrezt. Der Querschitt

Mehr

MEBAK-Methodensammlung Grundlagen der Statistik. 1. Definitionen. 2. Charakterisierung der Verteilung. 2.1 Normalverteilung (Gauß-Verteilung)

MEBAK-Methodensammlung Grundlagen der Statistik. 1. Definitionen. 2. Charakterisierung der Verteilung. 2.1 Normalverteilung (Gauß-Verteilung) . Defiitioe Zufallvariable Eie Zufallvariable it eie Größe, die bei eiem Zufallexperimet auftrete ka, z. B. die Läge der Bredauer eier Glühbire oder da Ergebi eier Petizidbetimmug. Grudgeamtheit Eie Grudgeamtheit

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

( n) Abkürzungen und Symbole

( n) Abkürzungen und Symbole Abkürzuge ud Symbole A Allgemeie Symbole Negatio Kojuktio (ud) Disjuktio (oder) für alle es gibt ei ( ) Implikatio (hat zur Folge) ( ) Äquivalez vo Aussage (ist gleichbedeuted mit) Allzeiche (für alle)

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Flexibilität beim Lagern und Kommissionieren: Schienengeführte Regalbediengeräte

Flexibilität beim Lagern und Kommissionieren: Schienengeführte Regalbediengeräte Flexibilität beim Lager ud Kommissioiere: Schieegeführte Regalbediegeräte Ei Kozept zwei Baureihe: DAMBACH Regalbediegeräte Seit mehr als 35 Jahre baut die DAMBACH Lagersysteme Regalbediegeräte ud gehört

Mehr

VIP Notes 10. Default Content

VIP Notes 10. Default Content VIP Notes 10 Default Cotet Copyright 2000 Gauss Iterprise AG. Alle Rechte vorbehalte. Kei Teil dieses Dokumetes darf i irgedeier Form (Druck, Fotokopie oder eiem adere Verfahre) ohe schriftliche Geehmigug

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Fachartikel CVM-NET4+ Erfüllt die Energieeffizienz- Richtlinie. Neuer Multikanal-Leistungs- und Verbrauchsanalyser Aktuelle Situation

Fachartikel CVM-NET4+ Erfüllt die Energieeffizienz- Richtlinie. Neuer Multikanal-Leistungs- und Verbrauchsanalyser Aktuelle Situation 1 Joatha Azañó Fachartikel Abteilug Eergiemaagemet ud etzqualität CVM-ET4+ Erfüllt die Eergieeffiziez- Richtliie euer Multikaal-Leistugs- ud Verbrauchsaalyser Aktuelle Situatio Die gegewärtige Richtliie

Mehr

Streulichtmesstechnik

Streulichtmesstechnik Fakultät für Machinenbau Intitut für Lichttechnik und Techniche Optik Fachgebiet Techniche Optik Praktikum Wahlfach Techniche Optik Streulichtmetechnik Gliederung 1. Veruchziel 2. Veruchaufgaben 3. Veruchvorbereitung

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 014 a de Realschule i ayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 10 Agler verwede sogeate Schwimmer, die a der Agelschur

Mehr

Fingerprinting auf Basis der Geometrischen Struktur von Videos

Fingerprinting auf Basis der Geometrischen Struktur von Videos 35.1 Figerpritig auf Basis der Geometrische Struktur vo Videos Dima Pröfrock, Mathias Schlauweg, Erika Müller Uiversität Rostock, Istitut für Nachrichtetechik, Richard Wager Str. 31, 18119 Rostock, {dima.proefrock,

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07.

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07. Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 040703 Datum 03.07.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

In der Industrie zählt Zuverlässigkeit und Schnelligkeit. Mit MM1018 werden Toleranzen vor Ort und in einem Arbeitsschritt ausgeglichen.

In der Industrie zählt Zuverlässigkeit und Schnelligkeit. Mit MM1018 werden Toleranzen vor Ort und in einem Arbeitsschritt ausgeglichen. I der Idustrie zählt Zuverlässigkeit ud Schelligkeit. Mit MM1018 werde Toleraze vor Ort ud i eiem Arbeitsschritt ausgegliche." Verbudbrücke Megyeri, Budapest Brücke zähle zu de fasziieredste Bauwerke

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus.

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus. Aggregatzutände: Im Gegenatz zum idealen Ga bildet ich bei realen Gaen ein flüiger und feter Aggregatzutand (Phae) au. Dicht benachbarte Atome üben anziehende Kräfte aufeinander au E ot E ot Ideale Ga

Mehr

Geometrische und Technische Optik

Geometrische und Technische Optik Norbert Lilei Uiversität Erlage-Nürberg Stautstr. 7/B, D-958 Erlage Motivatio Optik ist eie Schlüsseltechologie useres Jahrhuerts Beispiel: Herstellug vo Computer Chips mit optischer Lithographie Source:

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Grundkompetenz-Aufgaben

Grundkompetenz-Aufgaben Durch starte Mathematik übugsbuch bis Grudkompetez-Aufgabe Aufgrud der eue schriftliche Reifeprüfug i Mathematik ist es otwedig, sich mit de eue Grudkompetez-Aufgabe auseiaderzusetze. Die Olie-Ergäzug

Mehr

Sichtbar im Web! Websites für Handwerksbetriebe. Damit Sie auch online gefunden werden.

Sichtbar im Web! Websites für Handwerksbetriebe. Damit Sie auch online gefunden werden. Sichtbar im Web! Websites für Hadwerksbetriebe. Damit Sie auch olie gefude werde. Professioelles Webdesig für: Hadwerksbetriebe Rudum-sorglos-Pakete Nur für Hadwerksbetriebe Webdesig zu Festpreise - ukompliziert

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Daten und Zufall in der Jahrgangsstufe 9 Seite 1

Daten und Zufall in der Jahrgangsstufe 9 Seite 1 Date ud uall i der Jahrgagsstue Seite usammegesetzte uallsexperimete, Padregel Aubaued au de Erahruge aus de vorhergehede Jahrgagsstue beschätige sich die Schüler systematisch mit zusammegesetzte uallsexperimete

Mehr

CampusSourceEngine HISLSF

CampusSourceEngine HISLSF Kopplug Hochschuliformatiossysteme ud elearig CampusSourceEgie Dipl.-Iform. Christof Veltma Uiversität Dortmud leartec, Karlsruhe, 14.02.2006 - Hochschuliformatiossysteme allgemei: Iformatiossysteme ud

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr