Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht"

Transkript

1 Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Beispiele wirtschaftsmathematischer Modellierung Lehrerfortbildung, Speyer, Juni

2 Beispiele wirtschaftsmathematischer Modellierung Was ist Wirtschaftsmathematik (WiMa) WiMa WiMa-Stoff im Curriculum: Lineare Programmierung und Produktionsplanung WiMa Stoff ausserhalb des Curriculums: Antennenplatzierung und Färbungsprobleme LP Färben MaMaEuSch Projekte Projekte Lehrerfortbildung, Speyer, Juni

3 Was ist Wirtschaftsmathematik? Einsatz von mathematischen Methoden zur Lösung von wirtschaftlichen Problemen Mathematik: Strukturieren Verstehen Abstraktes Lösen von Problemen Wirtschaften:.. über knappe Mittel so zu verfügen, dass sich die menschlichen Bedürfnisse befriedigen lassen. Lehrerfortbildung, Speyer, Juni

4 Modellierungszyklus Praktisches Problem (Projekt) Interpretation und Evaluierung der Lösung in Praxis Aufstellen eines mathematischen Modell Lösung des mathematischen Modells GT LP Gliederu Lehrerfortbildung, Speyer, Juni

5 Produktionsbeispiel Eine Firmenleitung möchte den Gewinn durch neue Produkte erhöhen. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Gewinn in Markt in Einheiten Verfügbare Kapazität in % A A A A A Lehrerfortbildung, Speyer, Juni

6 Kleines SchokoLeb Beispiel Der Gewinn beim Verkauf von Kakaoprodukten soll maximiert werden. Daten: Kakaopulver Schokolade Vorhandene Kapazität Gewinn Anlage Anlage Anlage (Entscheidungs-)Variable:, x 2 Lineares Programm: maximiere x 2 unter x x x 2 12,x 2 0 Lehrerfortbildung, Speyer, Juni

7 Algorithmus 1.1: Grafisches Verfahren zur Lösung Linearer Programme mit zwei Variablen Input: Lineares Programm der Form max cx + c x unter den Nebenbedingungen. a x + a x b a x + a x b a x + a x b m1 1 m2 2 m x, x Output: Optimallösung ( * x 2 *) mit optimalem Zielfunktionswert z*. Beispiel 1 Beispiel 2 Schritt 1: Für i = 1,,m zeichne nacheinander die Geraden a i1 + a i2 x 2 = b i und di zugehörigen Halbräume a i2 x 2 + a i2 x 2 < b i. Schritt 2: Bestimme den Zulässigkeitsbereich, d.h. das Polyeder P, gegeben als die Meng aller, x 2 > 0, die im Durchschnitt der Halbräume a i1 + a i2 x 2 < b i liegen. Schritt 3. Wähle irgendeine Zahl z und zeichne die Gerade c 1 + c 2 x 2 = z. Schritt 4: Verschiebe diese Gerade parallel, so dass der Wert von z größer wird. Tue die so lange bis ein Wert z =:z* erreicht ist, so dass die Gerade c 1 + c 2 x 2 = z* da Polyeder P nur noch berührt, d.h. das Polyeder vollständig auf einer Seite de Geraden liegt. Wähle ( * x 2 *) als einen der Eckpunkte, in denen die Gerade c + c 2 x 2 = z das Polyeder berührt.

8 x=0 x>0 6 30x + 50y = x + 50y =150 3 Optimallösung (x* y*) = (2 6) Zulässigkeitspolyeder x < 4 x = 4 2y = 12 2y < 12 LP (SchokoLeb Beispiel) Max 30x + 50y udn 3x + 2y < 18 x < 4 2y < 12 x, y > 0 30x + 50y = x + 2y < 18 Algorithm y>0 y= x + 2y = 18

9 x=0 5 x>0 4 -x+y=1 3 -x+y<1 2 Optimallösung (x* y*) = (1 2) 1 max y unter den Nebenbedingunge x+ y 1 x + y 3 xy, 0 z* = 2 = 0 x + 1 y enthält Optimallösung (x* y*) = (1 2) z = 1 = 0 x + 1 y y>0 y= x+y<3 x+y=3 Algorithmus -2 Program

10 Modelländerungen zur Erinnerung: Praktisches Problem (Projekt) Interpretation und Evaluierung der Lösung in Praxis Aufstellen eines mathematischen Modells Lösung des mathematischen Modells Lehrerfortbildung, Speyer, Juni

11 Programm Modelländerungen Was ist wenn... die Lösung nicht aus der Zeichnung abgelesen werden kann Kosten minimiert, statt Gewinn maximiert wird die Produktionseinheiten ganzzahlig sein müssen Gleichu Min IP Lehrerfortbildung, Speyer, Juni

12 5 4 =0 >0 Optimallösung ( * x 2 *) = (??) x 2 = x 2 < 126 max 2x + 8x 1 2 unter den Nebenbedingunge 126x + 120x x + 132x x, x z* =?? = 2x z = 16 = x 2 2 enthält Optimallösung 2 ( * x 2 *) = (??) 1 x 2 >0 x 2 = Die Optimallösung erfüllt das Gleichungssystem x 2 = x 2 = x 2 < x 2 =756

13 Lösen von LPs und Gleichungssysteme - Die Lösung erfüllt das Gleichungssystem x 2 = x 2 = ( ) x 2 = ( ) 252 x 2 = 882 x 2 = 7/2 = (120*7/2-126) / 126 = 7/3 Lehrerfortbildung, Speyer, Juni

14 5 4 =0 >0 Optimallösung ( * x 2 *) = (7/3 7/2) x 2 = x 2 < 126 max 2x + 8x 1 2 unter den Nebenbedingunge 126x + 120x x + 132x x, x z* = 32 2/3 = 2 + 8x enthält Optimallösung ( * x 2 *) = (7/3 7/2 1 x 2 >0 x 2 = x 2 < x 2 =756 Mod

15 Maximieren Minimieren f( ) g( ) Optimallösung: =3 3 2 max f( ) = unter den Nebenbedingungen < 3 > Optimallösung: =1 min g( ) = - unter den Nebenbedingungen < 3 > 1 Lehrerfortbildung, Speyer, Juni

16 Mod Maximieren Minimieren max c 1 x + c x min ( c ) x + ( c ) x unter den Nebenbedingungen a x + a x b a x + a x b a x + a x b m1 1 m2 2 m x, x unter den Nebenbedingungen a x + a x b a x + a x b a x + a x b m1 1 m2 2 m x, x Lehrerfortbildung, Speyer, Juni

17 Ganzzahlige Produktionspläne Was passiert, wenn Produktionseinheiten nur ganzzahlige Werte annehmen können? Ganzzahliges, lineares Programm: max cx + c x unter den Nebenbedingungen a x + a x b a x + a x b a x + a x b m1 1 m2 2 m x, x ganzzahlig Lehrerfortbildung, Speyer, Juni

18 Beispiel: Transport von Gefahrengütern Wieviel Einheiten eines Gutes 1 bzw. 2 kann man transportieren, wenn pro Einheit: Gut 1 Gut 2 Profit: 2 7 (Mill. Euro) Kapazität: 1 4 (Platzeinheiten) Gefahrenwert: 9-4 ( -10 bis +10 Skala) (additiv) Dabei Gesamtkapazität: 14 Gefahrenhöchstwert: 36 Lehrerfortbildung, Speyer, Juni zurück

19 Ganzzahliges, Lineares Programm pro Einheit: Gut 1 Gut 2 Gesam Profit: 2 7 (Mill. ECUs) Kapazität: 1 4 (Platzeinheiten) 14 wissensch. Wert: -9 4 ( -10 bis +10 Skala) 36 Maximiere 2 + 7x 2 unter den Nebenbedingungen 1 + 4x 2 < x 2 < 36 Vorzeichenbedingungen,x 2 > 0 Ganzzahligkeitsbedingungen,x 2 ganzzahlig Lehrerfortbildung, Speyer, Juni zurück

20 x 2 Lösung der LP- Relaxierung 9-4x 2 < 3 Ganzzahligkeitsbedingungen,x 2 ganzzah Maximiere 2 + 7x 2 unter den Nebenbedingungen 1 + 4x 2 < 1 Vorzeichenbedingungen,x 2 > 0 + 4x 2 < x 2 < 36 Optimallösung ohne Ganzzahligkei * =5, x 2* = Zielfunktionswert: 2 + 7x 2 =25, Zielfunktionswert: 2 + 7x 2 =8 Zielfunktion: 2 + 7x 2 = 0

21 Partition des Problems in zwei Teilprobleme x 2 + 4x 2 < x 2 < 36 x 2 * > 3 * =5, x 2* = x 2 * < 2 Zielfunktion 2x Zielfunktion 1 + 7x 2 = x 2 = 23, Lehrerfortbildung, Speyer, Juni zurück

22 Konvexe Hülle der ganzzahligen Lösungen x 2 + 4x 4 < 14 * =2, x 2* = x 4 < Zielfunktion: 2 + 7x 2 = Lehrerfortbildung, Speyer, Juni Zielfunktion: 2 + 7x 2 Gliederun

23 4-Farbenproblem Kann man alle Staaten Deutschlands mit 4 Farben färben? 4-Farb D Wieviele Farben sind nötig, um eine beliebige Landkarte zu färben? 4-Farb nicht Vier Farben Satz (Apel und Haken, 1976): Jede Landkarte ist mit 4 Farben färbbar * Lehrerfortbildung, Speyer, Juni

24 4-Farbenproblem und Graphentheorie Das Färben von Landkarten hat etwas mit sog. Graphen zu tun? D C A C B A D Färben von Flächen Knotenfärbung B Lehrerfortbildung, Speyer, Juni

25 4-Farbenproblem und Graphentheorie C C A D A D Knotenfärbung B B Vier Farben Satz (Apel und Haken, 1976): Jeder planare Graph ist mit 4 Farben färbbar Lehrerfortbildung, Speyer, Juni

26 4-Farbenproblem als wirtschaftsmathematisches Modell Ist das Färben von Graphen nur eine Spielerei? Anwendungen im Design von Funknetzwerken: Knoten = Sender Kante (i,j) = Sender i und j haben Interferenz Farben = verschiedene Sendefrequenzen Lehrerfortbildung, Speyer, Juni

27 Sender-Netzwerke A B E C F D Durchschnittsgraph: A B E Jede zulässige Knotenfärbung im Durchschnittsgraphen entspricht einer zulässigen Frequenzzuweisung (und umgekehrt). C D F Gliederun Lehrerfortbildung, Speyer, Juni

28 Gliederun Wirtschaftsmathematik in Schulen: Literatur (und Links auf dieser Seite) Hamacher, Korn 2, Schwarze: Mathematik und Ökonomie, Universum Verlag, Oktober 2004 (Zwei Kapitel bekommen Sie am Ende der Fortbildung auf CD) Lehrerfortbildung, Speyer, Juni

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É.

Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Scheduling und Lineare ProgrammierungNach J. K. Lenstra, D. B. Shmoys und É. Tardos Janick Martinez Esturo jmartine@techfak.uni-bielefeld.de xx.08.2007 Sommerakademie Görlitz Arbeitsgruppe 5 Gliederung

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) 1 Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Einleitung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 11. Oktober 2013) 2 Kommunikationsnetzwerke...

Mehr

Alles zu seiner Zeit Projektplanung heute

Alles zu seiner Zeit Projektplanung heute Alles zu seiner Zeit Projektplanung heute Nicole Megow Matheon Überblick Projektplanung Planen mit Graphentheorie Maschinenscheduling Ein 1 Mio. $ Problem Schwere & leichte Probleme? Zeitplanungsprobleme?

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Diplomprüfung. Operations Research I WS 2007/2008 (4 Punkte)

Diplomprüfung. Operations Research I WS 2007/2008 (4 Punkte) Dr. Jörg Kalcsics 11.0.008 Diplomprüfung (Wiederholungsprüfung gem. NPO) Operations Research I WS 007/008 ( Punkte) Vorbemerkung: Zugelassene Hilfsmittel: nicht programmierbarer Taschenrechner. Beginnen

Mehr

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Einführung Standard- und Schlupfformen Simplex Algorithmus Matthias Zwicker Universität Bern Frühling 2009 2 Beispiel: Wahlkampf Ziel: mit möglichst wenig Werbung eine gewisse

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Standortplanung Kunden Speyer, Juni 2004 - Beispiele mathematischer Medellierung Seite 1 Prof Dr Horst W Hamacher Standortplanung

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Codeoptimierung mit linearer Programmierung

Codeoptimierung mit linearer Programmierung Seminarvortrag Codeoptimierung mit linearer Programmierung Hannes Jaschitsch unh@rz.uni-arlsruhe.de 4.6.003 Inhalt Digitale Signalprozessoren (DSPs) Befehlsanordnung mit dem ritchen Pfad Lineare Programme

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II Aufgaben und Lösungen SS 2005 Aufgaben Aufgabe 41 Ein Betrieb stellt zwei Produkte P 1 und P 2 her, die die

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau

Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Jörg Rambau Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? Verkehrsstauspiel: Wieviel Prozent der Autos fahren über blau/grün? 1 x x = Anteil der Fahrzeuge, die dort entlang fahren Verkehrsstauspiel:

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah

Lernmaterial für die Fernuni Hagen effizient und prüfungsnah Lernmaterial für die Fernuni Hagen effizient und prüfungsnah www.schema-f-hagen.de Sie erhalten hier einen Einblick in die Dokumente Aufgaben und Lösungen sowie Erläuterungen Beim Kauf erhalten Sie zudem

Mehr

Quantitative Methoden in der Entscheidungsunterstützung. Anita Schöbel und Marie Schmidt

Quantitative Methoden in der Entscheidungsunterstützung. Anita Schöbel und Marie Schmidt Quantitative Methoden in der Entscheidungsunterstützung Anita Schöbel und Marie Schmidt 12. November 2009 Inhaltsverzeichnis 1 Vom Problem zum Modell 1 2 Lineare und ganzzahlige Programmierung 10 2.1 Lineare

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Computerbasierte Mathematische Modellierung für Mathematiker, Wirtschaftsmathematiker, Informatiker im Wintersemester

Mehr

Einführung in die Lineare Optimierung

Einführung in die Lineare Optimierung Kapitel 2 Einführung in die Lineare Optimierung lineare Modelle der relevanten Umwelt werden wegen ihrer Einfachheit häufig gegenüber nichtlinearen Ansätzen vorgezogen, lineare Optimierungsprobleme können

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 007 / 008 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Einführung in Scheduling

Einführung in Scheduling Einführung in Scheduling Dr. Julien Bidot Sommersemester 28 Institut für Künstliche Intelligenz Inhalt I. Definition und Formulierung des Scheduling- Problems II. Projektplanung III. Produktionsplanung

Mehr

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege

Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 schlechte@zib.de Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Outer Approximation für konvexe MINLP-Probleme

Outer Approximation für konvexe MINLP-Probleme Outer Approximation für konvexe MINLP-Probleme im Rahmen des Sears Globale Optimierung unter Leitung von Dr. Johannes Schlöder und Dr. Ekaterina Kostina, Sommersemester 2005, Universität Heidelberg Hans

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN)

1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN) 1. LINEARE FUNKTIONEN IN DER WIRTSCHAFT (KOSTEN, ERLÖS, GEWINN) D A S S O L L T E N N A C H E U R E M R E F E R A T A L L E K Ö N N E N : Kostenfunktion, Erlösfunktion und Gewinnfunktion aufstellen, graphisch

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Einführung in die klassische Spieltheorie

Einführung in die klassische Spieltheorie Einführung in die klassische Spieltheorie Seminar Algorithmische Spieltheorie, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Einleitung 2. Zwei-Personen-Nullsummenspiele

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Frequenzplanung im Mobilfunk

Frequenzplanung im Mobilfunk Frequenzplanung im Mobilfunk von Andreas Eisenblätter, Martin Grötschel und Arie M. C. A. Koster Telekommunikation ist seit Jahren m". Zunächst gab es einen enormen Aufschwung; neue Technologien und Dienste

Mehr

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1 Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra

Mehr

Reproduzierbarkeit der Bachelor-Thesis

Reproduzierbarkeit der Bachelor-Thesis der Bachelor-Thesis Anonymisierungsverfahren: Randverteilungen und ihr statistisches Analysepotential Seminar Institut für Statistik Ludwig-Maxmilians-Universität in München Betreuung: Manuel J. A. Eugster

Mehr

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen!

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen! Klausur: 1122 1 von 12 Prüfung: Produktion, Logistik und Operations Research SS 29 Prüfer: Prof. Dr. Karl Inderfurth Prüfungsbogen Vom Klausurteilnehmer auszufüllen! Name, Vorname : Fakultät : Matrikelnummer

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Einführung in das Operations Research

Einführung in das Operations Research S. Nickel, O. Stein, K.-H. Waldmann Einführung in das Operations Research Skript zur Vorlesung am Karlsruher Institut für Technologie Vorläufige Version, Stand: 11. März 2011 Inhaltsverzeichnis 1 Kernkonzepte

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Optimization in Business Applications: 2. Modeling principles

Optimization in Business Applications: 2. Modeling principles Optimization in Business Applications: 2. Modeling principles IGS Course Dynamic Intelligent Systems Part 2 Universität Paderborn, June July 2010 Leena Suhl www.dsor.de Prof. Dr. Leena Suhl, suhl@dsor.de

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Nichtlineare Optimierungsprobleme mit Komplexität

Nichtlineare Optimierungsprobleme mit Komplexität Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-

Mehr

Praktikum Planare Graphen

Praktikum Planare Graphen 1 Praktikum Planare Graphen Michael Baur, Martin Holzer, Steffen Mecke 10. November 2006 Einleitung Gliederung 2 Grundlagenwissen zu planaren Graphen Themenvorstellung Gruppeneinteilung Planare Graphen

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Logo-Aufgaben mit Verbindung zur Mathematik

Logo-Aufgaben mit Verbindung zur Mathematik Logo-Aufgaben mit Verbindung zur Mathematik Student: Dozent: Prof. Juraj Hromkovic Datum: 13.06.007 Logo-Kenntnisse Für die Lösung der Aufgaben werden folge Logo-Befehle benötigt: Arithmetik: +, -, *,

Mehr

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer

Algorithmen und Datenstrukturen. Große Übung vom 29.10.09 Nils Schweer Algorithmen und Datenstrukturen Große Übung vom 29.10.09 Nils Schweer Diese Folien Braucht man nicht abzuschreiben Stehen im Netz unter www.ibr.cs.tu-bs.de/courses/ws0910/aud/index.html Kleine Übungen

Mehr

Integrierte Umlauf- und Dienstplanung im ÖPNV

Integrierte Umlauf- und Dienstplanung im ÖPNV Integrierte Umlauf- und Dienstplanung im ÖPNV Frico 2007 Weíder Dres. Löbel, Borndörfer und GbR Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) weider@zib.de http://www.zib.de/weider Planung im

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29

Teil III: Routing - Inhalt I. Literatur. Geometric Routing. Voraussetzungen. Unit Disk Graph (UDG) Geometric Routing 29 1 29 Teil III: Routing - Inhalt I Literatur Compass & Face Routing Bounded & Adaptive Face Routing Nicht Ω(1) UDG E. Kranakis, H. Singh und Jorge Urrutia: Compass Routing on Geometric Networks. Canadian

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Logistik: Rundreisen und Touren

Logistik: Rundreisen und Touren Logistik: Rundreisen und Touren 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Von Universitätsprofessor Dr. Wolfgang

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen Seminar im Sommersemester 2008 Sebastian Bauer, Wei Cheng und David Münch Herausgegeben von Martin Nöllenburg, Ignaz Rutter und Alexander Wolff Institut für Theoretische Informatik

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

Einführung in Verkehr und Logistik

Einführung in Verkehr und Logistik WS 13/14 Einführung in Verkehr und Logistik 1 / 28 Einführung in Verkehr und Logistik (Bachelor) Fallstudie zur Distributionsplanung (Nur zur internen Verwendung!) Univ.-Prof. Dr. Knut Haase Institut für

Mehr

Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst

Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst Sudoku-Informatik oder wie man als Informatiker Logikrätsel löst Peter Becker Hochschule Bonn-Rhein-Sieg Fachbereich Informatik peter.becker@h-brs.de Kurzvorlesung am Studieninformationstag, 13.05.2009

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2005/06 20.2.2006 Prof. Dr. Jörg Rambau Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname:

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Lineare Optimierung. Master 1. Semester

Lineare Optimierung. Master 1. Semester Prof. Dr.-Ing. Fritz Nikolai Rudolph Fachhochschule Trier Fachbereich Informatik Master 1. Semester Inhaltsverzeichnis 1 Einleitung... 2 1.1 Lineare Gleichungssysteme... 2 1.2 sprobleme... 3 2 Standardform...

Mehr

LINDO API, LINGO & What sbest! Power-Anwendungen für Optimierungsaufgaben

LINDO API, LINGO & What sbest! Power-Anwendungen für Optimierungsaufgaben LINDO API, LINGO & What sbest! Power-Anwendungen für Optimierungsaufgaben Die LINDO SYSTEMS Produktfamilie Lösungen für unterschiedlichste Optimierungsprobleme. Lösungsmethoden und -algorithmen per API,

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Mathematische Modelle zur Optimierung von logistischen Prozessen. Schienengüter in der Region Rhein-Ruhr

Mathematische Modelle zur Optimierung von logistischen Prozessen. Schienengüter in der Region Rhein-Ruhr Mathematische Modelle zur Optimierung von logistischen Prozessen Schienengüter in der Region Rhein-Ruhr Ruhr Prof. Dr. Günter Törner Optimierungsmodelle zur Lösung von Erfassungs- problemen im Verkehr

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

Datenstrukturen und Algorithmen SS07

Datenstrukturen und Algorithmen SS07 Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage mbe@student.ethz.ch belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen

Mehr

LINGO: Eine kleine Einführung

LINGO: Eine kleine Einführung LINGO: Eine kleine Einführung Jun.-Prof.Dr. T. Nieberg Lineare und Ganzzahlige Optimierung, WS 2009/10 LINDO/LINGO ist ein Software-Paket, mit dessen Hilfe (ganzzahlige) lineare Programme schnell und einfach

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand

Karl-Heinz Zimmermann. Diskrete Mathematik. Books on Demand Diskrete Mathematik Karl-Heinz Zimmermann Diskrete Mathematik Books on Demand Prof. Dr. Karl-Heinz Zimmermann TU Hamburg-Harburg 21071 Hamburg Germany Bibliografische Information der Deutschen Bibliothek

Mehr

Anwendungen der linearen Programmierung

Anwendungen der linearen Programmierung Anwendungen der linearen Programmierung BACHELOR-ARBEIT Referent Prof. Dr. Karl Frauendorfer vorgelegt von Simon Wehrmüller Universität St. Gallen Hochschule für Wirtschafts-, Rechts- und Sozialwissenschaften

Mehr

Pratts Primzahlzertifikate

Pratts Primzahlzertifikate Pratts Primzahlzertifikate Markus Englert 16.04.2009 Technische Universität München Fakultät für Informatik Proseminar: Perlen der Informatik 2 SoSe 2009 Leiter: Prof. Dr. Nipkow 1 Primzahltest Ein Primzahltest

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Ausgewählte Methoden der ganzzahligen Linearen Optimierung

Ausgewählte Methoden der ganzzahligen Linearen Optimierung Ausgewählte Methoden der ganzzahligen Linearen Optimierung Diplomarbeit zur Erlangung des akademischen Grades Magistra rerum naturalium eingereicht von Arntraud Bacher bei AUnivProf Dr Kurt Girstmair an

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Hardware/Software-Codesign

Hardware/Software-Codesign Klausur zur Lehrveranstaltung Hardware/Software-Codesign Dr. Christian Plessl Paderborn Center for Parallel Computing Universität Paderborn 8.10.2009 Die Bearbeitungsdauer beträgt 75 Minuten. Es sind keine

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel

Einführung in die Optimierung Sommersemester 2005. Anita Schöbel Einführung in die Optimierung Sommersemester 2005 Anita Schöbel 9. Juli 2010 Vorwort Das vorliegende Vorlesungsskript entstand aufgrund der Notizen der von mir im Sommersemester 2005 gehaltenen Vorlesung

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr