Eingangstest Mathematik Musterlösungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Eingangstest Mathematik Musterlösungen"

Transkript

1 Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim

2 . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und Kürzen so weit wie möglich: ( ) ( ) (+)( ) (+) (+) 3 + (3 3 ).. (5 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und Kürzen so weit wie möglich: A ab+a ac a c a 3 ab a b3 b b c c (a(b+a) ac a c ) a(a b) a b(b b) b (b+a a) a b b +b (b+a) a b (a+b) (a b)(a+b) a b B 6a +4ab 8a 3 +4a b+8ab a(3a+b) a(9a ab+4b ) 3a+b (3a+b) 3a+b

3 . Potenzen, Wurzeln und Logarithmen.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke so weit wie möglich: 4+ (4 ) (,5) 4 4 ( ) e e e (3) (7 3 3).. (3 Punkte) Vereinfachen Sie den Ausdruck ( +)( ) +.3. (5 Punkte) Für welchen ganzzahligen Eponenten n gilt: 0 n 000 n 3 (0 ( 3) ) Für welche ganzzahligen Eponenten n gilt: 3 n 0 n 3 (3 9; 3 3 7) Was ist der Logarithmus von 6 zur Basis 4 (6 4 log (6)4) Berechnen Sie log 5 (0,) (0, 5 5 ) Berechnen Sie ln(e ) +ln( e ) 3 (ln(e e )ln(e3 )3).4. ( Punkte) Bei einem Zellteilungsprozess teilt sich eine Zelle einmal pro Stunde. Wie viele Zellen haben Sie nach 5 Stunden, wenn Sie mit einer Zellpopulation von 6 Zellen starten? (((((6 ) ) ) ) 6 5 9

4 3. Prozentrechnung 3.. ( Punkte) Sie legen 500 C an. Sie erhalten jeweils am Jahresende zuerst % Zinsen und zahlen danach 0 C Kontoführungsgebühr pro Jahr. Wie groß ist Ihr Guthaben nach 5 Jahren? , Euro, das bleibt in den fünf Jahren gleich ( Punkte) Wie groß ist Ihr Guthaben nach zwei Jahren, wenn Sie bei gleichen Gebühren und Anfangsbetrag wie in Aufgabe 3. einen Zinssatz von 0 % pro Jahr erhalten?. Jahr: 500 ( +0,) 0540 Euro. Jahr: 540 ( +0,) 0584 Euro oder: 500 ( +0, ) ( +0, (+0, 0 )584 Euro ( Punkte) Eine Zahl a ist 0 % kleiner als die Zahl b. Um wie viele Prozent ist b größer als a? ab ( 0,) b a 0,8,5aa +0,5a b ist um 5% größer als a 5% 3.4. (4 Punkte) In einem Unternehmen arbeiten 88 Personen in der Produktion. 0 % der Beschäftigten sind in der Verwaltung tätig und ein Viertel im Vertrieb. Weitere Personen sind in dem Unternehmen nicht beschäftigt. Wie viele Personen arbeiten insgesamt in dem Unternehmen? Ansatz: In Verwaltung und Vertrieb arbeiten 45 % der N Beschäftigten 88 Personen in der Produktion entsprechen 55%, also 0,55 N , ,660N Beschäftigte insgesamt. 60

5 4. Grenzwerte 4.. (4 Punkte) Bestimmen Sie die folgenden Grenzwerte lim t t+ 0 lim ln( t )lim t 0 t 3 +t ln( )lim t 0 t + ln() 0 t 0 lim t e t n lim t e 0 lim t n n+ lim /n n +/n 4.. ( Punkte) Wir betrachten die Funktion f() 4 mit maimalem Definitionsbereich D f R {}. Wie muss f() definiert werden, so dass daraus eine auf ganz R stetige Funktion wird? f() 4 ( )(+) + f() (3 Punkte) Für eine Zahl a bezeichnen wir mit a den ganzzahligen Anteil von a (also 4,87 4oder π 3). Bestimmen Sie die Unstetigkeitsstellen der Funktion ( Sägezahnfunktion ) f() mit Definitionsbereich D f [0, 9 ]. f() 3 4 {,,3,4} 4.4. (4 Punkte) Wir betrachten die Funktion f(), die abschnittsweise definiert ist durch f(){ + für +c für < Wie ist c zu wählen, damit diese Funktion stetig im Punkt ist? linksseitiger Grenzwert rechtsseitiger Grenzwert an der Stelle muss gelten + +c c 3

6 5. Lineare Gleichungen 5.. (4 Punkte) Welche Lösung hat die lineare Gleichung ab mit a 0? Welche Lösung hat das Gleichungssstem 4 und 4? Ein Kilo Birnen kostet doppelt so viel wie ein Kilo Äpfel. Zwei Kilo Äpfel kosten 4 C. Wie viel kosten 5 Kilo Birnen? B A und A4e 5 B5 A5 4e0e b a, (4 Punkte) Ein Bauer besitzt dreimal so viele Schweine wie Kühe. Die Anzahl seiner Hühner ist um 5 größer als das Fünffache der Anzahl der Schweine und Kühe zusammen. Insgesamt hat der Bauer 5 Tiere. Wie viele Tiere jeder Art befinden sich auf dem Bauernhof? K ist die Anzahl der Kühe, S die der Schweine und H die der Hühner. S3 K H5 (S +K) +5 5K +S +HK +3K +5(3K +k) +54K +5 K0/4 Kühe 5 Schweine 5 Hühner (3 Punkte) Für einen Mietwagenvertrag liegen Ihnen zwei Angebote vor: Angebot besteht aus einem Grundpreis von 00 C pro Woche und einer Kilometerpauschaule von,00 C pro gefahrenem Kilometer. Angebot sieht einen Pauschalpreis von 50 C pro Tag vor (mit unbegrenzten Freikilometern). Wie viele Kilometer müssen Sie pro Woche mindestens fahren, damit sich Angebot lohnt? Ansatz: 00 +>7 50 > , also ab 5 km lohnt es sich. 5

7 6. Quadratische Gleichungen 6.. ( Punkte) Bestimmen Sie die Lösungen der quadratischen Gleichung / 4 ± oder / 4 ± 6.. ( Punkte) Was ist das Ergebnis der Polnomdivision ( 3 3 +) ( ) ( 4 ) 3, ( Punkte) Ein rechteckiges Grundstück ist doppelt so lang wie breit. Seine Fläche beträgt 800 m. Wie lang und wie breit ist das Grundstück? A Aa b(b) b b 400 Länge 40m Breite 0m 6.4. (3 Punkte) Das Produkt zweier aufeinanderfolgender natürlicher Zahlen ist um 5 größer als die kleinere der beiden Zahlen. Um welche Zahlen handelt es sich? ( +) +5 5 ( ± ) 5 5, (4 Punkte) Die Summe der Quadrate zweier positiver Zahlen, von denen die eine um größer ist als die andere, ist 90. Bestimmen Sie die kleinere der beiden Zahlen. +( +) oder / 4 ± oder / ± ( ) +43 3

8 7. Trigonometrie und Geometrie 7.. ( Punkte) Die Werte trigonometrischer Funktionen lassen sich im Einheitskreis als Abschnitte bestimmter Geraden konstruieren. Zeichnen Sie die Abschnitte für sin(60 ) und cos(60 ) ein. sin(60 ) 60 cos(60 ) 7.. (4 Punkte) Bestimmen Sie für die folgenden Ausdrücke, ob sie positiv (+) oder negativ (-) sind oder ob sie verschwinden (0): sin(40 ) + cos(05 ) cos(5 ) sin(300 ) 7.3. ( Punkte) Mit welcher Gleichung berechnet man den Winkel α in diesem Dreieck c a tanα b c. sinα b c. cosα b c. cotα b c. α b 7.4. ( Punkte) Welcher der Ausdrücke sin(0 ), cos(0 ),(sin(0 )),(cos(0 )) liefert den größten Wert? sin(0 ) 0,74; cos(0 ) 0,985;(sin(0 )) 0,030;(cos(0 )) 0,970 cos(0 ) 7.5. (3 Punkte) Bestimmen Sie alle Zahlen [0,5] für die sin( π 4 ) gilt sin( π) 4 π 4 π + k π 3π 4

9 7.6. (4 Punkte) Bei einem Sonnenstand von 30 zum Horizont wirft ein Kirchturm einen Schatten von5m. Wie hoch ist der Kirchturm (gerundet auf ganze Meter)? H 30 Ist die gesuchte Höhe und H die Länge der Hpotenuse, so gilt: tan(30 ) 5, oder cos(30 ) H5; sin(30 ) H Mit tan(30 ) 3 3 0,57 bzw. cos(30 ) 3 0,87 bzw. sin(30 )0,5 folgt: 5 30m 7.7. (4 Punkte) Bestimmen Sie Mittelpunkt M und Radius r des Kreises, der durch die Gleichung beschrieben wird. Allg. Kreisgleichung:( M ) +( M ) r Diese erhält man durch quadratische Ergänzung: ( 4 +4) +( + +) 4 5( ) +( +) 9 M (; ) r ( Punkte) Gegeben ist ein rechtwinkliges Dreieck, das einen spitzen Winkel von 45 enthält. Die Ankathete an diesen Winkel ist 6cm lang. Berechnen Sie den Flächeninhalt dieses Dreiecks. A (6cm) 8cm 7.9. ( Punkte) Ein, 00 m hoher, vertikal eingeschlagener Stab wirft einen Schatten von,40m. Wie hoch ist ein Baum, dessen Schatten zur selben Zeit,0m lang ist? m,40m,0m,,4 m8m 8m

10 8. Elementare Funktionen 8.. ( Punkte) Lesen Sie aus dem nachfolgenden Graphen die Funktionsgleichung () in Abhängigkeit von den eingezeichneten Werten ab Geradengleichung: m +b, -Achsenabschnitt b4, Steigung m 4 5 () ( Punkte) Der Graph einer Funktion f() hat die folgenden Gestalt: Um welche Funktion handelt es sich? e (3 Punkte) Die Funktion +a +b beschreibt eine nach oben geöffnete Normalparabel mit Scheitel im Punkt(, ). Bestimmen Sie a und b. Scheitelpunktform der Normalparabel:( S ) + S 0( +) a +b a b 0

11 8.4. (3 Punkte) Gegeben ist die Funktion f() +. a) Bestimmen Sie den maimalen Definitionsbereich der Funktion ( Pkt.) +( ) 0 D f R {} b) Wie verhält sich der Graph von f(), wenn gegen + geht? ( Pkt.) lim + lim / (/) +(/ ) lim f() (4 Punkte) Eine Kugel wird senkrecht nach oben geworfen. Ihre Höhe h (in Metern) zum Zeitpunkt t (in Sekunden) berechnet sich nach der Formel h8t t a) In welcher Höhe befindet sich die Kugel nach 3 Sekunden? ( Pkt.) h(3)8 3 9 h 66m b) Was ist die höchste Höhe, die erreicht wird, und nach wie viel Sekunden wird sie erreicht? (3 Pkt.) Scheitelpunktform der allgemeinen Parabel: a( S ) + S 0 Quadratische Ergänzung: t +8t (t 7) +980 Oder: Ableiten der Funktion: h 4t +80 t7 h(7) h ma 98m t ma 7s

12 8.6. ( Punkte) Welches der folgenden Bilder beschreibt den Graphen der Funktion ln( +) 8. Abbildung 8.: f()ln( +) Abbildung 8.: f()ln(); >0 Abbildung 8.3: f() Abbildung 8.4: f() 3 5 +

13 9. Logik, Kombinatorik und Wahrscheinlichkeit 9.. ( Punkte) Wie groß ist die Wahrscheinlichkeit, mit einem Würfel zweimal hintereinander eine 6 zu würfeln? P bzw % 9.. ( Punkte) Wie oft muss eine Münze (mit Wappen und Zahl) geworfen werden, damit mit mindestens 80 % iger Wahrscheinlichkeit mindestens einmal eine Zahl vorkommt? 0,5 n 0,8 0,5 n <0,. 0,5 0,5>0,, 0,5 3 0,5<0, n3 mal 9.3. ( Punkte) In einem Topf befinden sich sieben Zettel mit den Ziffern,...,7. Anna zieht zwei Zettel und legt sie in aufsteigender Reihenfolge der Ziffern aneinander. Wie viele zweistellige Zahlen kann Sie auf diese Art und Weise bekommen? N 7! (7 )!! ( Punkte) Für alle Elemente einer Menge M R gilt > 30. Muss dann schon >5 für alle M gelten? Begründen Sie Ihre Antwort. ja. nein. Da auch für Werte < 30 gilt > 30; falsch ist die Begründung, dass etwa 5, < 30. Es ist nämlich nicht danach gefragt, ob für alle Zahlen >5schon gilt > 30, sondern ob alle Zahlen, deren Quadrat größer als 30 ist schon größer als 5 sein müssen (3 Punkte) Zeigen Sie mit vollständiger Induktion: ++ +n n(n +) n: linke Seite; rechte Seite. n n +: Induktionsannahme: ++ +n n(n+) für alle n. ++ +n+n+ n(n+) +n+ Ind. Ann. n(n+)+(n+) (n+)((n+) ( Punkte) Anton sagt: Bertram lügt, Bertram sagt Claus lügt und Claus sagt Anton und Bertram lügen. Wer von den dreien sagt die Wahrheit? Bertram

14 Mittels Ausschlussverfahren: Annahme : Anton sagt die Wahrheit Bertram lügt Claus sagt die Wahrheit Anton lügt Annahme : Bertram sagt die Wahrheit Claus lügt Anton oder/und Bertram sagen die Wahrheit Annahme 3: Claus sagt die Wahrheit Anton lügt und Bertram lügt. Doch da Anton lügt Bertram sagt die Wahrheit Widerspruch zu Bertram lügt. Oder mittels Wahrheitstafel: A B C A B B C C A B w w w w f f w f w f f w w w f w w f w f f f w f f w w w f f f w f w w w f f w f f w f f f f w w

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig

Mehr

Mathematik-Verlag. Mathematik-Verlag, www.matheverlag.com Kopieren und Ausdrucken verboten!

Mathematik-Verlag. Mathematik-Verlag, www.matheverlag.com Kopieren und Ausdrucken verboten! Mathematik-Verlag Algebra: Quadratische Gleichungen 1. Wie lautet die p, q Formel zur Lösung der quadratischen Gleichung x 2 + px + q = 0? 2. Berechne mit der p, q Formel die Lösungen der Gleichungen:

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Mathematik Berufskolleg zur Erlangung der Fachhochschulreife

Mathematik Berufskolleg zur Erlangung der Fachhochschulreife Mathematik Berufskolleg zur Erlangung der Fachhochschulreife INHALTSVERZEICHNIS. GRUNDLAGEN. DAS KOORDINATENSYSTEM. DARSTELLUNG VON GERADEN. SEITENVERHÄLTNISSE IM RECHTWINKLIGEN DREIECK 4. WEITERE GERADENGLEICHUNGEN

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Logo-Aufgaben mit Verbindung zur Mathematik

Logo-Aufgaben mit Verbindung zur Mathematik Logo-Aufgaben mit Verbindung zur Mathematik Student: Dozent: Prof. Juraj Hromkovic Datum: 13.06.007 Logo-Kenntnisse Für die Lösung der Aufgaben werden folge Logo-Befehle benötigt: Arithmetik: +, -, *,

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Formelsammlung zur Kreisgleichung

Formelsammlung zur Kreisgleichung zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2011. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2011. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2011 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten Wenn du deine Arbeit abgibst,

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Elemente Der Mathematik

Elemente Der Mathematik Elemente Der Mathematik Vertiefungsfach Einführungsphase Teil 1 (ISBN: 978-3-507-87100-7) Lösungen zu den Übungsaufgaben Schroedel 1 Lineare Funktionen und Gleichungen 1.1 Lineare Terme und Gleichungen

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

Erfolg im Mathe-Abi 2012

Erfolg im Mathe-Abi 2012 Gruber I Neumann Erfolg im Mathe-Abi 2012 Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Windkraftanlage... 5 2 Heizkosten... 6 3

Mehr

Mathematik für Techniker

Mathematik für Techniker Mathematik für Techniker 5. Auflage mit 468 Bildern, 531 Beispielen und 577 Aufgaben mit Lösungen rs Fachbuchverlag Leipzig im Carl Hanser Verlag Inhaltsverzeichnis 1 Rechenoperationen 15 1.1 Grundbegriffe

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten.

Die grau geschriebenen Inhalte sind verschiedenen Leitideen zugeordnet, und somit doppelt vertreten. Kepler-Gymnasium Freudenstadt Mathematikcurriculum Klasse 9/10 Legende: Kerncurriculum: normale Darstellung Schulcurriculum: gelb hinterlegt Wahlberreich: blaugrau unterlegt und (geklammert) Die grau geschriebenen

Mehr

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel

Mehr

Mathematik für das Ingenieurstudium Lösungen der Aufgaben. 4. Dezember 2014

Mathematik für das Ingenieurstudium Lösungen der Aufgaben. 4. Dezember 2014 Mathematik für das Ingenieurstudium Lösungen der Aufgaben Jürgen Koch Martin Stämpfle 4. Dezember 4 Inhaltsverzeichnis Grundlagen 5 Lineare Gleichungsssteme 9 Vektoren 7 4 Matrizen 5 Funktionen 9 6 Differenzialrechnung

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik

Übergang Klasse 10/E1 (G9) und Klasse 9/E1 (G8) Mathematik. Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik Fachberatung Mathematik Hilde Zirkler Goethe-Gymnasium Bensheim Bensheim, im Juni 0 Übergang Klasse 0/E (G9) und Klasse 9/E (G8) Mathematik Übungsaufgaben zum Mittelstufenstoff im Fach Mathematik. Lineare

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften Brückenkurs Mathematik Mathe: Das x der Ingenieurwissenschaften Gewöhnliche Differentialgleichungen, lineare Algebra oder Integralrechnung vertiefte Kenntnisse der Mathematik sind Voraussetzung für den

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 00 im Fach Mathematik 6. Mai 00 LÖSUNGEN UND BEWERTUNGEN Mittlerer Schulabschluss 00, schriftliche

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

THÜRINGER KULTUSMINISTERIUM

THÜRINGER KULTUSMINISTERIUM Prüfungstag: Mittwoch, 16. Juni 1999 Prüfungsbeginn: 8.00 Uhr THÜRINGER KULTUSMINISTERIUM Realschulabschluss 1998/99 MATHEMATIK Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung. Kanton St.Gallen Bildungsdepartement. BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Kanton St.Gallen Bildungsdepartement BMS/FMS/WMS/WMI Aufnahmeprüfung Frühling 2015 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Die Korrekturanleitung legt die Verteilung der Punkte auf die einzelnen

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 01/01 Mathematik. Juni 01 09:00 Uhr Unterlagen für die Lehrkraft 1. Aufgabe: Differentialrechnung

Mehr

Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglichkeit eines Computers im Mathematikunterricht mit dem mathbu.

Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglichkeit eines Computers im Mathematikunterricht mit dem mathbu. Computer im mathbuch Detaillierte Auflistung der Verwendungsmöglich eines Computers im Mathematikunterricht mit dem mathbu.ch 7 9 / 9+ Sj LU Aufgabe(n) Adressat Lernphase Mathematischer Inhalt Beschreibung

Mehr

Inhalt. Vorkurs Mathematik für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik. Visitenkarte.

Inhalt. Vorkurs Mathematik für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik. Visitenkarte. für Studierende der Wirtschaftswissenschaften, Gesundheitsökonomie und Drucktechnik Dr. Michael Stiglmayr Bergische Universität Wuppertal Fachbereich C - und Informatik Wintersemester 01/016 Inhalt Grundlagen

Mehr

Lösungen zu delta 11. Fit für die Oberstufe Lösungen zu den Seiten 6 und 7

Lösungen zu delta 11. Fit für die Oberstufe Lösungen zu den Seiten 6 und 7 Lösungen zu delta Fit für die Oberstufe Lösungen zu den Seiten 6 und 7. a) 4 = ; 9 = 4; = 6 X G; L = { 6} b) ( 4) + 8 = ( + 4); 8 + 8 = 4; + 0 = ; 4 = ; = =, X G; L = {,} 4 c) + 7 = 0; + 7 = 0; = 7 G;

Mehr

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a)

Übungen lineare Gleichungssysteme - Lösungen 1. Bestimme die Lösungsmenge und führe eine Probe durch! a) Übungen lineare Gleichungssysteme - Lösungen. Bestimme die Lösungsmenge und führe eine Probe durch! a) b) c) 2x5y=23 2x 3y= 6x0y=64 6x 2y=6 2x3y=20 5x y=33 2x5y=23 2x 3y= 2x5y=23 2x3y= 8y=24 : 8 y=3 6x0y=64

Mehr

Realschulabschluss Schuljahr 2006/2007. Mathematik

Realschulabschluss Schuljahr 2006/2007. Mathematik Prüfungstag: Mittwoch, 3. Juni 2007 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2006/2007 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 50 Minuten.

Mehr

TEST Basiswissen Mathematik für Ingenieurstudiengänge

TEST Basiswissen Mathematik für Ingenieurstudiengänge TEST Basiswissen Mathematik für Ingenieurstudiengänge Erste Fassung März 2013 Dieser Test beinhaltet Aufgaben zu den wesentlichen Themen im Bereich Mathematik, die Basiswissen für ein Ingenieurstudium

Mehr

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005

Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Schulinterne Richtlinien Mathematik auf der Grundlage des Kernlehrplans 2005 Klasse 5 I Natürliche Zahlen 1 Zählen und darstellen 2 Große Zahlen 3 Rechnen mit natürlichen Zahlen 4 Größen messen und schätzen

Mehr

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfung am Ende der Jahrgangsstufe 10 Schriftliche Prüfung Schuljahr: 014/015 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 135 Minuten. Jede

Mehr

Abitur 2011, Analysis I

Abitur 2011, Analysis I Abitur, Analysis I Teil. f(x) = x + 4x + 5 Maximale Definitionsmenge: D = R \ {,5} Ableitung: f (4x + 5) (x + ) 4 8x + 8x (x) = (4x + 5) = (4x + 5) = (4x + 5). F(x) = 4 x (ln x ); D F = R + F (x) = 4 x

Mehr

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 013 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Löse die Aufgaben auf diesen Blättern. Der Lösungsweg

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Eingangstest lineare Gleichungssysteme

Eingangstest lineare Gleichungssysteme Eingangstest lineare Gleichungsssteme Lineare Gleichung mit einer Variablen Löse die Gleichung. 7 + = 0 ( + 9) = 5 8 c) ( 7) = ( + 8) = = = 5 Stelle zu den Sachproblemen geeignete Gleichungen auf und löse

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

2011/2012 Abitur Sachsen - Leistungskurs Mathematik Nachtermin

2011/2012 Abitur Sachsen - Leistungskurs Mathematik Nachtermin Schriftliche Abiturprüfung Leistungskurs Mathematik - Nachtermin Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt...2 Aufgabe A...2 Aufgabe B 1...3 Aufgabe

Mehr

Lösungen zur Prüfung 2009: Pflichtbereich

Lösungen zur Prüfung 2009: Pflichtbereich 009 Pflichtbereich Lösungen zur Prüfung 009: Pflichtbereich ufgabe P1: erechnung des lächeninhalts G : ür den lächeninhalt des Dreiecks G gilt (siehe igur 1): G = Man muss also zuerst die Länge G und die

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Rheinland-Pfalz. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Rheinland-Pfalz Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Vorwort Vorwort Erfolg von Anfang an Dieses Übungsbuch ist auf die

Mehr

Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie

Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Vorkurs Mathematik für Studierende technischer Fächer und für Studierende der Chemie Prof. Dr. M. Heilmann Fachbereich C, Mathematik Bergische Universität Wuppertal September 0 c 0 Heilmann, Bergische

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 00 im Fach Mathematik 6. Mai 00 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene

Mehr

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007

Winkelfunktionen. Dr. H. Macholdt. 21. September 2007 Winkelfunktionen Dr. H. Macholdt 21. September 2007 1 1 Altgrad, Bogenmaß und Neugrad Die Einteilung eines Kreises in 360 Grad ist schon sehr alt und geht auf die Sumerer zurück, die offensichtlich von

Mehr

Über den Autor 9 Einleitung 21

Über den Autor 9 Einleitung 21 Inhaltsverzeichnis Über den Autor 9 Einleitung 21 Zu diesem Buch 21 Konventionen in diesem Buch 22 Wie Sie dieses Buch einsetzen 22 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 23

Mehr

Elemente der Analysis I: Zusammenfassung und Formelsammlung

Elemente der Analysis I: Zusammenfassung und Formelsammlung Elemente der Analysis I: Zusammenfassung und Formelsammlung B. Schuster/ L. Frerick 9. Februar 200 Inhaltsverzeichnis Grundlagen 5. Mengen und Zahlen................................ 5.. Mengen...................................

Mehr

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar?

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar? MATHEMATISCHER FITNESSTEST - LÖSUNGEN DR. ROGER ROBYR Die Aufgaben sollten alle ohne Unterlagen und ohne programmierbare oder graphikfähige Rechner gelöst werden können. Lösung. ) Gegeben sind die Mengen

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik).

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). 1) Handytarif Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). Euro Gesprächsminuten Tragen Sie in der folgenden Tabelle ein, welche Bedeutung

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

1 Logarithmische Skalierung

1 Logarithmische Skalierung Stephan Peter Wirtschaftsingenieurwesen WS 5/6 Mathematik Serie 3 Zinsrechnung Kaufmännisches Rechnen Da sind diese zwei Typen, die eine Lastwagenladung Wassermelonen zu einem Dollar das Stück gekauft

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

W. Schäfer/K. Georgi/G. Trippier. Mathematik-Vorkurs

W. Schäfer/K. Georgi/G. Trippier. Mathematik-Vorkurs W. Schäfer/K. Georgi/G. Trippier Mathematik-Vorkurs Mathematik- Vorkurs Übungs- und Arbeitsbuch für Studienanfänger Von Prof. Dr. rer. nat. habil. Wolfgang Schäfer Oberstudienrat Kurt Georgi und Doz. Dr.

Mehr

Becker I Brucker. Erfolg in Mathe 2015. Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen

Becker I Brucker. Erfolg in Mathe 2015. Realschulabschluss Baden-Württemberg Wahlteil. Übungsbuch mit Tipps und Lösungen Becker I Brucker Erfolg in Mathe 2015 Realschulabschluss Baden-Württemberg Wahlteil Übungsbuch mit Tipps und Lösungen Inhaltsverzeichnis Vorwort 1 Aufgaben 5 1 Algebra.......................................

Mehr

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 000 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - GM1. INFINITESIMALRECHNUNG I. 10

Mehr

Lineare Funktionen. Danach will er sich eine Tabelle anlegen, um einen Überblick der Kosten für mehrere Stunden zu erhalten:

Lineare Funktionen. Danach will er sich eine Tabelle anlegen, um einen Überblick der Kosten für mehrere Stunden zu erhalten: Lineare Funktionen Einleitung: Jan besitzt eine Playstation von der er weiß, dass sie einen Stromverbrauch von 00 Watt hat. Der Stromversorger seiner Stadt berechnet 0, pro Kilowattstunde (kwh). Jan überlegt

Mehr

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

Abiturprüfung Grundkurs 1995/96 und 1996/97

Abiturprüfung Grundkurs 1995/96 und 1996/97 Inhalt Vorwort............................................. Mecklenburg-Vorpommern 99/97....................... Aufgaben.................................... Erwartungsbilder.............................

Mehr

Realschule Bayern C.C. BUCHNER

Realschule Bayern C.C. BUCHNER Realschule Bayern Herausgegeben von Michael Kleine und Patricia Weiler Bearbeitet von Andreas Gilg, Michael Kleine, Evelyn Mühlbauer, Andreas Schüßler, Andreas Strobel, Katja Trost, Patricia Weiler, Simon

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik. 18. Mai 2011 LAND BRANDENBURG Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2011 im Fach Mathematik 18.

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Repetitionsaufgaben: Lineare Gleichungen

Repetitionsaufgaben: Lineare Gleichungen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern

Mehr