Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Größe: px
Ab Seite anzeigen:

Download "Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I"

Transkript

1 Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik für Iformatiker I Lösug zu Aufgabe : Die atürliche Zahl sei ud habe im Dezimalsystem die Zifferdarstellug (a m... a 0 ) 0, es ist also a m 0 m + a m 0 m + + a 0 + a 0 mit a i {0,,..., 9} (vgl. Kapitel 8 der Vorlesug). Mittels der modulare Arithmetik (Kapitel 6) schließe wir aus 0 mod 3, dass a m m + a m m + + a + a 0 a m + a m + + a + a 0 gilt. Der Ausdruck i der letzte Zeile ist gerade die Quersumme vo. Also lässt die Zahl bei Divisio durch 3 stets deselbe Rest wie ihre Quersumme; we die Quersumme durch 3 teilbar ist (also de Rest 0 lässt), da trifft dies auch für zu. Lösug zu Aufgabe 2: Wir beutze de euklidische Algorithmus (Kapitel 6). Da wir im Rig der Polyome i eier Variable arbeite, sid die Divisioe mit Rest als Polyomdivisioe auszuführe (Kapitel 9). Wir begie daher mit der Polyomdivisio (x 3 3x 2 + 5x 3) : (x 3 ). (Amerkug: Da beide Polyome vom gleiche Grad sid, ist es gleichgültig, welches Polyom wir zuerst als Divisor ehme begit ma also umgekehrt mit (x 3 ) : (x 3 3x 2 + 5x 3), gelagt ma ebeso zur richtige Lösug!) (x 3 3x 2 + 5x 3) : (x 3 ), Rest 3x 2 + 5x 2 (x 3 ) 3x 2 + 5x 2

2 Damit wisse wir, dass ggt(x 3 3x 2 + 5x 3, x 3 ) ggt(x 3, 3x 2 + 5x 2) gilt, ud fahre fort mit der Polyomdivisio (x 3 ) : ( 3x 2 + 5x 2) x 5, Rest 9 9 (x x2 + 2 x) 3 ( 5 3 x2 2 3 x ) ( 5 3 x x ) Damit habe wir 9 9 x 9 9 ggt(x 3 3x 2 + 5x 3, x 3 ) ggt( 3x 2 + 5x 2, 9 9 x 9 9 ). Da es für die Teilbarkeit vo Polyome über IR auf (vo 0 verschiedee) kostate reelle Faktore icht akommt, dürfe wir das zweite Polyom mit 9 9 multipliziere ud erhalte ggt(x 3 3x 2 + 5x 3, x 3 ) ggt( 3x 2 + 5x 2, x ). (Amerkug: Diese Umformug diet ur der Vereifachug. Verwedet ma weiterhi das Polyom 9x 9, so geht alles Weitere ebeso, ur dass ma 9 9 Brüche als Koeffiziete erhält.) Da die ächste Polyomdivisio ( 3x 2 + 5x 2) : (x ) 3x + 2 ( 3x 2 + 3x) (2x 2) (2x 2) 0 ohe Rest aufgeht, ist x Teiler vo 3x 2 + 5x 2 ud damit ggt(x 3 3x 2 + 5x 3, x 3 ) x. (Amerkug: We ma mit 9 9 x 9 9 arbeitet, so fidet ma dieses Polyom auch als ggt. Das ist ei ebeso korrektes Resultat.)

3 Lösug zu Aufgabe 3: a) Um die Verküpfugstafel der Multiplikatio i R zu vervollstädige, beutze wir die Distributivgesetze x (y + z) x y + x z ud (x + y) z x z + y z. Da lt. Verküpfugstafel gilt d b+c, folgt d d d (b+c) d b+d c ud mit d b b, d c c schließlich d d d. Wede wir d b + c im erste statt zweite Faktor vo d d a, so folgt aalog d d (b + c) d b d + c d b d + a. Zwar ist b d och icht bekat, doch kee wir bereits d d d ud sehe daher durch Eisetze, dass d b d + a gilt, also b d d a. Aus der Additiostafel ist ersichtlich, dass d a d gilt (de d ist das (eizige) Elemet, das zu a addiert d ergibt). Somit habe wir b d d. Wege c b + d ist b c b b + b d b + d c. Wiederum aus c b + d folgt c b b b + d b b + b a. Schließlich folgt aus c b + d och c c c b + c d a + a a. Die vervollstädigte Tafel lautet also a b c d a a a a a b a b c d c a a a a d a b c d b) Die Verküpfugstafel der Multiplikatio ist icht symmetrisch zur Diagoale, z. B. ist (wie sogar scho ohe die Vervollstädigug aus Teilaufg. a) ersichtlich ist) d c c a c d. Damit ist der Rig R icht kommutativ. c) Setzt ma e b, so gilt für alle x R die Gleichheit e x x. Das Gleiche trifft zu, we ma e d setzt. Da allerdigs lt. Teilaufg. b) R bezüglich der Multiplikatio eie icht kommutative Halbgruppe ist, müsste für ei Eiselemet e zusätzlich gelte, dass für alle x R auch x e x gilt. Das ist weder für b och für d der Fall wie ma ebefalls sehe ka, ohe Teilaufg. a) gelöst zu habe, de es ist d b b (wäre b Eiselemet, so müsste das gleich d sei) ud c d a (wäre d Eiselemet, so müsste dies c sei).

4 Damit ist R kei Rig mit Eis. Amerkug: I der Vorlesug, Def. 8.2, ist ur die erste Eigeschaft eies Eiselemetes/eutrale Elemetes erwäht. Für Gruppe (auch solche, die icht kommutativ sid) ist das tatsächlich ausreiched, weil die zweite Eigeschaft da automatisch folgt. Wie das Beispiel dieser Aufgabe zeigt, ist das bei Halbgruppe aders. I der Bemerkug zu Def. 8.2 kommt das icht gaz klar zum Ausdruck, deswege wird diese Feiheit auch i der Klausur keie Rolle spiele, versproche! Lösug zu Aufgabe 4: a) Durch Ausmultipliziere überzeugt ma sich leicht davo, dass gilt ( + ) ( + + ) +. Da der zweite Faktor für IN stets positiv ist, ka dividiert ud da gekürzt werde, sodass wir erhalte a Der Grezwert dieses Ausdrucks ka umehr mittels der Grezwertsätze bestimmt werde. Es gelte ämlich uter der Voraussetzug, dass alle Grezwerte existiere, die Gleichheite a + + ( ) ud, da existiert ud gleich 0 ist, a ( + + ) ( + ) +

5 b) Wir uterscheide drei Fälle i Abhägigkeit vo x. Fall : 0 < x <. Da erhalte wir a Fall 2: x. Da ist x x + a + x x Fall 3: x >. I diesem Fall bekomme wir a x + x x x Dass der Quotiet für gege 0 strebt, ka beispielsweise x wie folgt über das Majoratekriterium achgewiese werde: Zu jedem x > gibt es ei 0 IN mit x > + 0. Da ist y : x +/ 0 >. Somit gilt für jedes IN, > 0, dass (+)/x+ +/ < +/ 0 /x x x. Damit wird die utersuchte Folge durch eie geometrische Folge mit y dem Quotiete q : /y majorisiert ud geht daher gege 0. c) Wir bezeiche wie üblich die Glieder der Reihe mit a, also a : x x 2 +. Um das Quotietekriterium awede zu köe, forme wir zuächst um Wir uterscheide vier Fälle. Fall : x <. Da ist a + x+ a x x2 + x2+ + x x x a + a x ( x ) x 2 + x x2 + x2+2 + x x. Nach dem Quotietekriterium ist die Reihe damit absolut koverget.

6 Fall 2: x +. Hier hilft das Quotietekriterium icht weiter (Quotiet kostat ), aber die Reihe selbst hat die Gestalt x x ud ist damit bestimmt diverget mit Grezwert +. Fall 3: x. Auch hier versagt das Quotietekriterium (Quotiet diesmal kostat ), doch die Reihe lautet x x 2 + ist also ubestimmt diverget. ( ) , Fall 4: x >. Wir erhalte hier ( ) a + a x + x 2 + x x 2 x + x 2 2 x x. Da /x < ist, ist die Reihe ach dem Quotietekriterium absolut koverget. Zusammefassed stelle wir also fest, dass die Reihe für alle x ± absolut kovergiert, für x + bestimmt gege + ud für x ubestimmt divergiert. Lösug zu Aufgabe 5: Ma ka de Graphe eier Fuktio f als Kurve c f : [, + ) IR 2, t (t, f(t)) auffasse. Sie ist eie C -Kurve (Vorlesug 32.4), de f ist (midestes) eie C -Fuktio über [0, + ). Damit ergibt sich für ċ f (t) : ċ f (t) (, f (t)) + (f (t)) 2 Für die Bogelägefuktio (Vorlesug 32.0) zum Startpukt x gilt also S f (t) ċ f (τ) dτ + (f (τ)) 2 dτ.

7 Die Berechug vo S f (t) für userem kokrete Fall f(x) x 2 l x 8 lautet u: S f (t) ċ f (τ) dτ 2 + ( 2τ ) 2 dτ 8τ 4τ τ dτ 2τ + [ 8τ dτ τ 2 + l τ 8 ] τt + 4τ τ dτ ( 2τ + 8τ τ ) 2 dτ t 2 + l t 8. Lösug zu Aufgabe 6: Ei Schritt eier eifachste Polyomdivisio führt zur folgede Zerlegug des Itegrade 2x 2 x 2 4x x 6 x 2 4x + 3. Der Bruch wird durch eie Partialbruchzerlegug weiter aufgespalte: Die Nullstelle vo x 2 4x+3 sid ud 3, also x 2 4x+3 (x )(x 3). Wir mache de Asatz 8x 6 x 2 4x + 3 A x + B x 3 A(x 3) + B(x ) (x )(x 3) Ei Koeffizietevergleich führt zum Gleichugssystem A + B 8, 3A + B 6. (A + B)x (3A + B) (x )(x 3) Um dieses System zu löse, subtrahiert ma z. B. die. Gleichug vo der 2. ud erhält A ; dies ergibt mit der. Gleichug, dass B 9. Also hat ma mit der vollstädige Zerlegug des Itegrade 2x 2 x 2 4x + 3 dx 2 dx x dx + 9 x 3 dx 2x l x + l x 3 + C

8 ud schließlich 2x 2 x 2 4x + 3 mit Itegratioskostate C. Lösug zu Aufgabe 7: dx 2x + l x 3 x + C Es hadelt sich bei der Gleichug um eie sogeate Differezialgleichug. Um die Richtigkeit der Gleichug achzuweise, muss ma die etsprechede Ableitugsfuktioe bilde ud sie eisetze. Dazu ist im Wesetliche die Produktud die Ketteregel zu beutze. Für f ergibt sich f (x) A e x ( ) cos(x + ϕ) + A e x ( si(x + ϕ)) A e x (cos(x + ϕ) + si(x + ϕ)). f (x) A e x ( )(cos(x + ϕ) + si(x + ϕ)) + ( A) e x ( si(x + ϕ) + cos(x + ϕ)) 2A e x si(x + ϕ) Zusammefassed ergebe sich daraus die Gleichuge 2f(x) 2A e x cos(x + ϕ), 2f (x) 2A e x (cos(x + ϕ) + si(x + ϕ)), f (x) 2A e x si(x + ϕ). Es ist sofort zu sehe, dass die Additio dieser drei Gleichuge für alle x, A, ϕ ach sich zieht. Lösug zu Aufgabe 8: f (x) + 2f (x) + 2f(x) 0 Die Fuktio f(x) arcta x ist stetig differezierbar ud hat als Ableitug 2 f (x) 2 < 0 für x [0, ]. + x2 Also ist f(x) streg mooto falled i [0, ], ud damit immt die Fuktio i 0 ihre größte ud i ihre kleiste Wert a: max{f(x) x [0, ]} f(0), mi{f(x) x [0, ]} f() 2 π 4 π 8 > 0,

9 Folglich bildet f das Itervall [0, ] i sich ab: f : [0, ] [ π, ] [0, ]. Die 8 Kotraktioskostate L berechet sich ach Satz 26.5 über L sup{ f (x) : x [0, ]}. Um dieses Supremum zu bestimme, bemerkt ma zuächst, dass f (x) streg mooto steiged ud stets egativ ist. Folglich ist f (x) f (x) streg mooto falled i [0, ]. Da f (x) auch im gaze Itervall och stetig ist, wird das Supremum im Pukt 0 ageomme: L sup{ f (x) : x [0, ]} f (0) 2 <. Damit ist f als kotrahiered erkat. Wir führe eie Fixpuktiteratio x + f(x ) mit Startwert x durch. (Da i der Aufgabestellug kei Startwert spezifiziert war, sid Lösuge mit aderem Startwert selbstverstädlich ebefalls korrekt.) Die auf 8 Nachkommastelle gerudete Werte der erste 8 Iteratioe laute Näherugswert Näherugswert Der letzte Wert wird bei dieser Rechegeauigkeit durch weitere Iteratioe icht mehr verädert. Lösug zu Aufgabe 9: Um achzuweise, dass das agegebee System S : { + si t + 2 si 2t, 2 + si 2t, + si t} aus drei trigoometrische Fuktioe eie Basis des vo dem System B : {, si t, si 2t} aufgespate Raumes V ist, geügt es, die Uabhägigkeit der Fuktioe { + si t + 2 si 2t, 2 + si 2t, + si t} zu zeige. De jede Fuktio aus S ist Liearkombiatio vo vo Elemete aus B, ud damit spae die Fuktioe aus S etweder de Raum V oder ur eie echte

10 Uterraum vo V der Dimesio 2 auf. Letzteres wäre aber ur möglich, we die drei Fuktioe aus S liear abhägig wäre. Zur Utersuchug der lieare Uabhägigkeit stelle wir die Nullfuktio als Liearkombiatio der Fuktioe aus S dar: λ ( + si t + 2 si 2t) + λ 2 (2 + 2 si 2t) + λ 3 ( + si t) 0 für alle t. Nach Satz 34.2 bedeutet Uabhägigkeit u, dass hieraus λ λ 2 λ 3 0 folgt. Koeffizietevergleich führt auf das Gleichugssytem (I) λ + 2λ 2 + λ 3 0 (II) λ λ 3 0 (III) 2λ + λ Dieses muss gelöst werde. Beispielsweise folgt mit der Subtraktio (I) (II), dass λ 2 0; aus (III) folgt damit λ 0 ud letztlich aus (II), dass λ 3 0. Dies beweist die Uabhägigkeit der Fuktioe i S, die damit eie Basis vo V bilde.

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

Aufgaben zur Analysis I

Aufgaben zur Analysis I Aufgabe zur Aalysis I Es werde folgede Theme behadelt:. Logik, Iduktio, Mege, Abbilduge 2. Supremum, Ifimum 3. Folge, Fuktioefolge 4. Reihe, Potezreihe 5. Mootoie ud Stetigkeit 6. Differetialrechug 7.

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

Bitte schicken Sie mir eine E-mail, wenn Sie einen Fehler gefunden haben 1. Moritz Kaßmann

Bitte schicken Sie mir eine E-mail, wenn Sie einen Fehler gefunden haben 1. Moritz Kaßmann Das folgede Skript zur Vorlesug Spezielle Aspekte der Aalysis für Studierede des Lehramts a Grud, Haupt ud Realschule wird fortlaufed aktualisiert ud verädert werde. Das Skript ethält bei weitem icht alle

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Mathematik Abiturwissen. Script von Michael Telgkamp Vorlesung Dr. Bruder

Mathematik Abiturwissen. Script von Michael Telgkamp Vorlesung Dr. Bruder Mathematik Abiturwisse Script vo Michael Telgkamp Vorlesug Dr. Bruder . Eiführug Abiturwisse Mathematik / 9. Zahlebereiche: N atürliche Zahle Z gaze Zahle Q ratioale Zahle R reelle Zahle C komplee Zahle

Mehr

Nennenswertes zur Stetigkeit

Nennenswertes zur Stetigkeit Neeswertes zur Stetigkeit.) Puktweise Stetigkeit: Vo Floria Modler Defiitio der pukteweise Stetigkeit: Eie Fuktio f : D R ist geau da i x D stetig, we gilt: ε > δ >, so dass f ( x) f ( x ) < ε x D mit

Mehr

Ein kleines Einmaleins über Mittelwertbildungen

Ein kleines Einmaleins über Mittelwertbildungen Vorlesugsergäzug zur Igeieurmathematik R.Brigola Ei kleies Eimaleis über Mittelwertbilduge Grudlage über arithmetische Mittel, geometrische Mittel, harmoische Mittel, quadratische Mittel ud das arithmetisch-geometrische

Mehr

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6 65 Eric Müller Vollstädige Iduktio Nach GIUSEPPE PEANO (858-93) ka ma die Mege N der atürliche Zahle durch folgede Axiome defiiere []:. ist eie atürliche Zahl.. Zu jeder atürliche Zahl gibt es geau eie

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Serie 10 Humboldt-Uiversität zu Berli Istitut für Mathematik Prof. A. Griewak Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jase Übugsaufgabe zur Vorlesug ANALYSIS I (WS 2/3) Serie 0 Musterlösug S.

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Vertiefugsstudium Modul XI: Volkswirtschaftslehre Lösugshiweise zur 1. Musterklausur

Mehr

Mengenbegriff und Mengendarstellung

Mengenbegriff und Mengendarstellung R. Brikma http://brikma-du.de Seite 1 05.10.008 Megebegriff ud Megedarstellug Eie Mege, ist die Zusammefassug bestimmter, wohluterschiedeer Objekte userer Aschauug ud useres Dekes welche Elemete der Mege

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a)

x 2 + 2 m c Φ( r, t) = n q n (t) φ n ( r) (5) ( + k 2 n ) φ n ( r) = 0 (6a) Quatisierug eies skalare Feldes Das Ziel ist eigetlich das elektromagetische Feld zu quatisiere, aber wie ma scho a de MAXWELLsche Gleichuge sehe ka, ist es zu kompliziert, um damit zu begie. Außerdem

Mehr

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen

1 Grenzwerte und Stetigkeit bei Funktionen mehrerer Variablen KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffma SS 204 6.04.204 Höhere Mathematik II für die Fachrichtug Iformatik. Saalübug (6.04.204) Grezwerte ud Stetigkeit

Mehr

10. FOLGEN, REIHEN, GRENZWERTE

10. FOLGEN, REIHEN, GRENZWERTE Folge, Reihe, Grezwerte 0. FOLGEN, REIHEN, GRENZWERTE 0.. Folge (a) Defiitio Betrachtet ma bei eier Fuktio ur jee Fuktioswerte, die sich durch Eisetze vo Argumete aus de atürliche Zahle ergebe, so erhält

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Grundkompetenz-Aufgaben

Grundkompetenz-Aufgaben Durch starte Mathematik übugsbuch bis Grudkompetez-Aufgabe Aufgrud der eue schriftliche Reifeprüfug i Mathematik ist es otwedig, sich mit de eue Grudkompetez-Aufgabe auseiaderzusetze. Die Olie-Ergäzug

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen Beweistechike Vollstädige Iduktio - Beispiele, Erweiteruge ud Übuge Alex Chmelitzki 15. März 005 1 Starke Iduktio Eie etwas abgewadelte Form der Iduktio ist die sogeate starke Iduktio. Bei dieser Spielart

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

2. Gleichwertige Lösungen

2. Gleichwertige Lösungen 8. Gleichwertige Lösuge Für die Lösug jeder lösbare Aufgabe gibt es eie uedliche Azahl vo (abstrakte ud kokrete) Algorithme. Das folgede Problem illustriert, dass eie Aufgabe eifacher oder kompliziert,

Mehr

Mathematik Formelsammlung

Mathematik Formelsammlung Mathematik Formelsammlug Ihaltsverzeichis 1 II.Klasse... 5 1.1 Megelehre... 5 1.2 Zahlemege... 5 1.2.1 Vier Grudrechearte... 5 1.2.2 Vorzeicheregel... 6 1.2.3 Erweiter/Kürze... 6 1.2.4 Reche mit Brüche...

Mehr

2 Amplitudenmodulation

2 Amplitudenmodulation R - ING Übertraggstechik MOD - 16 Aplitdeodlatio Der isträger bietet drei igalparaeter, die wir beeiflsse köe. Etspreched terscheide wir Aplitdeodlatio für die beeiflsste Aplitde, Freqezodlatio d Phaseodlatio

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Stetigkeit und Differenzierbarkeit. Vorlesung zur Didaktik der Analysis

Stetigkeit und Differenzierbarkeit. Vorlesung zur Didaktik der Analysis Stetigkeit ud Dierezierbarkeit Vorlesug zur Didaktik der Aalysis Ihalt Nachtrag: Fuktioegrezwert Stetigkeit Aschauliche Bedeutug Mathematische Präzisierug Topologische Charakterisierug Gleichmäßige Stetigkeit

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Grundlagen der Mathematik II Lösungsvorschlag zum 2. Tutoriumsblatt

Grundlagen der Mathematik II Lösungsvorschlag zum 2. Tutoriumsblatt Mathematisches Istitut der Uiversität Müche Sommersemester 2014 Daiel Rost Lukas-Fabia Moser Grudlage der Mathematik II Lösugsvorschlag zum 2. Tutoriumsblatt Aufgabe 1. a) Die Additios- ud Multiplikatiosoperatioe

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07.

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07. Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 040703 Datum 03.07.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

13 Lösungen zu den Übungsaufgaben

13 Lösungen zu den Übungsaufgaben 3 Lösuge zu de Übugsaufgabe Crahskurs Mathematik für Iformatiker S Juka Kapitel ) Ageomme, es gibt a b A mit gfa)) gfb)) Da f ijektiv ist, gilt fa) fb) Da muss aber auch gfa)) gfb)) gelte, da g ijektiv

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

Wahrscheinlichkeit und Statistik

Wahrscheinlichkeit und Statistik ETH Zürich HS 2015 Prof. Dr. P. Embrechts Wahrscheilichkeit ud Statistik D-INFK Lösuge Serie 2 Lösug 2-1. (a Wir bereche P [W c B] auf zwei Arte: (a Wir betrachte folgede Tabelle: Azahl W W c B 14 6 B

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

HG K J = +. Die Lösung

HG K J = +. Die Lösung 5- Nullstelleverfahre, Löse vo Gleichuge 5 Numerische Lösugsverfahre für Gleichuge Numerische Verfahre köe auch Gleichuge ud Gleichugssysteme löse, für die keie aalytische Lösuge bekat sid. Im Regelfall

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Mote Carlo-Simulatio Mote Carlo-Methode Der Begriff Mote Carlo-Methode etstad i de 1940er Jahre, als ma im Zusammehag mit dem Bau der Atombombe die Simulatio vo Zufallsprozesse erstmals i größerem Stil

Mehr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr

Geometrische Folgen. Auch Wachstumsfolgen Viele Aufgaben. Lösungen nur auf der Mathe-CD Hier nur Ausschnitte. Datei Nr ZAHLENFOLGEN Teil Geometrische Folge Auch Wachstumsfolge Viele Aufgabe Lösuge ur auf der Mathe-CD Hier ur Ausschitte Datei Nr. 00 Friedrich Buckel März 00 Iteretbibliothek für Schulmathematik 00 Geometrische

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Afägerpraktikum Polarisatio vo Licht Gruppe, Team 5 Sebastia Korff Frerich Max 0.07.06 Ihaltsverzeichis. Eileitug -3-. Polarisatio -3-. Dichroismus -4-.3 BREWSTER Wikel -5-.4 Der FARADAY

Mehr

Formelsammlung. zur Klausur. Beschreibende Statistik

Formelsammlung. zur Klausur. Beschreibende Statistik Formelsammlug zur Klausur Beschreibede Statistik Formelsammlug Beschreibede Statistik. Semester 004/005 Statistische Date Qualitative Date Nomial skalierte Merkmalsauspräguge (Uterscheidugsmerkmale) köe

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist.

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist. . Folge ud Reihe.... Folge..... Grudlage.....2 Arithmetische Folge... 2..3 Geometrische Folge... 2.2 Reihe... 2.2. Grudlage... 2.2.2 Arithmetische Reihe... 2.2.3 Geometrische Reihe... 3.3 Eiige spezielle

Mehr

Geodäten im hyperbolischen Raum und Zahlentheorie

Geodäten im hyperbolischen Raum und Zahlentheorie Petridis, Yiais Geodäte im hyperbolische Raum ud Zahletheorie Tätigkeitsbericht 2006 Geodäte im hyperbolische Raum ud Zahletheorie Petridis, Yiais Max-Plack-Istitut für Mathematik, Bo Forschugsbereich

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern HARDWARE-PRAKTIKUM Versuch L-4 Komplexe Schaltwerke Fachbereich Iformatik Uiversität Kaiserslauter Seite 2 Versuch L-4 Versuch L-4 I diesem Versuch soll ei Rechewerk zur Multiplikatio vo zwei vorzeichelose

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

-LERNZENTRUM, ETH ZÜRICH

-LERNZENTRUM, ETH ZÜRICH SEQUENZ, LESETEXT. Eie löchrige Gerade Eis ist gaz klar: Es gibt uedlich viele ratioale Zahle, ud es wird icht möglich sei, auf der Zahlgerade irgedei Itervall zu fide, i dem sich keie eizige ratioale

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012 Techische Uiversität Wie Istitut für Computergraphik ud Algorithme Arbeitsbereich für Algorithme ud Datestrukture 186.813 Algorithme ud Datestrukture 1 VU 6.0 1. Übugstest SS 2012 26. April 2012 Mache

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

2. Einführung in die Geometrische Optik

2. Einführung in die Geometrische Optik 2. Eiührug i die Geometrische Optik 2. Allgemeie Prizipie 2.. Licht ud Materie Optische Ssteme werde ür de Spektralbereich zwische dem extreme Ultraviolette ( m) ud dem thermische Irarote (Q-Bad bei 2

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Aufbaustudium Grüdugscotrollig Lösugshiweise zur 3. Musterklausur Lösugshiweise

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr