Übungen zur Vorlesung Funktionentheorie Sommersemester Musterlösung zu Blatt 0

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0"

Transkript

1 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart, der alte Haudege, hiterließ bei seiem uerwartete Ablebe im Alter vo 107 Jahre auch eie Schatzkarte: Gehe direkt vom Galge zur Palme, da gleich viele Schritte uter rechtem Wikel ach rechts - stecke die erste Fahe! Gehe vom Galge zu de drei Felsbrocke, geausoweit uter rechtem Wikel ach liks - stecke die zweite Fahe! Der Schatz steckt i der Mitte zwische de beide Fahe. Die Erbe startete sofort eie Expeditio auf die Schatzisel. Die Palme ud die markate Felsbrocke ware sofort zu idetifiziere. Vom Galge war keie Spur mehr zu fide. Deoch stieß ma beim erste Spatestich auf die Schatztruhe, obwohl ma die Schritte vo eier (zufällige ud sehr wahrscheilich falsche Stelle aus gezählt hatte. Wie war das möglich? Wo lag der Schatz? Hiweis: Reche Sie i C. Lösug. I der komplexe Zahleebee C bezeiche wir mit P C die Positio der Palme, G C die (ubekate ud daher beliebig gewählte Positio des Galges, B C de Ort, a dem sich die drei Felsbrocke befide, F 1, F C die Pukte, a dee die beide Fahe im Laufe der Schatzsuche eigesteckt werde. S die gesuchte Lage des Schatzes. Da erhalte wir gemäß dem erste Hiweis ud aus dem zweite Hiweis F 1 = G + (P G + e i π (P G = (1 ip + ig F = G + (B G + e i π (B G = (1 + ib ig.

2 Dies ergibt mit dem dritte Hiweis für de gesuchte Ort des Schatzes S = F 1 + F = (1 ip + (1 + ib = P + B + i B P Wir stelle damit fest, dass die Lage S des Schatzes uabhägig vo der Positio des Galges G ist. Dies erklärt, warum auch vo eier beliebige Startpositio aus der Schatz direkt gefude wird. Darüber hiaus ergibt die obige Rechug, dass ma de Schatz auch gemäß der folgede (vereifachte Schatzkarte fide ka: Gehe vo der Palme aus i Richtug der drei Felsbrocke bis zur Hälfte des Weges. Vo dort gehe gleich viele Schritte uter rechtem Wikel ach liks. Sie habe Ihr Ziel erreicht!. Aufgabe. Bestimme Sie de Real- ud Imagiärteil der folgede komplexe Zahle: (a i 1 Lösug. Wir reche ach i 1 = (i 1(1 i ((1 i = ( = i ud erhalte damit: Re ( i 1 ( i 1 = 0 ud Im = 1. (b ( 1 + i, Z Lösug. Wir erier us dara, dass e iϕ = cos(ϕ + i si(ϕ für alle ϕ R gilt, womit wir wege cos( π 4 = 1 ud si( π 4 = 1 umittelbar 1 + i = e i π 4 ud damit ( 1 + i ( = e i π π 4 = cos 4 ( π + i si 4 für alle Z erhalte. Es gilt also ( 1 + i ( π Re = cos 4 ud ( 1 + i ( π Im = si 4.

3 Aufgabe 3. Bestimme Sie alle Lösuge der Gleichug z 3 i = 0. Lösug. Beachte wir, dass i = e i π gilt, so erhalte wir, dass die drei verschiedee Zahle z k := 3 ( ( π exp i 6 + k π für k = 0, 1, 3 die Bedigug zk 3 = i erfülle ud damit Lösuge der obige Gleichug sid. Da diese (wie aus der Algebra bekat ist höchstes drei verschiedee Lösuge besitze ka, sid durch z 1, z, z 3 } bereits alle Lösuge gegebe. Aufgabe 4. Zeige Sie, dass C icht ageordet werde ka, d.h. dass es keie Teilmege P C mit de folgede Eigeschafte gibt: (i Für alle z C mit z 0 gilt etweder z P oder z P. (ii Für alle z 1, z P gilt z 1 + z P. (iii Für alle z 1, z P gilt z 1 z P. Lösug. Wir zeige geauer, dass es keie Mege P C gebe ka, die gleichzeitig die Bediguge (i ud (iii erfüllt. Hierzu mache wir die Aahme, es gäbe eie solche Mege P. Nach (i müsste da wege i 0 etweder die imagiäre Eiheit i oder i i P liege. Wir uterscheide daher die folgede Fälle: Fall 1: Gilt i P, so muss wege (iii auch 1 = i i zu P gehöre. Fall : Gilt i P, so muss wege (iii auch 1 = ( i ( i zu P gehöre. I beide Fälle folgt also 1 P. Für alle 0 z C mit ±z P muss daher auch z P gelte, was aber ach (i offesichtlich icht möglich ist. Der so gefudee Widerspruch beweist usere Behauptug. Aufgabe 5. Skizziere Sie die folgede Teilmege der komplexe Zahleebee: ( (a H := z C z a } Im > 0 für a, b C mit b 0. b Lösug. Wir betrachte zuächst de Spezialfall a = 0 ud b = 1. I diesem Fall ergibt H = z C Im(z > 0} die obere Halbebee H i C. Sid u a, b C mit b 0 gegebe, so liefert Φ : C C, z z a b eie wohldefiierte Abbildug mit Umkehrabbildug Φ 1 : C C, z bz + a, die offesichtlich Φ(H = H bzw. Φ 1 (H = H erfüllt. Um die Geometrie vo H zu verstehe, geügt es daher, das Abbildugsverhalte vo Φ zu utersuche.

4 Wähle wir zu b 0 die Polardarstellug b = re it mit r > 0 ud t [0, π, so beobachte wir, dass sich Φ 1 als die Kompositio Φ 1 = ( z z + a (z rz ( z e it z darstelle lässt, d.h. H geht aus H durch eie Drehug, Streckug ud aschließede Traslatio hervor. (b L := z C z 1 z 1 } 1 + = Lösug. Sei z C i der Polardarstellug z = re it mit r > 0 ud t R beliebig vorgegebe. Wir reche damit ach, dass z 1 1 z z + = 1 = r e it 1 ( = r cos(t 1 + r 4 si (t gilt, weshalb z geau da zu L gehört, we ( r cos(t 1 + r 4 si (t = 1 4 erfüllt ist, also geau da, we r ( r cos(t = 0 ud damit r = 0 oder r = cos(t gilt. Wir köe somit folger L = ± [ cos(te it t π 4, π ]}. 4 Aufgabe 6. Zeige Sie, dass für alle N gilt ( kπ si =. Hiweis: Zeige Sie zuächst, dass ( π z 1 = (z ζ k mit ζ := cos ( π + i si gilt, ud utze Sie 1 ζ k = si( kπ aus.

5 Lösug. Sei N gegebe. Zuächst stelle wir fest, dass die verschiedee Zahle ζ k k = 1,..., } Nullstelle des Polyoms P (z := z 1 sid, de wege ζ = exp(i π erhalte wir (ζ k = ζ k = exp(kπi = 1 für alle k = 1,...,. Da das Polyom P vom Grad aber maximal verschiedee Nullstelle habe ka, folgt z 1 = P (z = (z ζ k. Dies ergibt u wege ζ = 1 z 1 z 1 = (z ζ k für alle z C\1}. Idem wir die like Seite als eie geometrische Summe darstelle, erhalte wir ud daher z 1 lim z 1 z 1 = lim z k = z 1 k=0 = lim z 1 z 1 z 1 = lim z ζ k = 1 ζ k. z 1 Uter Verwedug der Formel 1 ζ k = si( kπ (vo dere Richtigkeit ma sich etwa durch eie elemetargeometrische Bertrachtug überzeugt erhalte wir ud ach Divisio mit schließlich ( kπ = 1 ζ k = si ( kπ si =. Aufgabe 7. Sei E C offe. Zeige Sie die Äquivalez der folgede Aussage: (i E ist zusammehäged, d.h. es gibt keie disjukte ichtleere offee Mege U 1, U C mit U 1 U = E. (ii Jede lokal kostate Fuktio f : E C ist kostat. (Bemerkug: f : E C heißt lokal kostat, we es für alle z E eie offee Umgebug U E vo z gibt, so dass die Restriktio f U kostat ist. Lösug. Da die behauptete Äquivalez im Fall E = trivialerweise gilt, beschräke wir us im Folgede auf de Fall E.

6 (i (ii : Sei E zusammehäged ud f : E C eie lokal kostate Fuktio. Wir wähle z 0 E ud defiiere die beide Teilmege U 1 := z E f(z = f(z 0 } ud U := z E f(z f(z 0 } vo E. Diese sid offebar disjukt ud erfülle U 1 U = E. Da f lokal kostat ist, stelle wir weiter fest, dass U 1 ud U offe sid. Wege z 0 U 1 gilt aber U 1, so dass wir aufgrud der Voraussetzug (i U = ud schließlich U 1 = E folger köe. Also ist f auf E kostat. Dies zeigt (ii. (ii (i : Sei (ii erfüllt. Wir mache die Aahme, dass E icht zusammehäged ist. Dies bedeutet defiitiosgemäß, dass wir disjukte ichtleere offee Mege U 1, U C mit U 1 U = E fide köe. Die Fuktio 1, z U 1 f : E C, z 0, z U ist da wohldefiiert, stetig ud lokal kostat, aber im Widerspruch zu (ii icht kostat. Usere Aahme war also falsch, d.h. E muss zusammehäged sei ud es gilt (i.

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Nachklausur - Analysis 1 - Lösungen

Nachklausur - Analysis 1 - Lösungen Prof. Dr. László Székelyhidi Aalysis I, WS 212 Nachklausur - Aalysis 1 - Lösuge Aufgabe 1 (Folge ud Grezwerte). (i) (1 Pukt) Gebe Sie die Defiitio des Häufugspuktes eier reelle Zahlefolge (a ) N. Lösug:

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

1 Analysis T1 Übungsblatt 1

1 Analysis T1 Übungsblatt 1 Aalysis T Übugsblatt A eier Weggabelug i der Wüste lebe zwei Brüder, die vollkomme gleich aussehe, zwische dee es aber eie gewaltige Uterschied gibt: Der eie sagt immer die Wahrheit, der adere lügt immer.

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Stochastik für WiWi - Klausurvorbereitung

Stochastik für WiWi - Klausurvorbereitung Dr. Markus Kuze WS 2013/14 Dipl.-Math. Stefa Roth 11.02.2014 Stochastik für WiWi - Klausurvorbereitug Gesetz der totale Wahrscheilichkeit ud Satz vo Bayes (Ω, F, P) Wahrscheilichkeitsraum, E 1,..., E F

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Bitte schicken Sie mir eine E-mail, wenn Sie einen Fehler gefunden haben 1. Moritz Kaßmann

Bitte schicken Sie mir eine E-mail, wenn Sie einen Fehler gefunden haben 1. Moritz Kaßmann Das folgede Skript zur Vorlesug Spezielle Aspekte der Aalysis für Studierede des Lehramts a Grud, Haupt ud Realschule wird fortlaufed aktualisiert ud verädert werde. Das Skript ethält bei weitem icht alle

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P)

Wintersemester 2006/2007, Universität Rostock Abgabetermin: spätestens 24.10.2006, 09:00 Uhr. Aufgabe 1.1: (5 P) Serie Abgabetermi: spätestes 24.0.2006, 09:00 Uhr Aufgabe.: 5 P Zeige Sie, dass das geometrische Mittel icht größer ist als das arithmetische Mittel, d.h., dass für alle Zahle a, b R mit a, b 0 gilt ab

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Mathematik Abiturwissen. Script von Michael Telgkamp Vorlesung Dr. Bruder

Mathematik Abiturwissen. Script von Michael Telgkamp Vorlesung Dr. Bruder Mathematik Abiturwisse Script vo Michael Telgkamp Vorlesug Dr. Bruder . Eiführug Abiturwisse Mathematik / 9. Zahlebereiche: N atürliche Zahle Z gaze Zahle Q ratioale Zahle R reelle Zahle C komplee Zahle

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Afägerpraktikum Polarisatio vo Licht Gruppe, Team 5 Sebastia Korff Frerich Max 0.07.06 Ihaltsverzeichis. Eileitug -3-. Polarisatio -3-. Dichroismus -4-.3 BREWSTER Wikel -5-.4 Der FARADAY

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

VAIO-Link Kundenservice Broschüre

VAIO-Link Kundenservice Broschüre VAIO-Lik Kudeservice Broschüre Wir widme us jedem eizele Kude mit der gebührede Aufmerksamkeit, mit großer Achtug ud Respekt. Wir hoffe damit, de Erwartuge jedes Eizele a das VAIO-Lik Kudeservice-Zetrum

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

Geometrische Wahrscheinlichkeiten für nichtkonvexe Testelemente

Geometrische Wahrscheinlichkeiten für nichtkonvexe Testelemente Geometrische Wahrscheilichkeite für ichtkovexe Testelemete Dissertatio zur Erlagug des akademische Grades Dr. rer. at. FerUiversität i Hage Fakultät für Mathematik ud Iformatik vorgelegt vo Dr.-Ig. Uwe

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

HANDBUCH Fettschichtsensor FAU-104

HANDBUCH Fettschichtsensor FAU-104 PROZESSAUTOMATION HANDBUCH Fettschichtsesor FAU-104 ISO9001 Es gelte die Allgemeie Lieferbediguge für Erzeugisse ud Leistuge der Elektroidustrie, herausgegebe vom Zetralverbad Elektroidustrie (ZVEI) e.v.

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Elementare Wahrscheinlichkeitsrechnung und Statistik

Elementare Wahrscheinlichkeitsrechnung und Statistik CURANDO UNIVERSITÄT ULM SCIENDO DOCENDO Elemetare Wahrscheilichkeitsrechug ud Statistik Uiversität Ulm Istitut für Stochastik Vorlesugsskript Prof. Dr. Volker Schmidt Stad: Witersemester 28/9 Ulm, im Februar

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Aussagenlogik Schnelldurchlauf

Aussagenlogik Schnelldurchlauf Aussagelogik Schelldurchlauf Michael Leuschel Softwaretechik ud Programmiersprache Lecture 3 Teil 1: Sprache (Sytax) Bestadteile Atomare Aussage (atomic propositios) Etweder wahr oder falsch (Wahrheitswert,

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Vertiefugsstudium Modul XI: Volkswirtschaftslehre Lösugshiweise zur 1. Musterklausur

Mehr

IM OSTEN VIEL NEUES... Kaufpreis: 350.000,00 Euro 3,57% incl. 19% MwSt für den Käufer

IM OSTEN VIEL NEUES... Kaufpreis: 350.000,00 Euro 3,57% incl. 19% MwSt für den Käufer Immobilie IM OSTEN VIEL NEUES... Courtage: Kaufpreis: 350.000,00 Euro 3,57% icl. 19% MwSt für de Käufer hausudso Immobilie Moltkestr. 14 77654 Offeburg Tel. 0781 9190891 Fax 0781 9190892 Email ifo@hausudso.de

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Leitfaden zu den Zertifikate-Indizes. Discount-Index Outperformance-Index Bonus-Index Kapitalschutz-Index Aktienanleihen-Index

Leitfaden zu den Zertifikate-Indizes. Discount-Index Outperformance-Index Bonus-Index Kapitalschutz-Index Aktienanleihen-Index Leitfade zu de Zertifikate-Idizes Discout-Idex Outerformace-Idex Bous-Idex Kaitalschutz-Idex Aktiealeihe-Idex Fassug vom 22.02.2011 Versiosübersicht Versios- ID 1.00 1.10 1.20 1.30 Datum 28.02.2009 28.04.2009

Mehr

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6

1 = 1. 6 Induktionsannahme: Die Formal gelte für n = k. Induktionsschritt: Gültigkeit der Formel für k+1: 1 2 + 2 2 +... + k 2 + (k + 1) 2 = 2 = 6 = 6 65 Eric Müller Vollstädige Iduktio Nach GIUSEPPE PEANO (858-93) ka ma die Mege N der atürliche Zahle durch folgede Axiome defiiere []:. ist eie atürliche Zahl.. Zu jeder atürliche Zahl gibt es geau eie

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07.

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07. Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 040703 Datum 03.07.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Aufgaben zur vollständigen Induktion

Aufgaben zur vollständigen Induktion c 7 by Raier Müller - Aufgabe zur vollstädige Idutio We ichts aderes agegebe ist, da gelte die Behauptuge für IN {; ; ;...}. A) Teilbareit: ) ist gerade (d.h. durch teilbar). ) ist durch teilbar. ) ist

Mehr

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Byzantinische Einigung im Full-Information-Modell in O(log n) Runden

Byzantinische Einigung im Full-Information-Modell in O(log n) Runden Byzatiische Eiigug im Full-Iformatio-Modell i O(log ) Rude Martia Hüllma Uiversität Paderbor (martiah@upb.de) Zusammefassug. Byzatiische Eiigug stellt ei grudlegedes Problem im Bereich verteilter Systeme

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Grundkompetenz-Aufgaben

Grundkompetenz-Aufgaben Durch starte Mathematik übugsbuch bis Grudkompetez-Aufgabe Aufgrud der eue schriftliche Reifeprüfug i Mathematik ist es otwedig, sich mit de eue Grudkompetez-Aufgabe auseiaderzusetze. Die Olie-Ergäzug

Mehr

3.2 Die Schrödinger-Gleichung

3.2 Die Schrödinger-Gleichung 3. Die Schröiger-Gleichug Oer Wie fie ich ie Wellefuktio eies Teilches Lit: Simo/McQuarrie Die S.G. ka geauso weig hergeleitet were wie ie Newtosche Gesetze (Fma). Fuametales Postulat er Quatemechaik Wir

Mehr

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB Neueruge Software Techologie GmbH 67433 Neustadt / Weistraße Ihalt I. Neueruge Versio 16 3 1. Pi Fuktio 3 2. Status für Nachtragspositioe 5 3. DBD Baupreise EFB 6 4. Programm Eistiegs Assistet 8 5. Voreistellugs-Assistet

Mehr

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58. eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

Gleichstrommaschine. Wicklungselemente liegen in Reihe. Anker und Stator genutet: 2 mal getrennt ermitteln =k C1. k C2

Gleichstrommaschine. Wicklungselemente liegen in Reihe. Anker und Stator genutet: 2 mal getrennt ermitteln =k C1. k C2 Gleichstrommaschie Grudbegriffe P = Polpaarzahl p = Polzahl p =Polteilug b p =Polboge i =Polbedeckug p = D p b p p 0,6...0,8 N b p p S Spaugserzeugug: U i =c 1 c 1 =z p a f i = p z = Zahl der Leiter a

Mehr

Heute Kapitalanlage morgen ein Zuhause

Heute Kapitalanlage morgen ein Zuhause Immobilie Heute Kapitalalage morge ei Zuhause Courtage: Kaufpreis: Preis auf Afrage 3,57% icl. 19% MwSt für de Käufer hausudso Immobilie Moltkestr. 14 77654 Offeburg Tel. 0781 9190891 Fax 0781 9190892

Mehr

Herzlich willkommen zum Informationsabend «Frau und Finanz»

Herzlich willkommen zum Informationsabend «Frau und Finanz» Herzlich willkomme zum Iformatiosabed «Frau ud Fiaz» Frau ud Fiaz Fiazielle Sicherheit: Müsse Fraue aders vorsorge? Stefaia Cerfeda-Salvi Ageda Allgemeier Teil 3-Säule-System der Schweiz Aktuelles aus

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Kapitel 1. Einige Begriffe aus der Asymptotik. 1.1 Wiederholung

Kapitel 1. Einige Begriffe aus der Asymptotik. 1.1 Wiederholung Kapitel Eiige Begriffe aus der Asymptotik. Wiederholug Eiwesetlicher Teil der Ökoometrie befasst sichmit der Ermittlug voschätzer ud dere Eigeschafte. Diese werde beötigt, um aus de beobachtbare Date eier

Mehr

Industrieökonomie Vorlesung Dr. Kübler (Mitschrift von Timo Schygulla)

Industrieökonomie Vorlesung Dr. Kübler (Mitschrift von Timo Schygulla) Idustrieökooie Vorlesug Dr. Kübler (Mitschrift vo Tio Schygulla) 14.4.05: (Vorlesug gehalte vo eier Assisteti des Lehrstuhls) Teri-Überscheidug it der Vorlesug Fiazwisseschaft I vo Prof. Dr. K.-D. Heke.

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 014 a de Realschule i ayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 10 Agler verwede sogeate Schwimmer, die a der Agelschur

Mehr

2. Gleichwertige Lösungen

2. Gleichwertige Lösungen 8. Gleichwertige Lösuge Für die Lösug jeder lösbare Aufgabe gibt es eie uedliche Azahl vo (abstrakte ud kokrete) Algorithme. Das folgede Problem illustriert, dass eie Aufgabe eifacher oder kompliziert,

Mehr

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I Model CreditRisk + : The Ecoomic Perspective of Portfolio Credit Risk Part I Semiar: Portfolio Credit Risk Istructor: Rafael Weißbach Speaker: Pablo Kimmig Ageda 1. Asatz ud Ziele Was ist CreditRisk +

Mehr

Klausur Internes Rechnungswesen Wintersemester 2014/15, Prof. Dr. Jan Schäfer-Kunz, 90 Minuten, Seite 1/10 1 2 3 4 5 6 7 8 9

Klausur Internes Rechnungswesen Wintersemester 2014/15, Prof. Dr. Jan Schäfer-Kunz, 90 Minuten, Seite 1/10 1 2 3 4 5 6 7 8 9 Klausur Iteres Rechugswese Witersemester 2014/15, Prof. Dr. Ja Schäfer-Kuz, 90 Miute, Seite 1/10 1 2 3 4 5 6 7 8 9 Name: Matr.Nr.: Pukte Hilfsmittel Tascherecher Casio FX-87 DE Plus Hiweise zur Bearbeitug

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

9 Der bipolare Transistor

9 Der bipolare Transistor 9 Der bipolare Trasistor Der bipolare Trasistor ist ei Halbleiter-auelemet, bei dem mit eiem kleie Steuerstrom ei großer Hauptstrom gesteuert wird. 9.1 Aufbau ud Herstellugsverfahre Der bipolare Trasistor

Mehr

beck-shop.de 2. Online-Marketing

beck-shop.de 2. Online-Marketing beck-shop.de 2. Olie-Marketig aa) Dateschutzrechtliche Eiwilligug immer erforderlich Ohe Eiwilligug des Nutzers ist eie Erhebug persoebezogeer Date icht zulässig. Eie derartige Eiwilligug ka auch icht

Mehr

Geodäten im hyperbolischen Raum und Zahlentheorie

Geodäten im hyperbolischen Raum und Zahlentheorie Petridis, Yiais Geodäte im hyperbolische Raum ud Zahletheorie Tätigkeitsbericht 2006 Geodäte im hyperbolische Raum ud Zahletheorie Petridis, Yiais Max-Plack-Istitut für Mathematik, Bo Forschugsbereich

Mehr

Arbeitsplätze in SAP R/3 Modul PP

Arbeitsplätze in SAP R/3 Modul PP Arbeitsplätze i SAP R/3 Modul PP Was ist ei Arbeitsplatz? Der Stadort eier Aktioseiheit, sowie dere kokrete räumliche Gestaltug Was ist eie Aktioseiheit? kleiste produktive Eiheit i eiem Produktiosprozess,

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

3Landlust auf Hofweier? Kaufpreis: 230.000,00 Euro Courtage: 3,57% incl. 19% MwSt für den Käufer

3Landlust auf Hofweier? Kaufpreis: 230.000,00 Euro Courtage: 3,57% incl. 19% MwSt für den Käufer 3Ladlust auf Hofweier? Kaufpreis: 230.000,00 Euro Courtage: 3,57% icl. 19% MwSt für de Käufer OBJEKTDATEN Haustyp Eifamiliehaus Baujahr 1955 Letzte Moderisierug/ Saierug 2001 Zimmer 6 Wohfläche ca. 147,00

Mehr

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re

Mathematik der Lebensversicherung. Dr. Karsten Kroll GeneralCologne Re atheatik der Lebesersicherug r. Karste Kroll GeeralCologe Re atheatik der Lebesersicherug atheatische Grudasätze iskotiuierliche ethode: Sätliche Leistuge erfolge zu bestite Zeitpukte ie Zeititeralle dazwische

Mehr

1 Einführung in die Fehlerrechnung

1 Einführung in die Fehlerrechnung Physik für Biologie ud Zwei-Fächer-Bachelor Chemie Kap.: Eiführug i die Fehlerrechug Eiführug i die Fehlerrechug Tiefemessschiee Abbildug: Messschieber. Theoretische Grudlage Bei jeder physikalische Messug

Mehr