Rechnen mit Brüchen (1) 6

Größe: px
Ab Seite anzeigen:

Download "Rechnen mit Brüchen (1) 6"

Transkript

1 Rechnen mit Brüchen () 6. Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN, b b m oder Zähler und Nenner durch dieselbe natürliche Zahl dividiert werden: a a : m ( a, b, m ; m Teiler von a und von b) KÜRZEN b b : m Beachte: Differenz und Summen kürzen nur die Dummen!. Hauptgesetz der Bruchrechnung a a : b für a 0 und b b Divisionszeichen und Bruchstrich sind gleichwertig! Beachte: 0 0 b für b, aber a ist nicht definiert! 0. Addition und Subtraktion Regel: Brüche werden addiert (subtrahiert), indem man sie zuerst gleichnamig macht (Hauptnenner kgv der Nenner) und anschließend die Zähler addiert (subtrahiert) und den gemeinsamen Nenner beibehält. Beispiele: Fortsetzung nächste Seite Fachschaft Mathematik des OvTG Seite

2 Rechnen mit Brüchen () 6. Multiplikation Regel: Zwei Brüche werden multipliziert, indem man Zähler mit Zähler und Nenner mit Nenner multipliziert: a c a c füra, c 0 und b, d b d b d Beachte: Vor dem Ausmultiplizieren von a c und b d das Kürzen nicht vergessen! Beispiele: Division Regel: Durch einen Bruch wird dividiert, indem man mit dem Kehrbruch multipliziert: a c a d : für a 0 und b, c, d b d b c Beachte: Die Division zweier Brüche wird damit auf die Multiplikation zweier Brüche zurückgeführt. Beispiele: 9 : : : : : Fachschaft Mathematik des OvTG Seite

3 Rechnen mit gemischten Zahlen 6. Umwandeln von unechten Brüchen in gemischte Zahlen Beispiel: Beachte: oder: 8 : 9 Rest 9 darf nicht mit verwechselt werden! 9 bedeutet schließlich 9 +!. Umwandeln von gemischten Zahlen in unechte Brüche Beispiel: Addition und Subtraktion Beachte: Bei der Addition und Subtraktion ist die Verwendung gemischter Zahlen vorteilhaft! Beispiele: Multiplikation und Division Beachte: Beim Multiplizieren und Dividieren werden gemischte Zahlen in unechte Brüche verwandelt! Beispiele: Beachte: ( 55 : : ! 5 0 Kürzen) Fachschaft Mathematik des OvTG Seite

4 Übungsaufgaben zur Bruchrechnung 6. Berechne: 5 7 ; ; ; 5 : Berechne die Werte der folgenden Terme. Achte auf korrekte Rechenregeln ( Punkt vor Strich...) : 5 + : a) : 8 7 b) Fachschaft Mathematik des OvTG Seite

5 Zusammenhang von Bruch und Dezimalbruch 6. Erweiterte Stellenwerttafel Wir wissen z.b. von einer Größenangabe,6 Meter, dass... die Ziffer die Einer angibt (also die Ganzen) die Ziffer 6 die Dezimeter, also Zehntelmeter angibt (allgemein: Zehntel ) die Ziffer die Zentimeter, also Hundertstelmeter angibt (allgemein: Hundertstel ) Stellenwerttafel:... Hunderter Zehner Einer, Zehntel Hundertstel Tausendstel , 0... bedeutet: 05,0. Addition und Subtraktion Regel: Dezimalbrüche werden wie natürliche Zahlen addiert bzw. subtrahiert, wobei Komma unter Komma und gleichwertige Ziffern untereinander stehen. Beispiel: 5,6 + 7,089,9 Am Ende einer Dezimalzahl dürfen beliebig viele Nullen hinzugefügt oder weggelassen werden! Beispiele:,78 +,5,78 +,50 7, 68 0, 8,587 0,00 8,587,7 Um Fehler zu vermeiden untereinander schreiben wie oben. Multiplikation Regel: Dezimalbrüche werden miteinander multipliziert, indem man zunächst ohne Rücksicht auf das Komma multipliziert. Dann wird das Komma so gesetzt, dass das Ergebnis gleich viele Dezimalen hat wie alle Faktoren zusammen. Beispiel:,7,, 8 NR: 7 8 (Der. Faktor hat zwei Dezimalen, der. Faktor eine Dezimale, folglich muss das Ergebnis + Dezimalen besitzen.) Regel: Vorteilhaft kann man Dezimalbrüche multiplizieren, indem man bei beiden Faktoren das Komma um die gleiche Stellenzahl, aber in verschiedene Richtungen verschiebt. Beispiel: , Komma um Stellen nach links Komma um Stellen nach rechts Fachschaft Mathematik des OvTG Seite 5

6 Zusammenhang von Bruch und Dezimalbruch 6. Division Regel : Man dividiert einen Dezimalbruch durch eine natürliche Zahl, indem man wie bei natürlichen Zahlen dividiert und bei Überschreitung des Kommas im Dividenden das Komma auch im Ergebnis setzt. Regel : Da sich der Wert eines Quotienten nicht ändert, wenn man bei Dividend und Divisor das Komma um gleich viele Stellen in die gleiche Richtung verschiebt, kann man die Division durch einen Dezimalbruch auf die Division durch eine natürliche Zahl zurückführen. Beispiel:,69:6 0, Wird das Komma im Dividenden überschritten setze Komma im Ergebnis! 0:65 5 mal minus 0 0 fertig! 69:6 6 6 mal minus 56, hole 0 runter 6:6 0 0 mal minus 0 6, hole 9 runter :6 0 0 mal 6 0 minus 0, hole 6 runter Beispiele: 9, :, 7 0,056 :9,6,056 :96 0,0 56 : 0, : 8 00 Aufgaben: Führe auf der Rückseite dieses Blattes folgende Rechnungen durch: 7, + 8,0 6,05 5, 99,8, 5 0,, 08 0,8,8: ,55:, 7 70,658:, 0 Fachschaft Mathematik des OvTG Seite 6

7 Zusammenhang von Bruch und Dezimalbruch 6 Wichtige Brüche und Dezimalbrüche auf einen Blick 0,5 0,5 0, 75 0, 0, 0, 6 0, , , 75 0, 65 0, , 7 9 0, 0, 7 0, ,0 0, 00 usw , 0, 6 0, 5 0, 0, 0, 5 usw ,0 5 0, 0 0, 0 0, 05 usw Um einen beliebigen Bruch in einen Dezimalbruch umzuwandeln, wird entweder der Zähler durch den Nenner dividiert oder (falls möglich) der Bruch auf den Nenner 0, 00, 000,... erweitert. Letzteres ist nur möglich, wenn in der Primfaktorzerlegung des Nenners nur die Primfaktoren und / oder 5 auftreten. Aufgaben: Verwandle folgende Brüche in Dezimalbrüche und umgekehrt! ,7 0,7 0,,8 Berechne: + :9 0, 5 6 Fachschaft Mathematik des OvTG Seite 7

8 Flächeninhalt 5. Klasse der Flächeninhalt eines Rechtecks ist gleich dem Produkt aus Länge und Breite des Rechtecks A RE b b Sonderfall: Quadrat Seitenlänge a A Q Flächeninhalt eines Parallelogramms: a l A a a: Länge einer Parallelogrammseite h a : Länge der auf a stehenden Höhe P h a Flächeninhalt eines Dreiecks: Zwei gleiche Dreiecke lassen sich zu einem Parallelogramm zusammen legen a h a h a Fläche eines Dreiecks: A D a h a a Flächeninhalt eines Trapezes: Zwei gleiche Trapeze lassen sich zu einem Parallelogramm zusammen legen a + c h Fläche eines Trapezes: T ( ) a A c a h a Achtung: a und c sind die Längen der beiden parallelen Trapezseiten Beispielaufgaben:. Eine Parallelogrammseite ist 5 cm lang. Die dazu parallele Seite ist cm entfernt. Bestimme den Flächeninhalt des Parallelogramms.. In einem Dreieck ist die Seite c 7 cm lang, die Höhe h c cm lang. Welchen Flächeninhalt hat das Dreieck? cm. Das Trapez rechts hat den Flächeninhalt cm². Berechne die Höhe h a.. Ein Parallelogramm (a 6 cm, h a cm) hat den gleichen Flächeninhalt wie ein Trapez (c cm, h a cm). Bestimme durch Rechnung die Länge der Trapezseite a. h a 5 cm Fachschaft Mathematik des OvTG Seite 8

9 Rauminhalt (Volumen) Einheiten des Rauminhalts Um den Rauminhalt eines Körpers zu bestimmen, wird er mit sogenannten Einheitswürfeln vollständig und lückenlos ausgefüllt. Folgende Würfel werden dabei benutzt: Seitenlänge mm cm dm m km Raumeinheit mm (Kubikmillimeter) cm (Kubikzentimeter) dm l!! (Kubikdezimeter) m (Kubikmeter) km (Kubikkilometer) Beachte: Die Umrechnungszahl von einer Raumeinheit zur nächstkleineren bzw. nächstgrößeren Raumeinheit ist 000! Ausnahme: km³ m³ (finde eine Begründung hierfür!) Weitere Raumeinheiten (v.a. bei Flüssigkeiten verwendet): l dm³ ( Liter dm³) hl 00 l (Hektoliter) dl 0, l (Deziliter) cl 0,0 l (Zentiliter) ml 0,00 l cm (Milliliter) Volumen von Quader und Würfel Volumenformeln: V Quader l b h Länge l, Breite b, Höhe h V Quader G h V Würfel a a a a Grundfläche G des Quaders: G l b Seitenlänge a Beachte: Aus V G h folgt für die Höhe des Quaders h V : G und für die Grundfläche G V:h. Dabei zeigt sich, dass Volumeneinheit : Flächeneinheit Längeneinheit Volumeneinheit : Längeneinheit Flächeneinheit Fachschaft Mathematik des OvTG Seite 9

10 Zufallsexperimente / Relative Häufigkeit 6 Wird ein Experiment unter zu komplizierten, nicht kontrollierbaren Bedingungen durchgeführt und lässt sich deswegen nicht vorhersagen, welches Ergebnis eintreten wird, spricht man von einem Zufallsexperiment. Beispiele für Zufallsexperimente: Würfeln, Lotto, Münzwurf, Losen... Absolute Häufigkeit Wie oft tritt ein Ergebnis ein? Relative Häufigkeit Welchen Anteil an allen Ergebnissen hat ein bestimmtes Ergebnis? Beispiel: Beispiel: Beim zwanzigmaligen Würfeln würfelt Maria nur viermal eine Sechs. Absolute Häufigkeit der 6 h a (6) Relative Häufigkeit der 6 h r (6) 0 5 Tanja würfelt fünfmal eine Sechs, allerdings hat sie dreißigmal insgesamt geworfen Tanja würfelt öfter eine 6 als Maria ( fünf zu vier ) Im Vergleich aber schafft es Maria, häufiger eine 6 zu würfeln, weil die relative Häufigkeit bei Tanja beträgt, und das ist weniger als Werden kombinierte Fragen nach zwei bestimmten Merkmalen gestellt lassen sich diese oft durch eine geeignete Vierfeldertafel lösen. Beispiel: In einer Klasse mit insgesamt 9 Kindern fahren morgens 6 Mädchen und 5 Jungen mit dem Fahrrad zur Schule. Insgesamt hat die Klasse 6 Mädchen. Wie viele Jungen kommen morgens nicht mit dem Fahrrad? Aus der Angabe bekannt Daten 8 Jungen kommen morgens ohne Fahrrad 8 dies entspricht einem Anteil von der ganzen 9 Klasse, aber 8 der Jungen Mit Fahrrad Ohne Fahrrad Zeilensumme Mädchen Jungen 5 8 Spaltensumme 8 9 es kommen zwar mehr Mädchen als Jungen mit dem Fahrrad zur Schule ( 6:5 ) der Anteil der Fahrradfahrer unter den Mädchen ist aber kleiner als der Anteil der Fahrradfahrer unter den Jungen Beispiel: Die Schultaschen von Schülern erscheinen zu schwer; sie werden nach unnötigem Ballast untersucht. Tatsächlich werden bei allen Schülern an diesem Schultag ein nicht benötigtes Buch oder / und ein nicht erlaubtes Spielzeug gefunden. 7 haben beides dabei, außerdem 6 zwar kein Spielzeug, aber das unnötige Buch. Lege eine Vierfeldertafel an. Fachschaft Mathematik des OvTG Seite 0

11 Prozentrechnen 6 Bruchteile gibt man oft in Prozent (... von Hundert) an. Dabei gilt: % ; 00 p % p 00 Häufig vorkommende Prozentsätze sind: 5 % 0 % 0 % 5 % 50 % 75 % 00 % Bruchteil Grundgleichung der Prozentrechnung Ist G der Grundwert, P der Prozentwert und p der Prozentsatz, dann gilt: p P p P P G P bzw. bzw. G G 00 p p 00 Der Grundwert ist der Bezugswert, auf den sich die Rechnung bezieht. Dem Grundwert entsprechen 00 %. Beispiele: 0 a) 0% von Hier: p 0%, G 00, P ist gesucht b) Maxis Taschengeld wird an seinem. Geburtstag erhöht, es steigt von 0 auf 5. Um wie viel Prozent stieg das Taschengeld an? Hier: Grundwert: altes Taschengeld 0 Prozentwert: neues Taschengeld 5 Gefragt ist nach der Differenz zwischen dem neuen Prozentsatz und dem alten, dem 00 % entsprechen P 5 7 Prozentsatz:,7 7% Das Taschengeld wurde um 7 % angehoben! G 0 00 c) Nach einer Anhebung des Taschengeldes um 0 % bekommt Harry im Monat Taschengeld. Was bekam er vor der Taschengelderhöhung? Hier: Grundwert: gesucht ( was bekam er vorher? ) Prozentwert: P Prozentsatz: p 00 % + 0 % 0 % P P G p p Fachschaft Mathematik des OvTG Seite

12 Prozentrechnen 6 Aufgaben:. Berechnung des Prozentwertes P: Berechne 5 % von 00!. Berechnung des Grundwertes G: 5 % eines Geldbetrages sind 5. Berechne den Geldbetrag G!. Berechnung des Prozentsatzes p: Wie viel Prozent von 00 sind 5?. Mäxchens Taschengeld wurde zuerst von 0 um 0 % gekürzt, dann aber (wegen guter Mathenoten) wieder um 0 % erhöht. Mäxchen rechnet nach, was er jetzt als Taschengeld bekommt, und Wäre Mäxchens Reaktion genauso gewesen, wenn das Taschengeld zuerst von 0 um 0 % erhöht, dann aber (wegen schlechter Mathenoten) wieder um 0 % gekürzt worden wäre? Überprüfe rechnerisch deine Vermutung... Fachschaft Mathematik des OvTG Seite

13 Aufgaben zur Wiederholung () Kürze: a) 9 9 b) 0, 6, 5 0, 7 0, 5 0, 6 0, 55. Ordne der Größe nach: ; 7 ; a) Rechne günstig: + b) Berechne: c) Berechne: 7,6 + 0, a) Gib folgende gewöhnliche Brüche in Dezimalschreibweise an: 9 ; 7 ; 5 ; 5 8 b) Gib als gewöhnlichen Bruch an: 0,6;, 6 : 5. Berechne: a) b) , 7, 8 7 0, 6 + 9, 6 6. Frau Ida zahlte 00 monatlich 55,- Miete; 998 musste sie 00,- monatlich bezahlen. Berechne, um wie viel Prozent die Miete gestiegen ist! 7. Herr Franz verkauft eine wertvolle Münze über einen Fachhändler. Sie vereinbaren einen bestimmten Preis. Der Fachhändler sagt: Wir wollen mal sehen, was der Käufer dafür zahlen muss. Also, da ist zunächst der Preis der Münze, dazu kommen noch 5% Provision für meine Vermittlung und danach muss der Käufer ja auch noch 9% MWSt. zahlen. Da kommen wir insgesamt auf 9,9. Wie viel bekommt eigentlich Herr Franz? 8. Ein Schwimmbecken ist 5 m lang und 9,5 m breit. a) Wie viel Wasser enthält es, wenn seine Tiefe,9 m beträgt und das Becken voll gefüllt ist? b) Um wie viel sinkt der Wasserspiegel, wenn 7,5 hl Wasser abfließen? 9. Vervollständige die folgenden beiden Vierfeldertafeln. B B Zeilensumme B B Zeilensumme A 98 A 5 Spaltensumme 78 A 60% A Spaltensumme 0 8 Fachschaft Mathematik des OvTG Seite

14 Aufgaben zur Wiederholung () 6 0. Von den 80 Schülerinnen und Schülern der 6. Klassen des Gymnasiums Schlaustadt haben 6 als erste Fremdsprache Englisch. Diese haben die Wahl, ab der 7. Klasse als. Fremdsprache Französisch oder Latein zu wählen. 7 Mädchen wählen Französisch, wählen Latein. Bei den Jungen wählt genau die Hälfte Französisch. Wie viele Kinder wählen insgesamt Latein, wie viele Französisch?. Welche Höhe hat ein Trapez mit a 80 cm und c 8 cm (a und c sind parallel), das denselben Flächeninhalt hat wie ein Dreieck mit b, m und h b 0 cm? Ausführliche Lösungen erhaltet ihr zu Beginn des neuen Schuljahres. Fachschaft Mathematik des OvTG Seite

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen (). Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen

Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Bsp.: Ganzes: 20 Kästchen Grundwissen Mathematik G8 6. Klasse Zahlen. Brüche.. Bruchteile und Bruchzahlen Ein Bruchteil vom Ganzen lässt sich mit Hilfe von Bruchzahlen darstellen. Ganzes: 0 Kästchen 6 6 graue Kästchen, also: 0

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen

1.Weiterentwicklung der Zahlvorstellung 1.1.Bruchteile und Bruchzahlen Grundwissen Mathematik 6.Klasse Gymnasium SOB.Weiterentwicklung der Zahlvorstellung..Bruchteile und Bruchzahlen 3 des Kreises ist rot, des Kreises ist blau gefärbt. Über dem Bruchstrich steht der Zähler,

Mehr

Grundwissen Mathematik 6. Klasse

Grundwissen Mathematik 6. Klasse Themen Brüche Eigenschaften Besonderheiten - Beispiele Ein Bruchteil ist stets ein Teil eines Ganzen, zum Beispiel eine Hälfte, ein Drittel oder drei Viertel. Bruchteile stellt man mithilfe von Brüchen

Mehr

MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM

MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM MATHEMATIK GRUNDWISSEN 6. KLASSE LESSING GYMNASIUM NEU-ULM Dieses Heft gehört: I. RATIONALE ZAHLEN 1. Brüche, Bruchteile 1.1. Bruchteile von Größen Der Bruchteil z n eines Ganzen bedeutet: Teile das Ganze

Mehr

sfg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil

sfg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6. Brüche Brüche beschreiben Bruchteile bzw. Anteile 3 4 von 00kg = 4 von 00kg 3 = (00kg 4) 3 = kg 3 = 7kg (s. auch 6.0) Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Aufgabensammlung Bruchrechnen

Aufgabensammlung Bruchrechnen Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................

Mehr

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010)

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010) M 6.1 Brüche Brüche beschreiben Bruchteile. Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent angegeben. Prozent heißt

Mehr

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010)

M 6.1. Brüche. Brüche beschreiben Bruchteile. Stückchen, d.h. ein Stückchen entspricht dem Anteil. Carina Mittermayer (2010) M 6.1 Brüche Brüche beschreiben Bruchteile. Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Erweitern und Kürzen Durch Erweitern und Kürzen ändert sich der Wert des Bruches

Mehr

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg

Grundwissenskatalog der 6. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg Grundwissenskatalog der. Jahrgangsstufe G8 - Mathematik Friedrich-Koenig-Gymnasium Würzburg. Brüche und Dezimalzahlen Bruchteile Berechnung von Bruchteilen Bruchzahlen als Quotient Gemischte Zahlen Erweitern

Mehr

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil

fwg Brüche Brüche beschreiben Bruchteile bzw. Anteile M 6.1 (s. auch 6.10) Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.1 Brüche Brüche beschreiben Bruchteile bzw. Anteile (s. auch 6.10) Die Schokoladentafel hat Stückchen, d.h. ein Stückchen entspricht dem Anteil M 6.2 Prozentschreibweise Anteile werden häufig in Prozent

Mehr

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n

M 6. Inhaltsverzeichnis Grundwissen M Brüche. z eines Ganzen bedeutet: Teile das Ganze in n gleiche Teile. Der Bruchteil n M M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. M. M. M. M. M. M.8 M.9 M.0 M. M. Inhaltsverzeichnis Grundwissen Brüche Erweitern und Kürzen von Brüchen Prozentschreibweise Rationale Zahlen Dezimalschreibweise

Mehr

Brüche. Prozentschreibweise

Brüche. Prozentschreibweise M 6. Brüche Brüche beschreiben Bruchteile. 4 00 = 00 = (00 4) = = 7 4 Die Schokoladentafel hat 4 Stückchen, d.h. ein Stückchen entspricht dem Anteil 4 M 6. Prozentschreibweise Anteile werden häufig in

Mehr

Brüche. Brüche beschreiben Bruchteile. M = = =25 3=75

Brüche. Brüche beschreiben Bruchteile. M = = =25 3=75 M 6.1 Brüche Brüche beschreiben Bruchteile. 3 4 100=1 100 3=100 4 3=5 3=75 4 Die Schokoladentafel hat 14 Stückchen, d.h. ein Stückchen entspricht dem Anteil 1 14 M 6. Prozentschreibweise Anteile werden

Mehr

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an?

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an? 1 6/1 Gib die richtigen Fachbegriffe an. 2 6/1 Welche Information gibt der Nenner eines Bruches an? 3 6/1 Welcher Bruchteil ist markiert? 4 6/1 Welcher Bruchteil ist markiert? 5 6/1 Welcher Bruchteil ist

Mehr

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen.

Aufgabe 2: Welche Brüche sind auf dem Zahlenstrahl durch die Pfeile gekennzeichnet? Schreibe die Brüche in die Kästen. Grundwissen Klasse 6 - Lösungen I. Bruchzahlen. Sicheres Umgehen mit Bruchzahlen Brüche als Anteil verstehen Brüche am Zahlenstrahl darstellen Brüche erweitern / kürzen können (Mathehelfer: S.6/7) Aufgabe

Mehr

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen Grundwissen Klasse 6 I. Bruchzahlen 1. Sicheres Umgehen mit Bruchzahlen - Brüche als Anteil verstehen - Brüche am Zahlenstrahl darstellen - Brüche erweitern / kürzen können (Mathehelfer1: S.16/17) Aufgabe

Mehr

6. Klasse. 1. Zahlen 1.1. Brüche und Bruchteile

6. Klasse. 1. Zahlen 1.1. Brüche und Bruchteile 1. Zahlen 1.1. Brüche und Bruchteile 1.2.Die Menge der rationalen Zahlen => Die Menge aller Brüche, wobei die Zähler eine beliebige ganze Zahl und die Nenner eine ganze Zahl außer Null sein dürfen nennt

Mehr

1 Zahlen. 1.1 Bruchteile und Bruchzahlen. Grundwissen Mathematik 6. Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen angeben. Z.B.

1 Zahlen. 1.1 Bruchteile und Bruchzahlen. Grundwissen Mathematik 6. Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen angeben. Z.B. Zahlen. Bruchteile und Bruchzahlen Bruchteile von Ganzen lassen sich mit Hilfe von Bruchzahlen angeen. Z.B. Rot: 5 4 6 2 Blau: 5 5 Kreisdiagramm: Beispiel Klassensprecherwahl Kandidat A B C Ungültig Stimmenzahl

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

Grundwissen JS 6: Allgemeine Bruchrechnung

Grundwissen JS 6: Allgemeine Bruchrechnung GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-technolog u sprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48 FAX 0924/2564 Grundwissen JS 6: Allgemeine Bruchrechnung Was verstehst du

Mehr

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I

1. Rationale Zahlen. Brüche Brüche haben die Form nz. Beispiele: 3. mit z I . Rationale Zahlen Brüche Brüche haben die Form nz mit z I N 0, n I N. z heißt der Zähler, n der Nenner des Bruches. Unechte Brüche kann man in gemischte Zahlen umwandeln. Bruchzahlen: Zu jeder Bruchzahl

Mehr

Grundwissen. Flächen- und Rauminhalt

Grundwissen. Flächen- und Rauminhalt Grundwissen Kopiere die folgenden Seiten auf dünnen Karton und zerschneide diesen in,,lernkarten. Baue damit eine Lernkartei auf: Wenn im Unterricht ein neuer Lehrstoff behandelt wurde, nimmst du die zugehörigen

Mehr

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard

GRUNDWISSEN MATHEMATIK. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK J O H A N N E S - N E P O M U K - G Y M N A S I U M 6 Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngymnasiums Bad Neustadt und des Kurt-Huer-Gymnasiums

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält.

= (Kürzen mit 4) Gleichnamige Brüche werden addiert (subtrahiert), indem man die Zähler addiert (subtrahiert) und den Nenner beibehält. GRUNDWISSEN MATHEMATIK. JAHRGANGSSTUFE a b. Bruchzahlen: mit a, b N. a heißt Zähler, b heißt Nenner. a) Ein Bruch wird mit einer natürlichen Zahl erweitert (gekürzt), indem man Zähler und Nenner mit dieser

Mehr

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b.

1) Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1 Zerlegt man ein Ganzes in mehrere, gleich große Teile, erhält man die Bruchteile. Man verwendet dafür die Bruchschreibweise, z.b. 1, 1, 1 usw. Diese Brüche bezeichnet man als Stammbrüche. 2 2 Der Stammbruch

Mehr

Grundwissen Jahrgangsstufe 6

Grundwissen Jahrgangsstufe 6 GM. Brüche Grundwissen Jahrgangsstufe Brüche: Zerlegt man ein Ganzes z.b. in gleich große Teile und fasst dann dieser Teile zusammen, so erhält man des Ganzen. Im Bruch ist der Nenner und der Zähler. Stammbrüche

Mehr

Gemischte Zahlen Unechte Brüche können als gemischte Zahlen geschrieben werden und umgekehrt: Bruchzahlen A 6_02

Gemischte Zahlen Unechte Brüche können als gemischte Zahlen geschrieben werden und umgekehrt: Bruchzahlen A 6_02 Brüche A6_01 Brüche haben die Form z n mit z I, n IN. z N 0 heißt der Zähler, n der Nenner des Bruches. Zerlegt man ein Ganzes z. B. in vier gleich große Teile und fasst dann drei dieser Teile zusammen,

Mehr

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen

Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Kantonale Fachschaft Mathematik Repetitionsaufgaben Negative Zahlen/Brüche/Prozentrechnen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Lernziele... 1

Mehr

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0

0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0. Wiederholung 0.1 Rechnen in der Menge der positiven rationalen Zahlen lq + 0 0.1.1 Formveränderungen von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit derselben Zahl multiplizieren. a

Mehr

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1. Brüche. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Erweitern und Kürzen Wie erweitert man einen

Mehr

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm.

M 6.1 M 6.2. Brüche. Prozentschreibweise. Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. M 6.1 Brüche Benenne die Teile eines Bruches. Veranschauliche den Bruch in einem Kreisdiagramm. = Welchem Anteil entspricht ein Stück der Schokoladentafel? M 6.2 Prozentschreibweise Was bedeutet Prozent?

Mehr

6.1 Bruchzahlen Drei Standardaufgaben mit Bruchteilen Brüche und die Menge der rationalen Zahlen Erweitern und Kürzen

6.1 Bruchzahlen Drei Standardaufgaben mit Bruchteilen Brüche und die Menge der rationalen Zahlen Erweitern und Kürzen Gymnasium bei St. Anna, Augsburg Seite Grundwissen 6. Klasse 6. Bruchzahlen 6.. Brüche und die Menge der rationalen Zahlen Def.:. Zeichen der Art,,, 6,..., n z nennt man Brüche. Teilt man eine Größe in

Mehr

1. Definition von Dezimalzahlen

1. Definition von Dezimalzahlen . Definition von Dezimalzahlen Definition: Dezimalzahlen sind Zahlen mit einem Komma, wobei die Ziffern nach dem Komma die Zehntel, Hundertstel, Tausendstel, usw. entsprechend dem -er Zahlensystem anzeigen.

Mehr

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn

Deutsch. a hoch 3. a zum Quadrat. acht. achtzig. dividiert. drei. dreißig. dreizehn Deutsch Deutsch Plural a hoch 3 a zum Quadrat acht achtzig Addition, die Ar, das Basis, die Betrag von a, der Binom, das Bruch, der Bruchstrich, der Deckfläche, die Dekagramm, das Deltoid, das Dezimalbruch,

Mehr

MEMO Brüche 1 Zähler, Nenner, Stammbruch, einfache und gemischte Brüche

MEMO Brüche 1 Zähler, Nenner, Stammbruch, einfache und gemischte Brüche MEMO Brüche Zähler, Nenner, Stammbruch, einfache und gemischte Brüche )Brüche: Grundbegriffe a) Zähler und Nenner die obere Zahl heisst Zähler die untere Zahl heisst Nenner Der Nenner Der Zähler ist der

Mehr

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte

A Bruchzahlen B Rechnen mit Dezimalzahlen C Winkel und Abbildungen D Flächen- und Rauminhalte Inhalt A B C D Bruchzahlen Bruchteile 6 Bruchteile von Größen Kürzen und Erweitern von Brüchen 0 Verhältnisse und Maßstäbe Bruchzahlen 6 Brüche und Dezimalbrüche Prozentzahlen Addition und Subtraktion

Mehr

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.

Mehr

Stoffverteilungsplan Mathematik Klasse 5

Stoffverteilungsplan Mathematik Klasse 5 Stoffverteilungsplan Mathematik Klasse 5 Lehrwerk: Mathematik heute; Schroedel Zeitraum Themen/Inhalte Begriffe/Bemerkungen Lehrbuch/KA Leitidee/Kompetenzen Weitere Hinweise 6 Wochen Natürliche Zahlen

Mehr

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck.

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck. Bruchzahlen Zeichne Rechtecke von cm Länge und cm Breite. Dieses Rechteck soll Ganzes ( G) darstellen. Hinweis: a.) Färbe ; ; ; ; ; ; 6 b.) Färbe ; ; ; ; ; ; 6 von diesem Rechteck. von diesem Rechteck.

Mehr

Grundwissen Mathematik 6/1 1

Grundwissen Mathematik 6/1 1 Grundwissen Mathematik 6/ Formveränderung von Brüchen Erweitern heißt Zähler und Nenner eines Bruches mit der selben Zahl multiplizieren. a ac = b bc Kürzen heißt Zähler und Nenner eines Bruches durch

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Turmzimmer 1: Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 7. Ist die Zahl ein Teiler? 2. Teilbarkeit durch 5 und 10 8. Teiler in der Zahlentafel suchen 3. Quersummen berechnen 9. Ist die

Mehr

Fachrechnen für die Feuerwehr

Fachrechnen für die Feuerwehr Die Roten Hefte e, Bd. 31 Fachrechnen für die Feuerwehr Bearbeitet von Kurt Klingsohr überarbeitet 2007. Taschenbuch. 145 S. Paperback ISBN 978 3 17 019903 3 Format (B x L): 10,5 x 14,8 cm Gewicht: 100

Mehr

Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. teilbar, wenn die letzte Ziffer der Zahl

Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. teilbar, wenn die letzte Ziffer der Zahl 6.. Schuljahr Natürliche Zahlen 1 Teilbarkeit und Primzahlen Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. Endzifferregel Eine Zahl ist durch 5 teilbar,

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 1. Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 2. Teilbarkeit durch 5 und 10 3. Quersummen berechnen 4. Teilbarkeit durch 3, 6 und 9 5. Gemischte

Mehr

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele.

Berechne schriftlich: a) b) Bilde selbst ähnliche Beispiele. Basiswissen Mathematik Klasse 5 / 6 Seite 1 von 12 1 Berechne schriftlich: a) 538 + 28 b) 23 439 Bilde selbst ähnliche Beispiele. 2 Berechne schriftlich: a) 36 23 b) 989: 43 Bilde selbst ähnliche Beispiele.

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation Klasse 9 Maximalplan Kurs A Minimalplan Kurs B Zahlenbereich bis 10.000/100.000 (B) und 1.000.000 (A) - Grundrechenarten Bis 1.000.000 erarbeiten; Zahlenhaus, Stellentafel, Zahlenhaus, Stellentafel, Grundrechnen

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http//brinkmann-du.de Seite 1 09.02.2013 SEK I Lösungen zu rechnen mit Brüchen I Ergebnisse und ausführliche Lösungen zum nblatt SEK I Bruchrechnung I Einfache Bruchaufgaben zur Vorbereitung

Mehr

Grundwissen JS 5 Algebra

Grundwissen JS 5 Algebra GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math.-technolog. u. sprachl. Gymnasium Grundwissen JS 5 Algebra WILHELM-VON-HUMBOLDT-STRASSE 7 91257 PEGNITZ FERNRUF 09241/48333 FAX 09241/2564 Rechnen in N 29. Juli 2009

Mehr

Bruchteile. Anteile gibt man in Bruchschreibweise an. Anteil : 1 8. Bruchteil : 1 cm 2. Bruchteil : 0,5 cm 2. Anteil : 3 8. Bruchteil : 3 cm 2

Bruchteile. Anteile gibt man in Bruchschreibweise an. Anteil : 1 8. Bruchteil : 1 cm 2. Bruchteil : 0,5 cm 2. Anteil : 3 8. Bruchteil : 3 cm 2 Bruchteile Anteile gibt man in Bruchschreibweise an. Anteil : 8 Bruchteil : cm Anteil : 8 Bruchteil : 0, cm Anteil : 8 Bruchteil : cm Anteil : 8 Bruchteil :, cm 8 nennt man einen Bruch. 8 heißt Nenner

Mehr

3. Stegreifaufgabe aus der Mathematik Lösungshinweise

3. Stegreifaufgabe aus der Mathematik Lösungshinweise Schuljahr 08/09 3. Stegreifaufgabe aus der Mathematik Lösungshinweise Gruppe A Aufgabe 1 (a) Es gilt: Zwei Brüche werden multipliziert, indem man den Zähler des ersten Bruchs mit dem Zähler des zweiten

Mehr

Längen (km m dm cm mm) umrechnen. Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen. Rauminhalte (m³ dm³ cm³ mm³) umrechnen

Längen (km m dm cm mm) umrechnen. Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen. Rauminhalte (m³ dm³ cm³ mm³) umrechnen 1 Längen (km m dm cm mm) umrechnen Längen (mm - µm nm) Zeitspannen (d h min s) umrechnen Flächeninhalte (km² ha a m² dm² cm² mm²) umrechnen Rauminhalte (m³ dm³ cm³ mm³) umrechnen Gewichte (t kg g mg) umrechnen

Mehr

Bruchrechnen in Kurzform

Bruchrechnen in Kurzform Teil Bruchrechnen in Kurzform Für alle, die es benötigen, z. B. zur Prüfungsvorbereitung in 0 Zu diesen Beispielen gibt es einen Leistungstest in 09. Ausführliche Texte zur Bruchrechnung findet man in:

Mehr

Währungseinheiten. Mathematische Textaufgaben, Klasse 3 Bestell-Nr. 350-10 Mildenberger Verlag

Währungseinheiten. Mathematische Textaufgaben, Klasse 3 Bestell-Nr. 350-10 Mildenberger Verlag Währungseinheiten Anzahl der Centmünzen Es gibt sechs verschiedene Centmünzen. Dies sind Münzen zu 1 Cent, Münzen zu 2 Cent, Münzen zu 5 Cent, Münzen zu 10 Cent, Münzen zu 20 Cent und Münzen zu 50 Cent.

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

Begriffe zur Gliederung von Termen, Potenzen 5

Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen, Potenzen 5 Begriffe zur Gliederung von Termen Term Rechenart Termbezeichnung a heißt b heißt a + b Addition Summe 1. Summand 2. Summand a b Subtraktion Differenz Minuend

Mehr

Rechnen mit Bruchzahlen

Rechnen mit Bruchzahlen Addition und Subtraktion von Brüchen Aufgabe: Rechnen mit Bruchzahlen In einem Gefäß befinden sich Liter Orangensaft. a.) Jemand trinkt b.) Jemand gießt c.) Jemand gießt Liter davon. Wie viel Saft befindet

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5.1 Einführung Die Gleichung 3x 9 hat die Lösung 3. 3x 9 3Z 9 x 3 3 Die Gleichung 3x 1 hat die Lösung 1 3. 3x 1 1 3 Z 1 x 3 Definition Die Gleichung bx a, mit a, b Z und b 0, hat die Lösung: b x a a

Mehr

1) Längenmasse. Verwandeln sie in die verlangte Einheit: Aufgaben 2: Ergänzen sie die Matrix, indem sie die Einheiten umrechnen.

1) Längenmasse. Verwandeln sie in die verlangte Einheit: Aufgaben 2: Ergänzen sie die Matrix, indem sie die Einheiten umrechnen. Kapitel B: Masseinheiten 1) Längenmasse Die Länge von Strecken und Distanzen werden mit den Längenmassen angegeben. Die für das Längenmass ist das Meter (m). Weitere gängige en für Längen sind Kilometer

Mehr

Grundwissen Klasse 6

Grundwissen Klasse 6 Zahlenmengen = {; 2; ; 4; ; 6;... } Die Menge der natürlichen Zahlen. = {... ; 2; ; 0; ; 2; ;...} Die Menge der ganzen Zahlen. 0 Die Menge der positiven rationalen Zahlen mit Null. ddition und Subtraktion

Mehr

Skript Bruchrechnung. Erstellt: 2014/15 Von:

Skript Bruchrechnung. Erstellt: 2014/15 Von: Skript Bruchrechnung Erstellt: 2014/15 Von: www.mathe-in-smarties.de Inhaltsverzeichnis Vorwort... 2 1. Einführung... 3 2. Erweitern / Kürzen... 5 3. Gemischte Brüche... 8 4. Multiplikation von Brüchen...

Mehr

Mathematik für Klasse 6 Bruchrechnung Teil 1

Mathematik für Klasse 6 Bruchrechnung Teil 1 Testversion Mathematik für Klasse 6 Bruchrechnung Teil Trainingseinheiten zum Unterricht Datei Nr. 00 Friedrich W. Buckel Stand. Januar 006 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt Vorwort. Training:

Mehr

Einführung in die Bruchrechnung

Einführung in die Bruchrechnung - Seite 1 Einführung in die Bruchrechnung 1. Der Bruchbegriff Die Tafel unter drei Kindern aufteilen! Die Schokoladentafel wird zer"brochen" Jedes Kind erhält einen "Bruchteil". Wenn die Tafel aus 15 Stücken

Mehr

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ]

Bruchzahlen Herbert Paukert Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] Bruchzahlen Herbert Paukert 1 DIE BRUCHZAHLEN Version 2.0 Herbert Paukert 1. Die Grundlagen [ 02 ] 2. Kürzen und Erweitern [ 14 ] 3. Addieren und Subtrahieren [ 24 ] 4. Multiplizieren und Dividieren [

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Dezimal. Dezimal. 6 Dezimalzahlen multiplizieren 7 8 Periodische Dezimalzahlen 9. Addition. Multiplikation. Algebra

Dezimal. Dezimal. 6 Dezimalzahlen multiplizieren 7 8 Periodische Dezimalzahlen 9. Addition. Multiplikation. Algebra Brüche und zahlen zahlen vergleichen zahlen runden 4 Addieren & subtrahieren Multiplizieren & dividieren mit Zehnerzahlen zahlen multiplizieren 7 8 Periodische zahlen 9 + Addition Z E z h t 4,4 9,9 4,4

Mehr

Bruchrechnung Wir teilen gerecht auf

Bruchrechnung Wir teilen gerecht auf Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7

Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 Fragen und Aufgaben zum Grundwissen Mathematik JGST. 7 LÖSUNGEN. Gib die Primfaktorzerlegung der Zahlen 0 und an. 0 0 7 7 7. Erkläre, wie man zwei ganze Zahlen addiert bzw. multipliziert. Bei gleichem

Mehr

Englische Division. ... und allgemeine Hinweise

Englische Division. ... und allgemeine Hinweise Das folgende Verfahren ist rechnerisch identisch mit dem Normalverfahren; es unterscheidet sich nur in der Schreibweise des Rechenschemas Alle Tipps und Anmerkungen, die über die Besonderheiten dieser

Mehr

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf

kurs Crash Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf * Rechnen und Mathematik Crash kurs Ein Übungsbuch für Ausbildung und Beruf Duden Crashkurs Rechnen und Mathematik Ein Übungsbuch für Ausbildung und Beruf Dudenverlag Mannheim Leipzig Wien Zürich Bibliografische

Mehr

Ferienaufgaben Mathematik 6. Klasse

Ferienaufgaben Mathematik 6. Klasse Ferienaufgaben Mathematik 6. Klasse 6.A Bruchzahlen 6.A. Brüche ) Welcher Bruchteil a) aller Figuren sind Kreise, b) aller Figuren sind Vierecke, c) aller Figuren sind schwarz, d) aller Figuren sind weiß,

Mehr

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen)

Test 4 zu Kapitel 21 bis 26 (Winkel und Abbildungen) 74 Test 5 zu Kapitel 27 bis 31 (Ganze Zahlen) 76. (Anwendungen von Brüchen und Dezimalbrüchen) 4 Inhalt 1 Teiler und Teilbarkeitsregeln 6 2 Primzahlen und Primfaktorzerlegung 8 3 ggt und kgv 10 4 Bruchzahlen und gemischte Zahlen 12 5 Erweitern und Kürzen 14 6 Addition und Subtraktion von Bruchzahlen

Mehr

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und

Mehr

Grundwissen Seite 1 von 17 Klasse6

Grundwissen Seite 1 von 17 Klasse6 Grundwissen Seite 1 von 17 Klasse6 IN = {1; 2; 3; 4; 5; 6; } Menge der natürlichen Zahlen 5 ist eine natürliche Zahl kurz: 5 IN 5 ist ein Element von IN Natürliche Zahlen -2 ist keine natürliche Zahl kurz:

Mehr

BLICKPUNKT Mathematik 1 1. September 2007

BLICKPUNKT Mathematik 1 1. September 2007 V Bekanntes aus der Volksschule Blatt Buch Vorschau Längenmaße: m - cm - mm 1a A 1, 2 13 ab 09.07 Längenmaße: m - cm - mm Lösungen 1a L 1,2 Längenmaße 1 A 12, 13 Längenmaße Lösungen Massenmaße I 2 A 14

Mehr

Übertrittsprüfung 2011

Übertrittsprüfung 2011 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2011 Aufgaben Prüfung an die 1. Klasse Sekundarschule / 1. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des

Mehr

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6

Anhang 6. Eingangstest II. 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 2. Berechnen Sie: : = 3. Berechnen Sie: = 3 und 6 Anhang 6 Eingangstest II 1. Berechnen Sie den Durchschnitt von 6 + 3,9 + 12, 0 = 8 4 2. Berechnen Sie: : = 3 1 2x x 3. Berechnen Sie: = 9 9 4. Wie groß ist die Summe von 4 3 und 6?. Berechnen Sie: 3 (

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Seite 1 Turmzimmer 1: Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 7. Schreibe mit arabischen Ziffern! 1 2. Nachbarzahlen 8. Schreibe mit arabischen Ziffern! 2 3. Zahlenrätsel

Mehr

Basiswissen Klasse 5, Algebra (G8)

Basiswissen Klasse 5, Algebra (G8) Basiswissen Klasse, Algebra (G8) Natürliche Zahlen Sicherer Umgang mit den vier Grundrechenarten MH 1, S. 4- Große Zahlen schreiben und lesen Rechenregeln, wie Punkt vor Strich, Klammern Rechengesetze:

Mehr

Prozentrechnung. Klaus : = Karin : =

Prozentrechnung. Klaus : = Karin : = Prozentrechnung Klaus erzählt, dass bei der letzten Mathe-Arbeit 6 seiner Mitschüler die Note gut erhalten hätten. Seine Schwester Karin hat auch eine Arbeit zurück bekommen. In ihrer Klasse haben sogar

Mehr

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann. Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse 1. Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 2. Nachbarzahlen 3. Zahlenrätsel 1/2 4. Zahlenrätsel 2/2 5. Zahlen ordnen

Mehr

Thema Einheiten umwandeln. Maßeinheiten

Thema Einheiten umwandeln. Maßeinheiten Einheiten umwandeln Maßeinheiten. Wandle in die in Klammern angegebene Einheit um. a) t (kg) b) 4 t (kg) c) 4 000 kg (t) d) 88 000 kg (t) e) 6 t (kg) f) 000 kg (t) g) 944 t (kg) h) 000 kg (t). Wandle in

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

Inhaltsverzeichnis / Modul 1

Inhaltsverzeichnis / Modul 1 Inhaltsverzeichnis / Modul 1 i Der Taschenrechner - Einführung 1 Der Taschenrechner - 2 Besonderheiten 2 Der Taschenrechner - 3 Übungen 3 Stellenwerte- 1 Addition 4 Stellenwerte - 2 Subtraktion 5 10, 100,

Mehr

Rechnen mit natürlichen Zahlen

Rechnen mit natürlichen Zahlen Addieren und Subtrahieren einer Zahl Fachausdrücke bei der Addition und Subtraktion: Addition (+) 52 + 27 = 79 1. Summand + 2. Summand = Summe Rechnen mit natürlichen Zahlen Subtraktion ( - ) Strichrechnungen

Mehr

Zahlen und Mengen 1.8

Zahlen und Mengen 1.8 Zahlen und Mengen.8 0 N - Z Q R _ ist als Bruch eine rationale Zahl Q und R als negative Zahl gehört zu Z, Q und R. π ist irrational und gehört daher nur zu R. 0 ist eine natürliche Zahl und gehört daher

Mehr

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen.

Bruchrechnen. 2.1 Teilbarkeit von Zahlen. Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. ruchrechnen 2 2.1 Teilbarkeit von Zahlen Die Primfaktorzerlegung ist die Zerlegung einer natürlichen Zahl in ein Produkt von Primzahlen. Das kleinste gemeinsame Vielfache (kgv) mehrerer Zahlen ist die

Mehr

Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: Lehrbuch: Sekundo 5, Schroedel

Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: Lehrbuch: Sekundo 5, Schroedel Oberschule Schwaförden OBS Themenplan Mathematik Klasse 5 Schulform: OBS Stand: 30.12.2014 Lehrbuch: Sekundo 5, Schroedel Inhalt / inhaltsbezogene Kompetenzen UE: Zahlen und Daten Strichlisten und Diagramme

Mehr

Vorbereitung auf den Hauptschulabschluss Mathematik

Vorbereitung auf den Hauptschulabschluss Mathematik Katrin Hiemer/Elisabeth Vogt Vorbereitung auf den Hauptschulabschluss Mathematik MANZ VERLAG Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen

Mehr

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen

Kapitel 3 Mathematik. Kapitel 3.3. Algebra Gleichungen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.3 Algebra Gleichungen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn 055-654 1 87 Ausgabe: Februar 009

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 1. Semester ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN. 1. Arten von Brüchen und Definition ARBEITSBLATT 5 RECHNEN MIT BRÜCHEN 1. Arten von Brüchen und Definition Beispiel: 3 5 Zähler Bruchstrich Nenner Definition: Jeder Bruch hat folgendes Aussehen: Zähler. Der Nenner gibt an, Nenner in wie

Mehr