Elektronikpraktikum: Digitaltechnik 2

Größe: px
Ab Seite anzeigen:

Download "Elektronikpraktikum: Digitaltechnik 2"

Transkript

1 Elektroikpraktikum: Digitaltechik 2 Datum, Ort: , PHY/D-213 Betreuer: Schwierz Praktikate: Teshi C. Hara, Joas Posselt (beide 02/2/PHY/02) Gruppe: 8 Ziele Aufbau eier 3-Bit-Dekodierschaltug; Überprüfug der Zustadstabelle. Bau eies prellfreie Schalters (Schaltskizze vom Betreuer) gegebe Utersuchug der Zustadstabelle des JK-MS-Flipflops. Vergleich zum D-Flipflop Bau eies 3-Bit-Asychro/Sychro-Zählers mit JK-MS-Flipflops Aufbau eies Mooflop ud Impulsverkürzers Utersuchug vo Sigalform ud Totzeit. Aufbau, Durchführug Aufgabeteil 1 Auf dem Steckbrett wurde mit Hilfe der gegebee NAND-Bausteie folgede Schaltug realisiert. B B B 3 0

2 Aufgabeteil 2 Nach Eiweisug durch de Betreuer ud Besprechug der beötigte Schaltug (siehe Diagramm), wurde diese realisiert. S S Aufgabeteil 3 S Der JK-MS-Flipflop (siehe Diagramm) wurde i die Schaltug itegriert, idem die beide J- bzw. K- Eigäge zusammegeschaltet wurde. J A de Eigag S wurde der S -Ausgag des i Aufgabeteil 2 gebaute Schalters ageschlosse. Die J- bzw. K-Eigäge wurde mit Hilfe der auf dem Schaltbrett vorgegebee Schalter auf HIGH ud/oder LOW gesetzt. S K R A de Ausgäge ud wurde die Zustäde bei verschiedee Eigäge utersucht, ud i eie Tabelle übertrage. Die Eigäge S ud R bliebe durchgehed icht ageschlosse (d.h. durchgehed HIGH). Aufgabeteil 4 Die Mooflops ud Impulsverkürzer wurde etspreched der Diagramme auf dem Aufgabeblatt gebaut. Die Widerstäde ud Kodesatore kote auf dem etsprechedem Bauelemet mittels Drehschalter variiert werde. Mit eiem Oszilloskop wurde die Impulsform utersucht, ud die Totzeit idirekt (was damit gemeit ist siehe Auswertug) bestimmt. Es wurde zur Überprüfug der erwartete Ergebisse a verschiedee Stelle i der Schaltug gemesse (am Eigag, Widerstad, Kodesator, Ausgag). Aufgabeteil 5 Die 3-Bit-Asychro/Sychro-Zähler wurde gemäß de folgede Diagramme realisiert. Das Diagramm für de Sychro-Zähler wurde mit Hilfe des Betreuers erstellt. (JK-MS-Flipflops vereifacht als dargestellt ud mit JK bezeichet; i grau die Teile, die später zum Nachweis der Zwischeulle beötigt werde)

3 Asychrozähler Azeige JK JK JK Ausgag Nullachweis Sychrozähler Azeige JK JK JK Ausgag Nullachweis Aufgabeteil 6 Dieser Aufgabeteil wurde ach Absprache mit dem Betreuer icht durchgeführt.

4 Messwerte Aufgabeteil 1 B 1 B 2 B H L L L H H H H H H H L H L H L H H H H H H H H L H H L H H H H H L L H H H H L H H H H H L H H H H H L H H H L H H H H H H H L H H H H H H H H H H H L H L L L H H H H H H H L Schalter Aufgabeteil 2 S Obe HIGH LOW Ute LOW HIGH Aufgabeteil 3 S J K H L H L H L H L L H L H H L H H H L L L L H egal egal S Aufgabeteil 5 I beide Fälle kote Zwischeulle achgewiese werde. Das Oszilloskop lieferte für de Asychrozähler im etwa (gezeichete Proportioe stimme icht mit de gemessee Werte überei; f hoch, im 5MHz-Bereich; Impulsbreite klei, im 10µs-Bereich): 950s 280s 1200s 1200s 2560s 24s

5 Das Oszilloskop lieferte für de Sychrozähler im etwa (gezeichete Proportioe stimme auch hier icht mit de gemessee Werte überei): 1000s 240s 1240s 1240s 2480s 24s Aufgabeteil 4 Für de Mooflop ergabe sich diese Messergebisse. (Proportioe der Zeichug stimme icht mit de gemessee Werte überei!) U e 4,2µs 39,6µs b) ~RC t t =30,6µs c) U a t h =9µs

6 Beim Impulsverkürzer ergabe sich abhägig vom Widerstad ud Kodesator verschiedee t-werte (siehe Tabelle). (Proportioe der Zeichug stimme icht mit de gemessee Werte überei!) U e b) c) 6s 4,8µs U a Aufgabeteil 4, Impulsverkürzer R Ω C F t µs , ,5 1, ,5 0, , ,5 0, ,5 0,34 t Realität: Auswertug Aufgabeteil 1 Im Bezug auf miimale Durchlaufverzögerug lieferte die Schaltug das gewüschte Ergebis, da das Miimum a Bausteie verwedet wurde (3 Eigagsbausteie, 8 Ausgagsbausteie; weiger ist mit de vorhadee Bausteie icht realisierbar). Durch die Nutzug vo NAND- statt AND-Gatter bzw. de Verzicht auf weitere Negatore bei de acht Ausgagsbausteie wurde die Ausgabe i egierter Form dargestellt. Der jeweils aktive Ausgag wurde also auf LOW gesetzt, währed die iaktive auf HIGH stade. Das Ergebis war jedoch wie erwartet eideutig. So Lieferte das erste Bit (B 1 ) 2 0, das zweite (B 2 ) 2 1 ud das dritte (B 3 ) 2 2.

7 Aufgabeteil 2 Der Schalter fuktioiert wie erwartet. Sauberes (prellfreies) Ausgagssigal liegt a. Aufgabeteil 3 Der JK-MS-Flipflop wechselt die Ausgagszustäde ur, we der Schalter aus Aufgabeteil 2 vo HIGH auf LOW gesetzt wird. Beim Wechsel vo LOW auf HIGH geschieht ichts. Ob er überhaupt wechselt hägt vo der Belegug der J- ud K- Eigäge ab (siehe Tabelle). Sid sowohl die J- als auch die K-Eigäge des JK-MS-Flipflops auf HIGH geschaltet, so merkt sich der JK-MS-Flipflop das letzte Sigal, das i dieser Zeit übertrage wird ud überimmt dieses bei der ächste HIGH-LOW-Asteuerug durch de Schalter. Das D-Flipflop im Gegesatz dazu schaltet de Ausgag ur bei der ächste Taktflake des Eigagssigals. Die gemessee Ergebisse etspreche asoste de Erwartuge a de JK-MS-Flipflop. Aufgabeteil 4 Mooflop: Gibt ma auf Eigag eie kurze Impuls (HIGH-LOW-Flake) erhält ma am Ausgag eie Impuls bestimmter Läge. Diese hägt vom Widerstad ud Kodesator ab. Die bei R=820Ω ud C=10F durchgeführte Utersuchug der Totzeit erfolgte idirekt. Das heißt: Die Abstäde der Impulse wurde gemesse ud so lage verkürzt bis eie Verrigerug der Haltezeit messbar wurde. Der zeitliche Abstad zweier Impulse abzüglich der Haltezeit lieferte somit die Totzeit. Die Totzeit begrezt also die Schaltfähigkeit des Mooflops. Sie ist vom Kodesator ud Wiederstad abhägig. Die geutzte R=820Ω sid die 1,2V obere Greze, da das zweite Gatter sost betriebsfähig ist ( R max = 1,6mA ; U ud I wurde im Versuch DT 1 ermittelt). Der Kodesator ka variiert werde. Der Mooflop brigt also immer Ausgagsimpulse kostater Läge, uabhägig der Läge der Eigagsimpulse. Wichtig sid jedoch die Abstäde der Eigagsimpulse. Falle sie i die Totzeit des Mooflops, ist die Lägekostaz der Ausgagsimpulse hifällig. Die maximale Eigagsfrequez beträgt ca. 20kHz. Impulsverkürzer: Impulse am Eigag werde am Ausgag verkürzt ausgegebe. Die Ausgagsimpulsdauer hägt vom gewählte Widerstad ud Kodesator ab (R max =680Ω). Aus de Messergebisse ist deutlich erkebar, dass für kleiere Widerstäde ud Kodesatore der Ausgagsimpuls kürzer wird. Da sie icht ideal sid, bedige die Widerstäde ud Kodesatore das Aussehe der Ausgagsimpulse (siehe blauer Kreis).

8 Kodesator-Zeit-Verlauf 3 2,5 2 t/µs 1,5 R=470Ω R=220Ω 1 0, C/F Der Kodesator-Zeit-Verlauf zeigt, dass eie aäherd lieare Abhägigkeit zwische Kodesatorkapazität ud Impulsläge besteht. Aufgabeteil 5 Der Asychrozähler weißt eie schaltugsbedigte Fehler auf. Die Verzögerugszeite der Gatter bedige, dass der Zähler zwische zwei real aliegede Zahle kurzzeitig eie Null oder eie adere zu kleie Zahl zählt. Das ageschlossee NAND-Gatter diete dem Nachweis ud bestätigte dies. Bei höhere Freqeuze blieb dieser Effekt, wie das Oszilloskop zeigte, erhalte. Beim theoretische Sychrozähler existiert kei Null-Fehler. Die Messug mit dem Oszilloskop zeigte jedoch auch hier eie Fehler auf. Dieser ist bedigt durch die Läge der Verbidugsleituge, etc..

9 Fachrichtug Physik Istitut für Ker- ud Teilchephysik Elektroikpraktikum für Physiker R. Schwierz DT II Grudlage digitaler Schaltuge 1. Aufgabestellug 1. Baue Sie aus NAND-Gatter eie Decodierschaltug für 3bit mit miimaler Durchlaufverzögerug auf. Überprüfe Sie die Zustadstabelle. 2. Baue Sie eie prellfreie Schalter aus NAND-Gatter ud Kippschalter auf. Verwede Sie diese für die weitere Aufgabe. 3. Bestimme Sie die Zustadstabelle des JK-Master-Slave-Flipflops. Erkläre Sie die Uterschiede i der Taktsteuerug im Vergleich zu eiem D-Flipflop. 4. Baue Sie aus JK-Master-Slave-Flipflops eie 3bit Sychro- ud eie 3bit Asychrozähler auf. 5. Baue Sie mit Hilfe zweier Schaltkreise 74LS193 (4-Bit-Sychrozähler) eie Dezimalzähler (0 bis 99) auf. 6. Setze Sie aus TTL-NAND-Bausteie ei Mooflop ud eie Impulsverkürzer zusamme. Überprüfe ud Aalysiere Sie die Sigalforme, mache Sie Aussage zur Totzeit. 2. Hiweise zu de Aufgabe 1. Zur Realisierug der Aufgabe utze Sie die am Versuchsplatz aufgebaute Steckkäste ud Steckmodul. 2. Miimale Durchlaufzeit bedeutet die Aufstellug der disjuktive Normalform für die Aufgabe Überlege Sie sich die Uterschiede i der Impulsform am Eigag eies Gatters, we dieses mit eiem eifache Kippschalter gege Potetial 0V oder mit eiem prellfreie Schalter verbude ist. 4. Mache Sie sich die Begriffe retriggerbares ud icht-retriggerbares Mooflop klar. Welche Eigeschaft muß ei Impulsverkürzer besitze, wofür wede ich ih beispielsweise a? Welche Impulsverläufe bei de Pukte a),b)... erwarte ud messe Sie bei folgede Schaltuge? Für welche R ud C ist die Fuktiosweise garatiert?

10 Mooflop mit TTL-NAND-Gatter Impulsverkürzer mit TTL-NAND-Gatter a) U H b) C c) R d) a) U H c) b) d) R C L t L t 5. Mache Sie sich klar, daß beim Asychrozähler beim Zähle Fehlzustäde i der zeitliche Breite der Umschaltzeite durch das Umschalte der Ausgäge der eizele Stufe hitereiader auftrete köe. Weise Sie diese Fehlzustäde oszillografisch ach! Beim Syschrozähler werde alle Ausgagsstufe mit dem gleiche Taktsigal geschaltet, köe dort o.g. Fehldekodieruge auftrete? 6. Zählschaltkreise sid Bausteie mit großer Awedugsbreite. Der 74LS193 ist ei 4-Bit-Sychrozähler, de Sie als dekadische Zähler beschalte solle, um z.b. eie Impulszähler für kerphysikalische Aweduge zu realisiere. 7. Zur Darstellug der Impulsforme verwede Sie eie Zweistrahloszilloskop; zu desse Hadhabug werde Sie vom Betreuer eigewiese. Als Impulsgeeratore utze Sie bitte die Steckmodule. 3. Hiweise zur Vorbereitug 1. Die Aleitug zu diesem Versuch beschräkt sich bewußt auf die Versuchsaufgabe. Wichtigstes Vorbereitugsmaterial sollte Ihre i der Elektroik-Vorlesug gemachte Aufzeichuge bzw. Scripte sei. 2. Als gute Vorbereitug ist ei Script vo Herr Dr. Hirt (TU Illmeau) geeiget. Eie Kopie der Kapitel, die de Stoff für die Vorbereitug der Versuche kurz ud prägat darstelle, liegt auf dem Server des Istituts für Ker- ud Teilchephysik (URL: Wer keie Zugag zum Web hat, ka eie Kopie dieser Kapitel i gedruckter Form erhalte (im Istitut für Ker- ud Teilchephysik, ASB, Raum E25 oder E12, güstig wäre ei Aruf vorher (Tel oder 5461), um icht uötig viele Exemplare drucke zu müsse). 3. Die Lehrbücher "Elektroik für Physiker" (Teuber Studiebücher, Physik), "Digitale Schaltuge" (Seifart, Verlag Techik, Berli), als auch teilweise "Halbleiter-Schaltugstechik" (Tietze/Schek, Spriger Verlag) sid für die Vorbereitug der Versuche geeiget.

11 4. Zeiteiteilug 1. Aufbau 3bit Dekodierschaltug 2. Diskussio Dekodierschaltug, Eiweisug Messug am JK-Fliflop 3. Aufahme Zustadstabelle JK -Flipflop 4. Eiweisug Aufbau Zähler 5. Aufbau 3bit-Asychrozähler aus JK-MS-Flipflops, Test Dekodierug 6. Aufbau 3bit-Sychrozähler aus JK-MS-Flipflops, Test Dekodierug 7. Aufbau Dezimalzähler mit Schaltkreise 74LS Eiweisug Mooflop ud Impulsverkürzer 9. Aufbau Mooflop ud Impulsverkürzer 10. Auswertug Aufgabe Zeit 25 mi 20 mi 20 mi 15 mi 50 mi 30 mi 30 mi 20 mi 20 mi 10 mi

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern HARDWARE-PRAKTIKUM Versuch L-4 Komplexe Schaltwerke Fachbereich Iformatik Uiversität Kaiserslauter Seite 2 Versuch L-4 Versuch L-4 I diesem Versuch soll ei Rechewerk zur Multiplikatio vo zwei vorzeichelose

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

elektr. und magnet. Feld A 7 (1)

elektr. und magnet. Feld A 7 (1) FachHochschule Lausitz Physikalisches Praktikum α- ud β-strahlug im elektr. ud maget. Feld A 7 Name: Matrikel: Datum: Ziel des Versuches Das Verhalte vo α- ud β-strahlug im elektrische ud magetische Feld

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

a) Zeichnen sie ein Schaltbild des Versuches und beschriften sie dieses.

a) Zeichnen sie ein Schaltbild des Versuches und beschriften sie dieses. Der Hz-Schwigkreis besteht aus eier Spule hoher Iduktivität ud eiem Kodesator. Wird ei solcher Schwigkreis kurzfristig mit elektrischer Eergie versorgt, so führt er eie stark gedämpfte Schwigug aus. Aufgezeichet

Mehr

Behandlung von Messunsicherheiten (Fehlerrechnung)

Behandlung von Messunsicherheiten (Fehlerrechnung) Behadlug vo Messusicherheite (Fehlerrechug). Ermittlug vo Messusicherheite. Messug ud Messusicherheit Die Messug eier physikalische Größe erfolgt durch de Vergleich dieser Größe mit eier Bezugseiheit ach

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Grundlagen der Technischen Informatik

Grundlagen der Technischen Informatik Uiversität Duisburg-Esse PRAKTIKUM Grudlage der Techische Iformatik VERSUCH 3 Flipflops ud Zähleretwurf Name: Vorame: Betreuer: Matrikelummer: Gruppeummer: Datum: Vor Begi des Versuchs sid die Frage, die

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

BILANZ. Bilanzbericht

BILANZ. Bilanzbericht BILANZ Bilazbericht Ihaltsverzeichis 1 Leistugsbeschreibug... 03 2 Itegratio i das AGENDA-System... 04 3 Highlights... 05 3.1 Gestaltug vo Bilazberichte... 05 3.2 Stadardbausteie idividuell apasse... 06

Mehr

A/D UND D/A WANDLER. 1. Einleitung

A/D UND D/A WANDLER. 1. Einleitung A/D UND D/A WANDLER. Eileitug Zur Umwadlug physikalischer Größe, beispielsweise i eie Spaug, werde Wadlerbausteie - auch allgemei Sigalumsetzer geat- beötigt. Ei Sesor liefert ei aaloges Sigal, das i geeigeter

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

BILANZ Bilanzbericht

BILANZ Bilanzbericht BILANZ Bilazbericht Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Gestaltug vo Bilazberichte... 5 3.2 Stadardbausteie idividuell apasse... 6 3.3

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Afägerpraktikum Polarisatio vo Licht Gruppe, Team 5 Sebastia Korff Frerich Max 0.07.06 Ihaltsverzeichis. Eileitug -3-. Polarisatio -3-. Dichroismus -4-.3 BREWSTER Wikel -5-.4 Der FARADAY

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Praktikumsversuch Quantitative Photolumineszenz

Praktikumsversuch Quantitative Photolumineszenz VNr. 348 Stad:.4. Versio.6 S. /6 Aufgabestellug ) Messe Sie die ektive Lebesdauer der bereitgestellte Siliziumwafer mittels der MWPCD- ud der QSSPC-Methode ) Messe Sie die ektive Lebesdauer der bereitgestellte

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

Versuch EP4 Der Transistor

Versuch EP4 Der Transistor BERGISCHE UNIVERSITÄT WUPPERTAL FACHBEREICH C - PHYSIK ELEKTRONIKPRAKTIKUM Versuch EP4 Der Trasistor Versio 2.14, TEX: 3. Februar 2014 I. Zielsetzug des Versuches Trasistore sid die zetrale Verstärkerelemete

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

Feldeffekttransistoren in Speicherbauelementen

Feldeffekttransistoren in Speicherbauelementen Feldeffekttrasistore i Speicherbauelemete DRAM Auch we die Versorgugsspaug aliegt, ist ei regelmäßiges (typischerweise eiige ms) Refresh des Speicherihaltes erforderlich (Kodesator verliert mit der Zeit

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Entwicklung eines Meßsystems zur Bestimmung der Luftdichtigkeit von Bauteilen in situ

Entwicklung eines Meßsystems zur Bestimmung der Luftdichtigkeit von Bauteilen in situ Nachdruck aus Bauhysik 17 (1995), H. 4, S. 111-114 1 Etwicklug eies Meßsystems zur Bestimmug der Luftdichtigkeit vo Bauteile Achim Geißler ud Gerd Hauser Dil.-Ig. Achim Geißler ist wisseschaftliche Mitarbeiter

Mehr

Versuch D3: Energiebilanz einer Verbrennung

Versuch D3: Energiebilanz einer Verbrennung Versuch D: Eergiebilaz eier Verbreug 1. Eiführug ud Grudlage 1.1 Eergiebilaz eier Verbreug Die Eergiebilaz eier Verbreug wird am eispiel eier kleie rekammer utersucht, i welcher die bei der Verbreug vo

Mehr

Ein kleines Einmaleins über Mittelwertbildungen

Ein kleines Einmaleins über Mittelwertbildungen Vorlesugsergäzug zur Igeieurmathematik R.Brigola Ei kleies Eimaleis über Mittelwertbilduge Grudlage über arithmetische Mittel, geometrische Mittel, harmoische Mittel, quadratische Mittel ud das arithmetisch-geometrische

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Fingerprinting auf Basis der Geometrischen Struktur von Videos

Fingerprinting auf Basis der Geometrischen Struktur von Videos 35.1 Figerpritig auf Basis der Geometrische Struktur vo Videos Dima Pröfrock, Mathias Schlauweg, Erika Müller Uiversität Rostock, Istitut für Nachrichtetechik, Richard Wager Str. 31, 18119 Rostock, {dima.proefrock,

Mehr

Elektrostatische Lösungen für mehr Wirtschaftlichkeit

Elektrostatische Lösungen für mehr Wirtschaftlichkeit Elektrostatische Lösuge für mehr Wirtschaftlichkeit idustrie für igeieure, profis ud techiker i etwicklug, produktio ud motage. www.kerste.de Elektrostatische Lösuge kerste ist seit über 40 Jahre der führede

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

3. Schaltnetze und ihre technische Realisierung

3. Schaltnetze und ihre technische Realisierung 3. Schaltetze ud ihre techische Realisierug Source Gate Drai p Substrat Gatter Schaltetze Halbleitertechik Diode Trasistore Herstellugsprozeß Trasistorschaltuge 96 Elemetare Gatter Für die boolesche Operatioe,

Mehr

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung 1 Gie 11/000 Fehlerrechug 1. Physikalische Größe: Zahlewert ud Eiheit. Ursache vo Meßfehler 3. Geauigkeit vo Meßergebisse am Beispiel der Lägemessug 4. Messug eier kostate Größe ud Mittelwert 5. Messug

Mehr

Drucklufttechnik Potenziale zur Energieeinsparung. www.energieagentur.nrw.de

Drucklufttechnik Potenziale zur Energieeinsparung. www.energieagentur.nrw.de Drucklufttechik Poteziale zur Eergieeisparug www.eergieagetur.rw.de 2 Drucklufttechik optimiere ud Eergieverluste miimiere I fast jeder Produktiosstätte wird Druckluft geutzt. Die Eisatzgebiete reiche

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Das Digitale Archiv des Bundesarchivs

Das Digitale Archiv des Bundesarchivs Das Digitale Archiv des Budesarchivs 2 3 Ihaltsverzeichis Das Digitale Archiv des Budesarchivs 4 Techische Ifrastruktur 5 Hilfsmittel zur Archivierug 5 Archivierugsformate 6 Abgabe vo elektroische Akte

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Fachartikel CVM-NET4+ Erfüllt die Energieeffizienz- Richtlinie. Neuer Multikanal-Leistungs- und Verbrauchsanalyser Aktuelle Situation

Fachartikel CVM-NET4+ Erfüllt die Energieeffizienz- Richtlinie. Neuer Multikanal-Leistungs- und Verbrauchsanalyser Aktuelle Situation 1 Joatha Azañó Fachartikel Abteilug Eergiemaagemet ud etzqualität CVM-ET4+ Erfüllt die Eergieeffiziez- Richtliie euer Multikaal-Leistugs- ud Verbrauchsaalyser Aktuelle Situatio Die gegewärtige Richtliie

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Pulse-Code-Modulation

Pulse-Code-Modulation Studiegruppe: Protokollführer: Übugstag: weitere Versuchsteilehmer: Professor: Testat: Versuch GNP- Pulse-Code-Modulatio Mss/9.06.06 Eiführug as i der Kommuikatiostechik gägigste Verfahre zur mwadlug eies

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Flexibilität beim Lagern und Kommissionieren: Schienengeführte Regalbediengeräte

Flexibilität beim Lagern und Kommissionieren: Schienengeführte Regalbediengeräte Flexibilität beim Lager ud Kommissioiere: Schieegeführte Regalbediegeräte Ei Kozept zwei Baureihe: DAMBACH Regalbediegeräte Seit mehr als 35 Jahre baut die DAMBACH Lagersysteme Regalbediegeräte ud gehört

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur.

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur. PS - OPTIK P. Redulić 2007 LICHT STRAHLENOPTIK LICHT. Lichtquelle ud beleuchtete Körper Sichtbare Körper sede teilweise Licht aus, teilweise reflektiere sie aber auch das auf sie fallede Licht. Lichtquelle

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Motordaten und Betriebsbereiche. von DC Motoren. DC-Motor als Energiewandler

Motordaten und Betriebsbereiche. von DC Motoren. DC-Motor als Energiewandler 2, maxo otordate ud Betriebsbereiche otordate ud Betriebsbereiche vo DC otore otorverhalte: Keliie, Strom otordate ud Betriebsbereiche 2010 maxo motor ag, Sachsel, Schweiz DC-otor als Eergiewadler Elektrische

Mehr

2 Amplitudenmodulation

2 Amplitudenmodulation R - ING Übertraggstechik MOD - 16 Aplitdeodlatio Der isträger bietet drei igalparaeter, die wir beeiflsse köe. Etspreched terscheide wir Aplitdeodlatio für die beeiflsste Aplitde, Freqezodlatio d Phaseodlatio

Mehr

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB Neueruge Software Techologie GmbH 67433 Neustadt / Weistraße Ihalt I. Neueruge Versio 16 3 1. Pi Fuktio 3 2. Status für Nachtragspositioe 5 3. DBD Baupreise EFB 6 4. Programm Eistiegs Assistet 8 5. Voreistellugs-Assistet

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

Von der Augenlinse zur Auftragssteuerung: einige praktische Anwendungsbeispiele

Von der Augenlinse zur Auftragssteuerung: einige praktische Anwendungsbeispiele Vo der Augelise zur Auftragssteuerug: eiige praktische Awedugsbeispiele Prosemiar Evolutiosstrategie August 00 Roy Pappert Ihalt. Optimierug vo Strukture 3.. Optimierug vo Fachwerk 3.. Neuroales Netz 6.3.

Mehr

Über 20 Jahre erfahrung mit Softwarelösungen für außenwirtschaft, versand und Zoll

Über 20 Jahre erfahrung mit Softwarelösungen für außenwirtschaft, versand und Zoll Zollabwicklug Logistik-Lösuge exportkotrolle Zollmaagemet Über 20 Jahre erfahrug mit Softwarelösuge für außewirtschaft, versad ud Zoll Format SoFtware Service GmbH Max Plack-Straße 25 D-63303 Dreieich

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr DEMO für ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gz ausführliches Traiig Datei Nr. 40012 Neu geschriebe ud sehr erweitert Std: 4. Februar 2010 INTERNETBIBLIOTHEK

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012

186.813 Algorithmen und Datenstrukturen 1 VU 6.0 1. Übungstest SS 2012 26. April 2012 Techische Uiversität Wie Istitut für Computergraphik ud Algorithme Arbeitsbereich für Algorithme ud Datestrukture 186.813 Algorithme ud Datestrukture 1 VU 6.0 1. Übugstest SS 2012 26. April 2012 Mache

Mehr

Fortgeschrittenen-Praktikum (FP oder PIII): Institut für Angewandte Physik

Fortgeschrittenen-Praktikum (FP oder PIII): Institut für Angewandte Physik -Übergag Vorbereitug: Iformiere Sie sich a Had der Uterlage i der Vorbereitugsmae über das Bädermodell, die Dotierug, de -Übergag ud seie Strom-Saugskeliie, eischließlich der Zeerdiode. Zeiche Sie schematisch

Mehr

HANDBUCH Fettschichtsensor FAU-104

HANDBUCH Fettschichtsensor FAU-104 PROZESSAUTOMATION HANDBUCH Fettschichtsesor FAU-104 ISO9001 Es gelte die Allgemeie Lieferbediguge für Erzeugisse ud Leistuge der Elektroidustrie, herausgegebe vom Zetralverbad Elektroidustrie (ZVEI) e.v.

Mehr

1 Einführung in die Fehlerrechnung

1 Einführung in die Fehlerrechnung Physik für Biologie ud Zwei-Fächer-Bachelor Chemie Kap.: Eiführug i die Fehlerrechug Eiführug i die Fehlerrechug Tiefemessschiee Abbildug: Messschieber. Theoretische Grudlage Bei jeder physikalische Messug

Mehr

Oberwellen V1.0 Inhaltsverzeichnis Oberwellen... 2 Literaturverzeichnis... 10

Oberwellen V1.0 Inhaltsverzeichnis Oberwellen... 2 Literaturverzeichnis... 10 Ihaltsverzeichis 1 Oberwelle... 1.1 Grudlage... 1.1.1 Klirrfaktor... 4 1. Aalyse mittels Amplitudespektrum... 4 1.3 Messuge vo Amplitudespektre a diverse Geräte... 5 1.3.1 Glühlampe... 5 1.3. Eergiesparlampe

Mehr

Protokoll zu Grundelemente der Digitaltechnik

Protokoll zu Grundelemente der Digitaltechnik Protokoll zu Grundelemente der Digitaltechnik Ronn Harbich 22. uli 2005 Ronn Harbich Protokoll zu Grundelemente der Digitaltechnik 2 Vorwort Das hier vorliegende Protokoll wurde natürlich mit größter Sorgfalt

Mehr

Realisieren Sie die dargestellte logische Funktion als Complex-Gate, also ohne hintereinandergeschaltete Gatter:

Realisieren Sie die dargestellte logische Funktion als Complex-Gate, also ohne hintereinandergeschaltete Gatter: Fachhochschule Regesburg Fachbereich Elektrotechik. Übug aus Digitaltechik 2. ufgabe Die folgede MOS-ordug weist eie Fehler auf: Y a) Wori besteht der Fehler? b) ei welcher Eigagskombiatio vo,, tritt der

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern

KASSENBUCH ONLINE Online-Erfassung von Kassenbüchern KASSENBUCH ONLINE Olie-Erfassug vo Kassebücher Ihaltsverzeichis 1 Leistugsbeschreibug... 3 2 Itegratio i das Ageda-System... 4 3 Highlights... 5 3.1 Ituitive Olie-Erfassug des Kassebuchs... 5 3.2 GoB-sicher

Mehr

SANIERUNG PARLAMENT. SANIERUNG PARLAMENT Quo vadis?

SANIERUNG PARLAMENT. SANIERUNG PARLAMENT Quo vadis? SANIERUNG PARLAMENT SANIERUNG PARLAMENT Quo vadis? Warum es 2014 eie Etscheidug braucht De im Parlamet vertretee Klubs wurde eie Etscheidugsgrudlage vorgelegt, auf dere Basis im erste Quartal 2014 die

Mehr

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen Grphische Repräsettio vo Iterktiosusdrücke Christi Heilei, Abt. DBIS Jui 1997 1. Eileitug Dieser Bericht stellt eie eifche grphische Nottio für Iterktiosusdrücke vor, wie sie i de Berichte Grudlge vo Iterktiosusdrücke

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

beck-shop.de 2. Online-Marketing

beck-shop.de 2. Online-Marketing beck-shop.de 2. Olie-Marketig aa) Dateschutzrechtliche Eiwilligug immer erforderlich Ohe Eiwilligug des Nutzers ist eie Erhebug persoebezogeer Date icht zulässig. Eie derartige Eiwilligug ka auch icht

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Ontologische Evaluierung von Referenzmodellen Überblick über Methode und Anwendung

Ontologische Evaluierung von Referenzmodellen Überblick über Methode und Anwendung Otologische Evaluierug vo Referezmodelle Überblick über Methode ud Awedug Peter Fettke, Peter Loos Johaes Guteberg-Uiversität Maiz Iformatio Systems & Maagemet Lehrstuhl Wirtschaftsiformatik ud Betriebswirtschaftslehre

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n,

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 11. c n (z a) n, f : a P UNIVERSIÄ DES SAARLANDES FACHRICHUNG 6. MAHEMAIK Prof. Dr. Rolad Speicher M.Sc. obias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 202 Musterlösug zu Blatt Aufgabe. Zeige Sie durch Abwadlug

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Sicherheitspreis Baden-Württemberg

Sicherheitspreis Baden-Württemberg Sicherheitspreis Bade-Württemberg www.sicherheitsforum-bw.de Bewerbugsuterlage Bitte reiche Sie Ihre vollstädige Bewerbugsuterlage zum Sicherheitspreis bis zum 17.01.2015 (Poststempel) ei: Sicherheitsforum

Mehr