Mathematische Maschinen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematische Maschinen"

Transkript

1 Mathematische Maschinen Ziel: Entwicklung eines allgemeinen Schemas zur Beschreibung von (mathematischen) Maschinen zur Ausführung von Algorithmen (hier: (partiellen) Berechnungsverfahren).

2 Mathematische Maschine = Basismaschine + Programm Basismaschine: Ein-/Ausgabemechanismus Speicherstruktur Endlicher Satz von Speicheroperationen Endlicher Satz von Speichertests Programm: Festlegung der auszuführenden Folge von Operationen und Tests

3 Basismaschine B = (I, O, S, in, out, OP ER, T EST ) I Eingabenmenge; O Ausgabenmenge S Speicher = Menge der Speicherbelegungen in : I S (totale) Eingabefunktion out : S O (totale) Ausgabefunktion OP ER = {f 1,..., f m } endliche Menge der Operationen Operation = totale Funktion f : S S T EST = {t 1,..., t n } endliche Menge der Tests Test = totale Funktion f : S {0, 1}

4 Anmerkungen: Die Eingabefunktion in : I S liest die Eingabe ein und stellt diese geeignet im Speicher dar. In jedem Rechenschritt wird entweder eine Operation (=Speichertransformation) oder ein Test (= Überprüfung der Speicherbelegung bzgl. eines Kriteriums) durchgeführt. Die Ausgabefunktion out : S O entnimmt der (abschliessenden) Speicherbelegung die Ausgabe.

5 BEISPIEL: Eine Basismaschine B = (I, O, S, in, out, OP ER, T EST ), die zur Berechnung von 2-stelligen Funktionen f über den natürlichen Zahlen dienen soll (d.h. f : N N N): Eingabemenge: I = N N Ausgabemenge: O = N Speicher: S = N 4 (1. und 2. Komponente für Eingabe, 3. Komponente für Ausgabe, 4. Komponente zusätzlicher Speicher für eine Hilfszahl) Eingabefunktion: in : I S mit in(x 1, x 2 ) = (x 1, x 2, 0, 0) Ausgabefunktion: out : S O mit out(x 1, x 2, x 3, x 4 ) = x 3 Operationen: OP ER = {a 1,..., a 4, s 1,..., s 4 } mit a 1 (x 1, x 2, x 3, x 4 ) = (x 1 +1, x 2, x 3, x 4 ) und s 1 (x 1, x 2, x 3, x 4 ) = (x 1 1, x 2, x 3, x 4 ) etc., wobei x y = x y für x > y und x y = 0 für x y Tests: T EST = {t 1,..., t 4 } mit t i (x 1,..., x 4 ) = 1 g.d.w. x i > 0

6 Die Steuerung von B erfolgt durch ein B-Programm. Zur Definition von B-Programmen führen wir zunächst B-Instruktionen ein: I = (i, f, j) Operationsinstruktion i N Adresse von I f OP ER auszuführende Operation j N Nachfolgeadresse von I I = (i, t, j, k) Testinstruktion i N Adresse von I t T EST auszuführender Test j, k N mögliche Nachfolgeadressen von I j Nachfolgeadresse bei negativem Testausgang (t(s) = 0) k Nachfolgeadresse bei positivem Testausgang (t(s) = 1)

7 Anmerkungen: Adressen nennen wir auch (Programm-)Zustände. Anschauliche Interpretation der Instruktionen: Befindet sich die Rechnung im Zustand i wird als nächstes die Instruktion I mit Adresse i ausgeführt. Ist I = (i, f, j) eine Operationsinstruktion wird die aktuelle Speicherbelegung s in f(s) transformiert und der neue Programmzustand j angenommen. Ist I = (i, t, j, k) eine Testinstruktion wird der Test t auf die aktuelle Speicherbelegung s angewandt. Geht der Test negativ aus (t(s) = 0) ist der neue Programmzustand j, sonst k. Damit die Rechnung eindeutig ist, darf es für jeden Programmzustand i höchstens eine Instruktion mit Adresse i geben.

8 B-Programm P : P = I 0,..., I n ist eine endliche Folge von Instruktionen I i, wobei verschiedene Instruktionen verschiedene Adressen besitzen. (Ohne die Zusatzbedingung spricht man von nichtdeterministischen Programmen.) Ein Zustand von P ist die Adresse, Nachfolgeadresse oder mögliche Nachfolgeadresse einer Instruktion von P. Die Menge der Zustände von P wird mit Z P bezeichnet. Ein Zustand der keine Adresse ist, ist ein Stoppzustand. Weiter wird eine der Adressen als Startzustand ausgezeichnet. O.B.d.A. gehen wir im Folgenden davon aus, dass die Adresse von I 0 der Startzustand 0 ist. (In einem deterministischen Programm können wir weiter O.B.d.A. annehmen, dass stets i die Adresse von I i ist.) (Interpretation: Die Rechnung beginnt im Startzustand, d.h. die Instruktion I 0 wird als erste ausgeführt. Wird ein Stoppzustand erreicht, so kann keine Instruktion angewendet werden und die Rechnung wird beendet.) Bemerkung: Programme lassen sich graphisch durch Flussdiagramme darstellen.

9 BEISPIEL: Ein B-Programm P zur Berechnung der Addition für die zuvor eingeführte Basismaschine B. Idee. Zähle die erste Speicherkomponente x 1 herunter auf 0 und gleichzeitig die 0 in der dritten Komponente hoch auf x 1. Dann zähle die zweite Komponente x 2 herunter auf 0 und gleichzeitig die dritte Komponente hoch von x 1 auf x 1 + x 2. (Die 4. Komponente wird hier nicht benötigt.) (0, t 1, 3, 1) (1, s 1, 2) (2, a 3, 0) (3, t 2, 6, 4) (4, s 2, 5) (5, a 3, 3) Zugehöriges Flussdiagramm: s. Tafel

10 Wir können nun zusammenfassend mathematische Maschinen definieren. Eine mathematische Maschine M = (B, P ) ist eine Basismaschine B zusammen mit einem B-Programm P. Eine nichtdeterministische (nd.) mathematische Maschine M = (B, P ) ist eine Basismaschine B zusammen mit einem nichtdeterministischen B-Programm P. Bem.: Im Folgenden sind Maschinen und Programme nur dann nd., wenn dies explizit gesagt wird.

11 Um die Arbeitsweise einer (nd.) mathematischen Maschine M = (B, P ) formal zu beschreiben führen wir zunächst Umformungssysteme ein, darauf aufbauend Rechensysteme, und ordnen schließlich M ein Rechensystem zu. Umformungssystem: schematische Beschreibung der internen Rechnung von M Rechensystem: Erweiterung um Ein- und Ausgabeeinheit

12 Umformungssystem U = (KON, ) KON Menge der Konfigurationen KON KON Einschritt- oder Übergangsrelation Schreib- und Sprechweise: Statt (c, c ) schreiben wir c c und sagen c ist Nachfolgekonfiguration von c. Besitzt c keine Nachfolgekonfiguration, so heisst c Stoppkonfiguration. U ist ein deterministisches Umformungssystem, wenn jede Konfiguration höchstens eine Nachfolgekonfiguration besitzt.

13 Eine endliche U-Rechnung (der Länge n) ist eine Konfigurationenfolge c 0,..., c n mit c i c i+1 (i = 0,..., n 1) Ist c n eine Stoppkonfiguration, so heisst die Rechnung terminal. Eine unendliche U-Rechnung ist eine unendliche Konfigurationenfolge c 0, c 1, c 2,... mit c i c i+1 (für alle i 0) Eine U-Rechnung ist maximal, wenn sie terminal oder unendlich ist. Wir schreiben c c (c n c ), wenn es eine endliche mit c beginnende und c endende U-Rechnung (der Länge n) gibt.

14 Beobachtungen: Für deterministisches U gilt: Für jedes n und jede Konfiguration c gibt es höchstens eine mit c beginnende U-Rechnung der Länge n. Für jede Konfiguration c gibt es genau eine mit c beginnende maximale U-Rechnung.

15 Rechensystem R = (I, O, KON, In, Out, ) I Eingabemenge O Ausgabemenge In : I KON (totale) Eingabefunktion Out : KON O (totale) Ausgabefunktion U R := (KON, ) zugehöriges Umformungssystem R ist deterministisch, falls U R deterministisch ist. Die Resultatsrelation Res R I O von R is definiert durch: (x, y) Res R c(in(x) c & c Stoppkonfig. & Out(c) = y)

16 Für deterministisches R ist Res R rechtseindeutig, d.h. zu jeder Eingabe x gibt es höchstens eine Ausgabe y mit (x, y) Res R. Hier kann also Res R als partielle Funktion res R : I O aufgefasst werden. (Resultatsfunktion von R) Als nächstes ordnen wir nun jeder (deterministischen oder nichtdeterministischen) Mathematischen Maschine M = (B, P ) ein Rechensystem R(M) und damit eine Resultatsrelation zu. Für deterministisches M wird R(M) ebenfalls deterministisch sein, also eine partielle Resultatsfunktion liefern. Diese werden wir die von M berechnete (partielle) Funktion nennen.

17 Sei M = (B, P ) eine (det. oder nd.) mathematische Maschine mit B = (I, O, S, in, out, OP ER, T EST ) und P = {I i : i n}. Zu M gehörendes Rechensystem R(M): R(M) = (I, O, KON M, In, Out, M ) wobei KON M = Z P S In : I KON M mit In(x) = (0, in(x)) Out : KON M O mit Out(i, s) = out(s) M KON M KON M mit (j, f(s)) falls (i, f, j) P (i, s) M (j, s) falls (i, t, j, k) P & t(s) = 0 (k, s) falls (i, t, j, k) P & t(s) = 1

18 Ist M deterministisch, so ist das zugehörige Umformungssystem U M = (KON M, M ) und damit auch das zugehörige Rechensystem R(M) deterministisch, d.h. definiert eine (partielle) Resultatsfunktion res R(M) : I O. Wir nennen diese die von M berechnete (partielle) Funktion und bezeichnen diese mit ϕ M. (Im nd. Fall nennen wir entsprechend RES R(M) die von M berechnete Relation.) Statt von U M -Rechnungen sprechen wir auch von M-Rechnungen. Die M- Rechnung bei Eingabe x ist die (eindeutig bestimmte) maximale mit In(x) beginnende U M -Rechnung. Ist diese endlich, so sagen wir, dass M bei Eingabe x terminiert oder konvergiert (andernfalls divergiert M). M ist total, falls M bei jeder Eingabe terminiert. ϕ M (x) ist genau dann definiert, wenn M bei Eingabe x definiert, d.h. die Rechnung von M bei Eingabe x endlich ist. In diesem Fall gilt ϕ M (x) = Out(i, s), wobei (i, s) die letzte Konfiguration der Rechnung ist.

19 B-Berechenbarkeit Jede Basismaschine B = (I, O, S, in, out, OPER, TEST) (mit {0, 1} O) definiert einen Berechenbarkeits-, Entscheidbarkeits- und Aufzählbarkeitsbegriff: Eine (partielle) Funktion ϕ : I O ist (partiell) B-berechenbar, wenn es ein B-Programm P gibt, sodass ϕ = ϕ M für M = (B, P ) gilt. Eine Teilmenge A von I ist B-entscheidbar, falls die charakteristische Funktion c A von A B-berechenbar ist. Eine Teilmenge A von I ist B-aufzählbar, falls die partielle charakteristische Funktion χ A von A partiell B-berechenbar ist.

20 Entsprechend definiert jede Familie B von Basismaschinen einen Berechenbarkeitsbegriff. Z.B. ist eine partielle Funktion ϕ genau dann partiell B-berechenbar, wenn es eine Basismaschine B B gibt, sodass ϕ partiell B-berechenbar ist. WARNUNG: B-Berechenbarkeit impliziert i.a. nicht Berechenbarkeit im intuitiven Sinn. Hierzu muss zusätzlich sichergestellt sein, dass die Grundfunktionen von B (d.h. Ein- und Ausgabefunktion sowie die elementaren Operationen und Tests) berechenbar sind!

21 Notation: F (B) = {ϕ : ϕ partiell B-berechenbar} F T ot (B) = {f : f (total) B-berechenbar} F (B) und F T ot (B) sind entsprechend für Familien B von Basismaschinen definiert. Zwei Maschinen M und M sind äquivalent, wenn sie dieselbe partielle Funktion berechnen, d.h. wenn ϕ M = ϕ M gilt. Entsprechend heissen zwei Basismaschinen B und B äquivalent, wenn F (B) = F (B ) gilt, und zwei Familien von Basismaschinen B und B sind äquivalent, wenn F (B) = F (B ) gilt.

3. Mathematische Maschinen

3. Mathematische Maschinen 3. Mathematische Maschinen Bei den Anforderungen an Algorithmen im letzten Paragraphen haben wir bemerkt, dass ein Algorithmus im Prinzip von einer Maschine ausgeführt werden kann. Umgekehrt kann solch

Mehr

3. Turingmaschinen FORMALISIERUNG VON ALGORITHMEN. Turingmaschinen Registermaschinen Rekursive Funktionen UNTERSCHEIDUNGSMERKMALE DER ANSÄTZE:

3. Turingmaschinen FORMALISIERUNG VON ALGORITHMEN. Turingmaschinen Registermaschinen Rekursive Funktionen UNTERSCHEIDUNGSMERKMALE DER ANSÄTZE: FORMALISIERUNG VON ALGORITHMEN Wegen der beobachteten Zusammenhänge zwischen Berechnungs-, Entscheidungs- und Aufzählungsverfahren genügt es Berechnungsverfahren zu formalisieren. Weiter genügt es Verfahren

Mehr

b) Eine nd. k-band-turingmaschine M zur Erkennung einer m-stelligen Sprache L (Σ ) m ist ein 8-Tupel

b) Eine nd. k-band-turingmaschine M zur Erkennung einer m-stelligen Sprache L (Σ ) m ist ein 8-Tupel 2. Turingmaschinen Zur Formalisierung von Algorithmen benutzen wir hier Turingmaschinen. Von den vielen Varianten dieses Konzeptes, die sich in der Literatur finden, greifen wir das Konzept der on-line

Mehr

5. Varianten des Turingmaschinen-Konzeptes I: Varianten der Programmstruktur

5. Varianten des Turingmaschinen-Konzeptes I: Varianten der Programmstruktur 5. Varianten des Turingmaschinen-Konzeptes I: Varianten der Programmstruktur In der Literatur findet sich eine Vielzahl von Varianten des Turingmaschinen-Konzeptes, die sich alle als äquivalent zum Grundkonzept

Mehr

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395

Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Deterministische Turing-Maschinen (DTM) F3 03/04 p.46/395 Turing-Machine Wir suchen ein Modell zur formalen Definition der Berechenbarkeit von Funktionen und deren Zeit- und Platzbedarf. Verschiedene Modelle

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 3. TURINGMASCHINEN. Prof. Dr. Klaus Ambos-Spies. Sommersemester 2012

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK 3. TURINGMASCHINEN. Prof. Dr. Klaus Ambos-Spies. Sommersemester 2012 EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2012 3. TURINGMASCHINEN Theoretische Informatik (SoSe 2012) 3. Turingmaschinen 1 / 45 Alan Mathison Turing (1912-1954)

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Algorithmen und Programmierung

Algorithmen und Programmierung Algorithmen und Programmierung Kapitel 5 Formale Algorithmenmodelle A&P (WS 14/15): 05 Formale Algorithmenmodelle 1 Überblick Motivation Formale Algorithmenmodelle Registermaschine Abstrakte Maschinen

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Turing-Maschine, Berechenbarkeit INSTITUT FÜR THEORETISCHE 0 KIT 07.11.2011 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen

Mehr

GTI. Hannes Diener. 6. Juni - 13. Juni. ENC B-0123, diener@math.uni-siegen.de

GTI. Hannes Diener. 6. Juni - 13. Juni. ENC B-0123, diener@math.uni-siegen.de GTI Hannes Diener ENC B-0123, diener@math.uni-siegen.de 6. Juni - 13. Juni 1 / 49 Die Turingmaschine war das erste (bzw. zweite) formale Modell der Berechenbarkeit. Sie wurden bereits 1936 (also lange

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2012 17. DIE KONTEXTFREIEN SPRACHEN II: ABSCHLUSSEIGENSCHAFTEN, MASCHINENCHARAKTERISIERUNG, KOMPLEXITÄT Theoretische

Mehr

Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4. Kapitel 4: Schaltungen mit Delays Seite 1

Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4. Kapitel 4: Schaltungen mit Delays Seite 1 Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4 Kapitel 4: Schaltungen mit Delays Seite 1 Schaltungen mit Delays Inhaltsverzeichnis 4.1 Einführung 4.2 Addierwerke

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

6. Varianten des Turingmaschinen-Konzeptes II: Varianten der Speicherstruktur

6. Varianten des Turingmaschinen-Konzeptes II: Varianten der Speicherstruktur 6. Varianten des Turingmaschinen-Konzeptes II: Varianten der Speicherstruktur Der Speicherzugriff bei Turingmaschinen ist recht umständlich. Man erhält effizientere Speicherstrukturen, wenn man mehrere

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 10 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Satz Sei G = (V, Σ, R, S) eine kontextfreie

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Frank Heitmann heitmann@informatik.uni-hamburg.de 13. Mai 2014 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/17 Überblick Wir hatten

Mehr

Kapitel DB:III. III. Konzeptueller Datenbankentwurf

Kapitel DB:III. III. Konzeptueller Datenbankentwurf Kapitel DB:III III. Konzeptueller Datenbankentwurf Einführung in das Entity-Relationship-Modell ER-Konzepte und ihre Semantik Charakterisierung von Beziehungstypen Existenzabhängige Entity-Typen Abstraktionskonzepte

Mehr

Kompetitive Analysen von Online-Algorithmen

Kompetitive Analysen von Online-Algorithmen Kompetitive Analysen von Online-Algorithmen jonas echterhoff 16. Juli 004 1 Einführung 1.1 Terminologie Online-Algorithmen sind Algorithmen, die Probleme lösen sollen, bei denen Entscheidungen getroffen

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Grammatiken. Einführung

Grammatiken. Einführung Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Fragen 1. Muss eine DTM ein Wort zu Ende gelesen haben, um es zu akzeptieren? a) Ja! b) Nein!

Fragen 1. Muss eine DTM ein Wort zu Ende gelesen haben, um es zu akzeptieren? a) Ja! b) Nein! 4 Turingmaschinen Eingabeband nicht nur lesen, sondern auch schreiben kann und die zudem mit ihrem Lese-Schreib-Kopf (LSK) nach links und rechts gehen kann. Das Eingabeband ist zudem in beide Richtungen

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

8. Rekursive und primitiv rekursive Funktionen

8. Rekursive und primitiv rekursive Funktionen 8. Rekursive und primitiv rekursive Funktionen In diesem Abschnitt führen wir eine weitere (letzte) Formalisierung des Berechenbarkeitskonzeptes für Funktionen über den natürlichen Zahlen ein. Hatten wir

Mehr

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P

11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen

Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen Kapitel 1: rekursive Mengen 1 rekursive Mengen 1.1 Definition 1.1.1 informal Eine Menge heißt rekursiv oder entscheidbar, wenn ihre charakteristische Funktion berechenbar ist. 1.1.2 formal Eine Menge A

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004

Lösung zur Klausur. Grundlagen der Theoretischen Informatik im WiSe 2003/2004 Lösung zur Klausur Grundlagen der Theoretischen Informatik im WiSe 2003/2004 1. Geben Sie einen deterministischen endlichen Automaten an, der die Sprache aller Wörter über dem Alphabet {0, 1} akzeptiert,

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Stackelberg Scheduling Strategien

Stackelberg Scheduling Strategien Stackelberg Scheduling Strategien Von Tim Roughgarden Präsentiert von Matthias Ernst Inhaltsübersicht Einleitung Vorbetrachtungen Stackelberg Strategien Ergebnisse Seminar Algorithmische Spieltheorie:

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Grundlagen der Videotechnik. Redundanz

Grundlagen der Videotechnik. Redundanz Grundlagen der Videotechnik Redundanz Redundanz beruht auf: - statistischen Abhängigkeiten im Signal, - Information, die vorher schon gesendet wurde - generell eine Art Gedächtnis im Signal Beispiel: Ein

Mehr

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls 4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls δ(q, a, Z) + δ(q, ɛ, Z) 1 (q, a, Z) Q Σ. Die von einem DPDA, der mit leerem Keller akzeptiert,

Mehr

Laufzeit einer DTM, Klasse DTIME

Laufzeit einer DTM, Klasse DTIME Laufzeit einer DTM, Klasse DTIME Definition Laufzeit einer DTM Sei M eine DTM mit Eingabealphabet Σ, die bei jeder Eingabe hält. Sei T M (w) die Anzahl der Rechenschritte d.h. Bewegungen des Lesekopfes

Mehr

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP

12. Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, Klasse NP 12 Woche: Verifizierer, nicht-deterministische Turingmaschine, NP 254/ 333 Polynomielle Verifizierer und NP Ḋefinition Polynomieller

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel.

Motivation. Formale Grundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen. Informales Beispiel. Informales Beispiel. Kontextfreie Kontextfreie Motivation Formale rundlagen der Informatik 1 Kapitel 5 Kontextfreie Sprachen Bisher hatten wir Automaten, die Wörter akzeptieren Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Programmieren Formulierung eines Algorithmus in einer Programmiersprache

Programmieren Formulierung eines Algorithmus in einer Programmiersprache Zum Titel der Vorlesung: Programmieren Formulierung eines in einer Programmiersprache Beschreibung einer Vorgehensweise, wie man zu jedem aus einer Klasse gleichartiger Probleme eine Lösung findet Beispiel:

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

Bin Packing oder Wie bekomme ich die Klamotten in die Kisten?

Bin Packing oder Wie bekomme ich die Klamotten in die Kisten? Bin Packing oder Wie bekomme ich die Klamotten in die Kisten? Ich habe diesen Sommer mein Abi gemacht und möchte zum Herbst mit dem Studium beginnen Informatik natürlich! Da es in meinem kleinen Ort keine

Mehr

Informatik IC2. Balazs Simon 2005.03.26.

Informatik IC2. Balazs Simon 2005.03.26. Informatik IC2 Balazs Simon 2005.03.26. Inhaltsverzeichnis 1 Reguläre Sprachen 3 1.1 Reguläre Sprachen und endliche Automaten...................... 3 1.2 Determinisieren.....................................

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Zur Definition von Definition Albert J. J. Anglberger, Peter Brössel

Zur Definition von Definition Albert J. J. Anglberger, Peter Brössel Zur Definition von Definition Albert J. J. Anglberger, Peter Brössel Zusammenfassung Wir werden in dieser Arbeit zwei neue Definitionsvorschläge von Definition entwickeln, die folgende Eigenschaften aufweisen:

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen?

Wir suchen Antworten auf die folgenden Fragen: Was ist Berechenbarkeit? Wie kann man das intuitiv Berechenbare formal fassen? Einige Fragen Ziel: Wir suchen Antworten auf die folgenden Fragen: Wie kann man das intuitiv Berechenbare formal fassen? Was ist ein Algorithmus? Welche Indizien hat man dafür, dass ein formaler Algorithmenbegriff

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Kapitel MK:IV. IV. Modellieren mit Constraints

Kapitel MK:IV. IV. Modellieren mit Constraints Kapitel MK:IV IV. Modellieren mit Constraints Einführung und frühe Systeme Konsistenz I Binarization Generate-and-Test Backtracking-basierte Verfahren Konsistenz II Konsistenzanalyse Weitere Analyseverfahren

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

1.5 Turing-Berechenbarkeit

1.5 Turing-Berechenbarkeit A.M. Turing (1937): Maschinenmodell zur exakten Beschreibung des Begriffs effektiv berechenbar Stift Mensch a c b b Rechenblatt a b b c Lese-/Schreibkopf endliche Kontrolle Turingmaschine Eine Turingmaschine

Mehr

Handbuch ECDL 2003 Modul 2: Computermanagement und Dateiverwaltung Der Task-Manager

Handbuch ECDL 2003 Modul 2: Computermanagement und Dateiverwaltung Der Task-Manager Handbuch ECDL 2003 Modul 2: Computermanagement und Dateiverwaltung Der Task-Manager Dateiname: ecdl2_03_05_documentation Speicherdatum: 22.11.2004 ECDL 2003 Modul 2 Computermanagement und Dateiverwaltung

Mehr

Unentscheidbare Probleme: Diagonalisierung

Unentscheidbare Probleme: Diagonalisierung Unentscheidbare Probleme: Diagonalisierung Prof Dr Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Oktober 2011 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

1.4 Die Ackermannfunktion

1.4 Die Ackermannfunktion a : N 2 N : Beispiele: a(0, y) = y + 1, a(x, 0) = a(x 1, 1), x > 0, a(x, y) = a(x 1, a(x, y 1)), x, y > 0. Beh.: a(1, y) = y + 2 Bew. durch Induktion über y: a(1, 0) = a(0, 1) = 2 = 0+2. a(1, y + 1) =

Mehr

PowerMover. Ein halbautomatischer Sortierer für Outlook-PowerUser. Ein Add-In für die Versionen 2007 und 2010

PowerMover. Ein halbautomatischer Sortierer für Outlook-PowerUser. Ein Add-In für die Versionen 2007 und 2010 PowerMover Ein halbautomatischer Sortierer für Outlook-PowerUser. Ein Add-In für die Versionen 2007 und 2010 Inhaltsverzeichnis: 1 Einleitung... 2 2 Bedienung... 3 2.1 Outlook-Menü-Leiste... 3 2.2 Den

Mehr

Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC:

Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Effizienten MAC-Konstruktion aus der Praxis: NMAC Idee von NMAC: Hashe m {0, 1} auf einen Hashwert in {0, 1} n. Verwende Π MAC3 für Nachrichten fixer Länge auf dem Hashwert. Wir konstruieren Π MAC3 mittels

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm 1 Vom Problem zum Programm Ein Problem besteht darin, aus einer gegebenen Menge von Informationen eine weitere (bisher unbekannte) Information zu bestimmen. 1 Vom Problem zum Programm Ein Algorithmus ist

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Objekte einer Datenbank Microsoft Access Begriffe Wegen seines Bekanntheitsgrades und der großen Verbreitung auch in Schulen wird im Folgenden eingehend auf das Programm Access von Microsoft Bezug genommen.

Mehr

Prädikatenlogik - Micromodels of Software

Prädikatenlogik - Micromodels of Software Prädikatenlogik - Micromodels of Software Philipp Koch Seminar Logik für Informatiker Universität Paderborn Revision: 30. Mai 2005 1 Inhaltsverzeichnis 1 Motivation 3 2 Modelle 3 2.1 Definition eines Modells.......................

Mehr

Reduktion. 2.1 Abstrakte Reduktion

Reduktion. 2.1 Abstrakte Reduktion 2 Reduktion In diesem Kapitel studieren wir abstrakte Eigenschaften von Regeln. In den ersten beiden Abschnitten betrachten wir nicht einmal die Regeln selbst, sondern nur abstrakte Reduktionssysteme,

Mehr

Datenbankmodelle 1. Das Entity-Relationship-Modell

Datenbankmodelle 1. Das Entity-Relationship-Modell Datenbankmodelle 1 Das Entity-Relationship-Modell Datenbankmodelle ER-Modell hierarchisches Modell Netzwerkmodell relationales Modell objektorientierte Modelle ER Modell - 2 Was kann modelliert werden?

Mehr

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik

Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung für den Bereich Diplom/Master Informatik Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Modellbasierte Diagnosesysteme

Modellbasierte Diagnosesysteme Modellbasierte Diagnosesysteme Diagnose: Identifikation eines vorliegenden Fehlers (Krankheit) auf der Basis von Beobachtungen (Symptomen) und Hintergrundwissen über das System 2 Arten von Diagnosesystemen:

Mehr

Reguläre Sprachen Endliche Automaten

Reguläre Sprachen Endliche Automaten Endliche Automaten (Folie 54, Seite 16 im Skript) Einige Vorteile endlicher deterministischer Automaten: durch Computer schnell simulierbar wenig Speicher benötigt: Tabelle für δ (read-only), aktueller

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Turingmaschinen und rekursiv aufzählbare Sprachen (II) 2.07.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Insiderwissen 2013. Hintergrund

Insiderwissen 2013. Hintergrund Insiderwissen 213 XING EVENTS mit der Eventmanagement-Software für Online Eventregistrierung &Ticketing amiando, hat es sich erneut zur Aufgabe gemacht zu analysieren, wie Eventveranstalter ihre Veranstaltungen

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 11: Abstrakte Reduktionssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt: A

Mehr