4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute"

Transkript

1 4.1 Grundlagen 4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute 4.1 Grundlagen In den bisherigen Ausführungen wurden die Grundlagen der Ausbeuteberechnung behandelt. So wurde bereits im Abschnitt beschrieben, daß zur Berechnung der Ausbeute im wesentlichen drei Größen benötigt werden: 1. die Defektdichte D 0 und die Defektgrößenverteilung S(d), wobei d der Durchmesser eines kreisrunden Defekts ist, 2. die Kernelfunktion K(d), die die Wahrscheinlichkeit angibt, mit der ein kreisrunder Defekt des Durchmessers d bei der Wechselwirkung mit dem Layout einen Kurzschluß bzw. eine Unterbrechung verursacht 3. und eine Funktion, welche die Wahrscheinlichkeit beschreibt, auf einer defektempfindlichen Fläche der Größe A red keinen Defekt zu finden. Das Ergebnis der im letzten Punkt beschriebenen Funktion entspricht natürlich der Ausbeute. Im Abschnitt 2.2 wurden mit den Formeln (2.3), (2.6), (2.9) und (2.13) bereits mehrere dieser Modelle zur Berechnung der Ausbeute aufgeführt. Um das Zusammenspiel der unter den Punkten 1 bis 3 genannten Größen zu verdeutlichen, soll der Einfachheit halber das Poisson- Modell benutzt werden: Y A e red D0 = (4.1) A red = A Chip 0 K( d) S( d) dd (4.2) 47

2 4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute Im Abschnitt wurde darauf hingewiesen, daß die Berechnung der Kernelfunktion K(d) in Gleichung (4.2) in den seltensten Fällen analytisch durchgeführt werden kann. Im Abschnitt 5 wird ein Simulationsprogramm vorgestellt, das die Berechnung dieser Kernelfunktion übernimmt. Je nach Komplexität des zu untersuchenden Layouts kann dieser Prozeß jedoch sehr zeitaufwendig sein. Im Abschnitt 3.6 wurde erläutert wie sich der Kurvenverlauf der Defektgrößenverteilungsfunktion S(d) ändert, wenn die reale Defektform berücksichtigt wird. Es stellt sich nun die Frage, welche Auswirkung die Korrektur der Defektgrößenverteilung auf die Ausbeuteberechnung hat. In dem Defektgrößenbereich, in dem S korr (d) größer als S(d) ist (vgl. Abbildung 22), wird die Kernelfunktion K(d) gerade ihren Maximalwert von 1 erreichen. Das Produkt K(d) S korr (d) liegt demnach um den Faktor S korr (d) / S(d) über dem Produkt K(d) S(d). Die nach (4.2) berechnete reduzierte Chipfläche fällt nun größer aus und führt mit dem jeweiligen Ausbeutemodell zu einer geringeren Ausbeute. Im Abschnitt 7.2 wird auf diesen Umstand nochmals eingegangen. In den folgenden Abschnitten werden einige in der Praxis häufig vorkommende Ereignisse diskutiert, die die Empfindlichkeit eines Designs auf Defekte und damit die Kernelfunktion ändern. Es werden Möglichkeiten aufgezeigt, wie man eine zeitaufwendige Neuberechnung der Kernelfunktion, die durch entsprechende Simulationsprogramme durchgeführt werden müßte, umgehen kann, indem ein einmal bekannter Kernel in eine andere Kurvenform überführt wird. 4.2 Layoutskalierungen Bei einer Skalierung des Layouts ändert sich in der Gleichung (4.2) die Größe der reduzierten Chipfläche. Zum einen wird die Chipfläche A Chip selbst geändert und zum anderen ändert sich die vom Layout abhängige Kernelfunktion, da sich die Leitbahnbreiten und deren Abstände zueinander ebenfalls ändern. Alle anderen Größen, wie die Defektgrößenverteilung S(d) und die Defektdichte D 0 bleiben von der Skalierung des Layouts unberührt. 48

3 4.3 Maßübertragungsschwankungen und Sizing Angenommen, man hat für unskalierte Layoutdaten eine Kernelfunktion K u (d) bestimmt, so stellt sich nun die Frage, wie sich für einen Layoutskalierungsfaktor L die Kernelfunktion K s (d) gegenüber K u (d) ändert 1. Die Lösung ist: K ( d ) = K s u ( d L) (4.3) d L Defektdurchmesser Layoutskalierungsfaktor Die Kernelfunktion wird also lediglich entlang der x-achse gestaucht oder gestreckt, der prinzipielle Kurvenverlauf ändert sich jedoch nicht [105]. 4.3 Maßübertragungsschwankungen und Sizing Durch Prozeßeinflüsse, wie Über- oder Unterätzen sowie Über- oder Unterbelichten kann es vorkommen, daß eine Leitbahn auf dem Wafer etwas breiter oder schmaler ist, als es die Layoutdaten vorschreiben. Auch dieser Fehler in der Übertragung der Layoutmaße auf reale Maße beeinflußt die Kernelfunktion der realen Strukturen auf dem Wafer ([105], [108]). Solche Maßübertragungsfehler können vielfältige Ursachen haben. Allgemein werden sie unter dem Begriff der Kantenverschiebung zusammengefaßt. Der mathematische Ausdruck für die Kantenverschiebung ist: KV = Entwurfsmaß Ätzmaß 2 (4.4) KV Kantenverschiebung 1 Es wird vorausgesetzt, daß ein Skalierungsfaktor im mathematischen Sinne gemeint ist, d.h., bei L > 1 werden die Leitbahnbreiten und -abstände größer. 49

4 4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute Normalerweise liegt der Wert für KV bei einem Bruchteil der im Design vorkommenden Leitbahnbreite. Beim Entwurf komplexer Mikroprozessoren ist es heute aber üblich, zunächst ein Layout zu entwickeln, das zum Teil breitere Leitbahnen, größere Gateflächen, u.s.w. enthält. Erst während des Produktionsprozesses werden sowohl die Ätz- und Belichtungszeiten für diese Strukturen als auch deren Layoutdaten nach und nach so verändert, bis die kleinst mögliche, noch herstellbare Strukturbreite erreicht ist. Im Layout sind sozusagen "Reserven eingebaut". Der Prozeß der stufenweisen Strukturbreitenverminderung wird als "Sizing" bezeichnet. Die Wirkung des Sizing kann der Wirkung einer durch statistische Prozeßschwankungen erzeugten Kantenverschiebung gleichgesetzt werden. Der Wert für KV Sizing ist jetzt allerdings wesentlich größer. Da die Kantenverschiebung prozeßabhängig ist, bleibt sie nicht für alle Chips oder alle Wafer konstant, sondern unterliegt einer gewissen Schwankung um einen Mittelwert. Ist der Wert für KV kleiner als 0, dann sind die Strukturen auf dem Wafer um den Betrag 2 KV breiter und länger als im Layout angegeben. Das bedeutet gleichzeitig, daß die Ränder benachbarter Leitbahnen dichter beieinander liegen. So können einerseits diese Leitbahnen bereits von kleineren Defekten kurzgeschlossen werden, andererseits braucht man größere Defekte, um sie zu unterbrechen. Die Empfindlichkeit der realen Struktur auf kurzschlußverursachende Defekte ist also gegenüber dem originalen Layout angestiegen, die Empfindlichkeit auf Unterbrechungen ist dagegen gesunken. Nach der Definition im Abschnitt wird eben diese Empfindlichkeit des Layouts auf Defekte eines gewissen Durchmessers von der Kernelfunktion beschrieben. Bei einer Kantenverschiebung KV 0 muß sich also die Kernelfunktion der realen Struktur von der Kernelstruktur des ursprünglichen Layouts unterscheiden. 50

5 4.3 Maßübertragungsschwankungen und Sizing Die Auswertung entsprechender Meßstrukturen, auf die im Abschnitt noch eingegangen wird, zeigt, daß der Wert von KV um einen Mittelwert mit der Standardabweichung σ KV normalverteilt ist. Betrachtet man zunächst eine Kantenverschiebung mit KV > 0, dann ist mit Gleichung (4.4) sofort klar, daß der Raum zwischen zwei benachbarten Leitbahnen um den doppelten Betrag von KV breiter wird. Damit verschiebt sich die Kernelfunktion für Kurzschlüsse im Mittel um eben diesen Betrag nach rechts und für Unterbrechungen nach links (Abbildung 23) [108] K(d) KV = 0: Kernel für Unterbrechungen Kernel für Kurzschlüsse Defektdurchmesser d / µm KV = 0.5: Kernel für Unterbrechungen Kernel für Kurzschlüsse Abbildung 23: Verschiebung der Kernelfunktion durch Kantenverschiebung 51

6 4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute Unter zusätzlicher Berücksichtigung der Ausführungen des Abschnitts 4.2 kann nun für die Kernelfunktion erstmals die folgende allgemeingültige Formel angegeben werden: K( d) = [ Ku ( x L) G( x d, 2 KV, σ KV )] [ Ku ( x L) G( x d,2 KV, σ KV )] dx dx Unterbrechung Kurzschluß (4.5) K u (d) d L G Kernel der unveränderten Layoutdaten Defektdurchmesser Layoutskalierungsfaktor Gaußfunktion (Normalverteilungsfunktion) der Form y = G (aktueller Wert, Mittelwert, Standardabweichung) KV Kantenverschiebung aus (4.4) σ KV Standardabweichung der Kantenverschiebung In [108] wird die Wirkung der Kantenverschiebung anders behandelt: Die Kernelfunktion bleibt unverändert, statt dessen wird der Defektdurchmesser entsprechend vergrößert bzw. verkleinert. Demzufolge wird die Defektgrößenverteilung S(d) analog der obigen Gleichung (4.5) verändert. Die Anwendung dieser Umformung führt im allgemeinen bei der Berechnung der reduzierten Chipfläche mit Gleichung (4.2) nicht zum selben Ergebnis, denn es ist für das Produkt aus K(d) und S(d) mathematisch nicht egal, ob die Kernelfunktion oder die Defektgrößenverteilung entlang der x-achse verschoben wird. Die folgenden Diagramme sollen den Effekt der Kurvenverschiebung weiter verdeutlichen: 52

7 4.3 Maßübertragungsschwankungen und Sizing 6 K(d) verschoben 5 4 S(d), K(d) 3 2 S(d) 1 K(d) Defektdurchmesser d / µm Abbildung 24: K(d) wurde gegenüber der originalen Kurve entlang der x-achse verschoben K(d) verschoben 0.08 S(d) K(d) S(d) K(d) Defektdurchmesser d / µm Abbildung 25: Darstellung des Produktes S(d) K(d); K(d) wurde gegenüber der originalen Kurve entlang der x-achse verschoben. 53

8 4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute 6 S(d) verschoben 5 4 S(d), K(d) 3 2 S(d) 1 K(d) Defektdurchmesser d / µm Abbildung 26: S(d) wurde gegenüber der originalen Kurve entlang der x-achse verschoben S(d) verschoben 0.08 S(d) K(d) S(d) K(d) Defektdurchmesser d / µm Abbildung 27: Darstellung des Produktes S(d) K(d); S(d) wurde gegenüber der originalen Kurve entlang der x-achse verschoben. 54

9 4.4 Ausbeute als Funktion der Layoutskalierung K(d) S(d), wenn K(d) verschoben wurde K(D) S(d) K(d) S(d), wenn S(d) verschoben wurde Defektdurchmesser d / µm Abbildung 28: Produkt aus K(d) S(d), Gegenüberstellung der Verschiebeeffekte 4.4 Ausbeute als Funktion der Layoutskalierung Im Abschnitt 4.2 wurde beschrieben, wie sich Skalierungen des Layouts auf die Kernelfunktion und somit auf die Ausbeuteberechnung auswirken. Auch wurde im Abschnitt 4.3 diskutiert, wie Prozeßeinflüsse, die die Maßübertragung verändern, berücksichtigt werden können. Es soll nun untersucht werden, wie sich das gleichzeitige Auftreten beider Faktoren auf die zu erwartende Ausbeute auswirkt. 55

10 4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute Dazu soll wieder vom einfachsten Ausbeutemodell, dem Poisson-Modell (siehe Gleichung (4.1)), ausgegangen werden. Außerdem wird für die weiteren Ausführungen eine Kantenverschiebung von KV = 0.1 µm angenommen. Zusätzlich soll berücksichtigt werden, daß Leitbahnbreiten und abstände, die einen bestimmten Grenzwert unterschreiten, beim Herstellungsprozeß lithographisch nicht mehr aufgelöst werden können. Der erwähnte Grenzwert ist dabei sowohl vom Auflösungsvermögen der verwendeten Anlagen als auch vom verwendeten Photolack abhängig und soll nachfolgend als Auflösungsgrenze bezeichnet werden. Die folgende Grafik zeigt die Ausbeute für ein Beispiellayout in Abhängigkeit vom Skalierungsfaktor bei einer angenommenen Auflösungsgrenze von 0.6 µm: Ausbeute Gesamtausbeute Layoutskalierungsfaktor Abbildung 29: Ausbeute als Funktion der Layoutskalierung 56

11 4.4 Ausbeute als Funktion der Layoutskalierung Dieser Kurvenverlauf läßt sich wie folgt erklären [105]: Bei einem Skalierungsfaktor, der größer als 1 ist, wird das Layout in x- und y-richtung gleichermaßen gedehnt, und die Fläche wächst demnach quadratisch mit dem Skalierungsfaktor an. Die Wahrscheinlichkeit, daß auf dieser Fläche ein Defekt liegt, wird somit größer. Mit größerem Skalierungsfaktor werden die kleinen Defekte, von denen es sehr viele gibt (siehe Abschnitt 3.3 zur Erklärung der Defektgrößenverteilung), keinen Schaden mehr anrichten können, da durch die Skalierung die Leitbahnbreiten und die Leitbahnabstände größer geworden sind. Nur noch die relativ wenigen großen Defekte können die Ausbeute beschränken. Sinkt die Defektgrößenverteilungsfunktion S(d) für Defekte größerer Ausdehnung nicht schnell genug ab, dann können auf der vergrößerten Layoutfläche insgesamt mehr Defekte einen Schaden anrichten, als auf der Ausgangsfläche; die Ausbeute wird geringer. Wird das Layout durch den Skalierungsfaktor kleiner, dann wird einerseits die "Einfangfläche" kleiner, andererseits wirken sich jetzt zusätzlich die kleineren Defekte auf die Ausbeute aus. Es hängt nun wieder vom Verlauf von S(d) und natürlich vom Layout selbst ab, wie sich die Ausbeute entwickelt. Ab einem gewissen Skalierungsfaktor sinkt die berechnete Ausbeute jedoch drastisch ab und erreicht sehr schnell den Wert 0. Das liegt daran, daß bei kleinen Skalierungsfaktoren die Leitbahnen so dicht beieinander liegen und so schmal werden, daß es einerseits lithographisch nicht mehr möglich ist, so schmale Strukturen aufzulösen. Andererseits wirken sich in diesem Skalierungsbereich Schwankungen der Maßübertragungsfehler immer stärker aus. Das geht soweit, daß schließlich allein durch die Kombination aus Skalierungsfaktor und Kantenverschiebung die schmalsten Leitbahnen unterbrochen bzw. die am dichtesten beieinanderliegenden Leitbahnen kurzgeschlossen werden. 57

12 4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute Zusammenfassend läßt sich sagen, daß die Ausbeute durch zwei Mechanismen von der Layoutskalierung abhängt: Einerseits wird sie durch die Anwesenheit von Defekten mit deren Größenverteilung S(d) und andererseits von der Auflösungsgrenze, der auftretenden Kantenverschiebung und deren Standardabweichung beschränkt. Die folgende Grafik zeigt für diese Mechanismen den Verlauf der Ausbeutefunktionen in Abhängigkeit vom Skalierungsfaktor. Die Gesamtausbeute in Abbildung 29 ist das Produkt aus den in der folgenden Abbildung 30 gezeigten Kurven durch Kantenverschiebung und Auflösungsgrenze beschränkte Ausbeute Ausbeute durch Defekte begrenzte Ausbeute Layoutskalierungsfaktor Abbildung 30: Ausbeute in Abhängigkeit vom Layoutskalierungsfaktor 58

13 4.5 Ausbeute bei redundanten Bauelementen 4.5 Ausbeute bei redundanten Bauelementen Ein weiterer seit langem bekannter Weg, die Ausbeute zu steigern, besteht darin, daß man eine gewisse Redundanz im jeweiligen Bauelement vorsieht. Das heißt, daß zum Beispiel in einem 256 kb-speicher statt der notwendigen 256 Spalten von vornherein 257 Spalten entworfen werden. Wird nun eine der Spalten durch einen Defekt unbrauchbar, so kann über einen speziellen eingebauten Mechanismus die eine zusätzliche Spalte aktiviert werden. Somit ist das Bauelement weiter verwendungsfähig, und die Ausbeute bleibt von dem Defekt unberührt. In [60], [61], [74] und [117] werden entsprechende Berechnungsmodelle beschrieben, die die Redundanz eines Bauelementes berücksichtigen. Deshalb soll an dieser Stelle nur das Grundprinzip erläutert werden. Heutige Designs sind meist modular aufgebaut, so daß sich die Ausbeute des gesamten Chips aus dem Produkt der Ausbeute der einzelnen Module ergibt. Der Einfachheit halber sei eines dieser Module aus n gleichen Zellen aufgebaut. Ein Modul soll die ihm zugedachte Aufgabe erfüllen können, wenn eine beliebige Auswahl von m Zellen aus den n vorhandenen Zellen frei von Defekten ist. Außerdem muß der Teil des Moduls defektfrei sein, der für den Reparaturmechanismus benötigt wird. Nach [117] ergibt sich für die Modulausbeute: Y Modul n = i= m 0 n Y i i n ( Y ) Y n i Zelle 1 r Zeller Zelle (4.6) n Y Modul n m Y Zelle-r Y Zelle-n Ausbeute des gesamten Moduls Anzahl gleichartiger Zellen im Modul Anzahl der Zellen, die zum Betrieb notwendig sind Ausbeute einer einzelnen Zelle Ausbeute des Reparaturmechanismus (nicht redundant) 59

14 4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute Da man nach Gleichung (4.6) zwischen der Ausbeute einer einzelnen Zelle und der Ausbeute des Reparaturmechanismus unterscheiden muß, erhöht das den Aufwand bei der Extraktion der kritischen Flächen aus den Layoutdaten. Der Aufwand läßt sich aber eingrenzen, wenn der redundante Teil des Layouts komplett mit anderen Layernummern versehen wird als der nicht redundante Reparaturmechanismus. 60

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter

Leseprobe. Wilhelm Kleppmann. Versuchsplanung. Produkte und Prozesse optimieren ISBN: 978-3-446-42033-5. Weitere Informationen oder Bestellungen unter Leseprobe Wilhelm Kleppmann Versuchsplanung Produkte und Prozesse optimieren ISBN: -3-44-4033-5 Weitere Informationen oder Bestellungen unter http://www.hanser.de/-3-44-4033-5 sowie im Buchhandel. Carl

Mehr

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de

1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de 1. Allgemeine Hinweise Alexander.Martin.Koenig@TU-Clausthal.de Man sollte eine Excel-Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Aufgabe 1: IS-Kurve Leiten Sie graphisch mit Hilfe

Mehr

Kleine Einführung in die lineare Regression mit Excel

Kleine Einführung in die lineare Regression mit Excel Kleine Einführung in die lineare Regression mit Excel Grundoperationen mit Excel Werte mit Formeln berechnen Bsp.: Mittelwert und Standardabweichung Das $-Zeichen Beispielauswertung eines Versuches Daten

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Matthias Eltschka 13. November 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitung 4 2.1 Diversifikation...........................

Mehr

Praktikum 6. Digitale Bildverarbeitung

Praktikum 6. Digitale Bildverarbeitung Prof. W. Hillen, Medizinische Informatik FH - AC (Jülich)...\image\img_pk_06 ImageJ.doc Praktikum 6 Digitale Bildverarbeitung Industrielle Bildverarbeitung (Machine Vision) Fertigungskontrolle von Unterlegscheiben

Mehr

Arbeiten mit Excel. 1. Allgemeine Hinweise

Arbeiten mit Excel. 1. Allgemeine Hinweise 1. Allgemeine Hinweise Man sollte eine Excel Tabelle immer so übersichtlich wie möglich halten. Dazu empfiehlt es sich, alle benötigten Daten, Konstanten und Messwerte inklusive aller dazugehörigen Einheiten

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Statische Versuchsplanung (DoE - Design of Experiments)

Statische Versuchsplanung (DoE - Design of Experiments) Statische Versuchsplanung (DoE - Design of Experiments) Übersicht Bei der statistischen Versuchsplanung wird die Wirkung von Steuerparametern unter dem Einfluss von Störparametern untersucht. Mit Hilfe

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Aufgabe 1: Geldnachfrage I Die gesamtwirtschaftliche

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen

Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen Dipl.-Phys. Jochen Bauer 11.8.2013 Zusammenfassung Induktiv gekoppelte Spulen finden in der Elektrotechnik und insbesondere in der Funktechnik vielfältige

Mehr

Prüfungsfach Mathematik Samstag, 08. Juni 2002

Prüfungsfach Mathematik Samstag, 08. Juni 2002 MANAGEMENT CENTER INNSBRUCK Bitte auf jedem Blatt den Vor- und Nachnamen angeben:... Prüfungsfach Mathematik Samstag, 08. Juni 2002 Sollten Sie bereits in einem der vorangegangenen Jahre an der Vorbereitungsprüfung

Mehr

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003

F 23 Beta-Zähler. Inhaltsverzeichnis. Wolfgang Unger, Robert Wagner 25. Juni 2003 F 23 Beta-Zähler Wolfgang Unger, Robert Wagner 25. Juni 2003 Inhaltsverzeichnis 1 Auswertung 2 1.1 Eichung des Proportionalzählers mit 55 F e............. 2 1.2 Energieverlust von 40K im Zählrohr................

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Gymnasium Gerlingen. Physik Praktikum Mittelstufe. Auswertung von Messungen mit Excel. Versuchsauswertung mit Microsoft Excel. 1.

Gymnasium Gerlingen. Physik Praktikum Mittelstufe. Auswertung von Messungen mit Excel. Versuchsauswertung mit Microsoft Excel. 1. Seite - 1 - Versuchsauswertung mit Microsoft Excel Microsoft Excel ist ein mächtiges Werkzeug, um Messwerte tabellarisch darzustellen, Berechnungen mit ihnen durchzuführen und Grafiken aus ihnen zu erstellen.

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

DOE am Beispiel Laserpointer

DOE am Beispiel Laserpointer DOE am Beispiel Laserpointer Swen Günther Ein wesentliches Ziel im Rahmen der Neuproduktentwicklung ist die aus Kundesicht bestmögliche, d.h. nutzenmaximale Konzeption des Produktes zu bestimmen (vgl.

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Skizze zur Veranschaulichung der Legendretransformation

Skizze zur Veranschaulichung der Legendretransformation 9 Die thermodynamischen Funktionen G und H Ehe das Schema des vorherigen Abschnittes zur Konstruktion weiterer thermodynamischer Potentiale zu Ende gebracht wird, kurz einige Erläuterungen zur Legendretransformation.

Mehr

Phrasensammlung für wissenschaftliches Arbeiten

Phrasensammlung für wissenschaftliches Arbeiten Phrasensammlung für wissenschaftliches Arbeiten Einleitung In diesem Aufsatz/dieser Abhandlung/dieser Arbeit werde ich... untersuchen/ermitteln/bewerten/analysieren... Um diese Frage zu beantworten, beginnen

Mehr

Kann ein flächendeckender Ausbau der Windkraft zur Glättung der Einspeisung führen?

Kann ein flächendeckender Ausbau der Windkraft zur Glättung der Einspeisung führen? Kann ein flächendeckender Ausbau der Windkraft zur Glättung der Einspeisung führen? Dr. - Ing. Detlef Ahlborn 22. Februar 2015 Zusammenfassung In zahllosen Studien wird behauptet, ein flächendeckender

Mehr

Auswertung von Messdaten mit Hilfe von Microsoft Excel 2007. Universität Potsdam Grundpraktikum Physik Monika Schneider, WS2010/2011

Auswertung von Messdaten mit Hilfe von Microsoft Excel 2007. Universität Potsdam Grundpraktikum Physik Monika Schneider, WS2010/2011 Auswertung von Messdaten mit Hilfe von Microsoft Excel 2007 Universität Potsdam Grundpraktikum Physik Monika, WS2010/2011 Messprotokoll Es sollte draufstehen: Name, Datum, Versuch Was wurde gemessen und

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Kaplan-Meier-Schätzer

Kaplan-Meier-Schätzer Kaplan-Meier-Schätzer Ausgangssituation Zwei naive Ansätze zur Schätzung der Survivalfunktion Unverzerrte Schätzung der Survivalfunktion Der Kaplan-Meier-Schätzer Standardfehler und Konfidenzintervall

Mehr

V8 - Auf- und Entladung von Kondensatoren

V8 - Auf- und Entladung von Kondensatoren V8 - Auf- und Entladung von Kondensatoren Michael Baron, Frank Scholz 07.2.2005 Inhaltsverzeichnis Aufgabenstellung 2 Theoretischer Hintergrund 2 2. Elektrostatische Betrachtung von Kondensatoren.......

Mehr

Die drei Kernpunkte der modernen Portfoliotheorie

Die drei Kernpunkte der modernen Portfoliotheorie Die drei Kernpunkte der modernen Portfoliotheorie 1. Der Zusammenhang zwischen Risiko und Rendite Das Risiko einer Anlage ist die als Varianz oder Standardabweichung gemessene Schwankungsbreite der Erträge

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

SUDOKU - Strategien zur Lösung

SUDOKU - Strategien zur Lösung SUDOKU Strategien v. /00 SUDOKU - Strategien zur Lösung. Naked Single (Eindeutiger Wert)? "Es gibt nur einen einzigen Wert, der hier stehen kann". Sind alle anderen Werte bis auf einen für eine Zelle unmöglich,

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Controlling mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013C

Controlling mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013C Controlling mit Excel 2013 Peter Wies Themen-Special 1. Ausgabe, Februar 2014 W-EX2013C 3 Controlling mit Excel 2013 - Themen-Special 3 Trendberechnungen durchführen In diesem Kapitel erfahren Sie was

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

Bodyforming Man 133. Bodyforming Man

Bodyforming Man 133. Bodyforming Man Bodyforming Man 133 Bodyforming Man Frauen stehen bekanntermaßen wesentlich stärker im Fokus der Schönheit, doch mittlerweile gibt es im Bereich der Schönheitsdiskussion beinahe so etwas wie eine Gleichstellung

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Aufgabe 1: Malerarbeiten

Aufgabe 1: Malerarbeiten Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:

Mehr

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Versuchsauswertung mit Polynom-Regression in Excel

Versuchsauswertung mit Polynom-Regression in Excel Versuchsauswertung mit Polynom-Regression in Excel Aufgabenstellung: Gegeben sei die in Bild 1 gezeigte Excel-Tabelle mit Messwertepaaren y i und x i. Aufgrund bekannter physikalischer Zusammenhänge wird

Mehr

Alle WGKT-Empfehlungen können unter www.wgkt.de eingesehen und heruntergeladen werden.

Alle WGKT-Empfehlungen können unter www.wgkt.de eingesehen und heruntergeladen werden. WGKT-Empfehlung Betriebswirtschaftliche Kennzahlen von Krankenhäusern Stand: 05.11.2009 Arbeitskreismitglieder: Prof. Dr. K. Lennerts (Leitung), Karlsruhe; Prof. Dr. C. Hartung, Hannover; Dr. T. Förstemann,

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Allgemeine Beschreibung von Blockcodes

Allgemeine Beschreibung von Blockcodes Allgemeine Beschreibung von Blockcodes Bei Blockcodierung wird jeweils eine Sequenz von m q binären Quellensymbolen (M q = 2) durch einen Block von m c Codesymbolen mit dem Symbolumfang M c dargestellt.

Mehr

1 Darstellen von Daten

1 Darstellen von Daten 1 Darstellen von Daten BesucherInnenzahlen der Bühnen Graz in der Spielzeit 2010/11 1 Opernhaus 156283 Hauptbühne 65055 Probebühne 7063 Ebene 3 2422 Next Liberty 26800 Säulen- bzw. Balkendiagramm erstellen

Mehr

Umsetzung von DEA in Excel

Umsetzung von DEA in Excel Umsetzung von DEA in Excel Thorsten Poddig Armin Varmaz 30. November 2005 1 Vorbemerkungen In diesem Dokument, das als Begleitmaterial zum in der Zeitschrift,,Controlling, Heft 10, 2005 veröffentlichten

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 17 Crash Course Brownsche Bewegung (stetige Zeit, stetiger Zustandsraum); Pricing & Hedging von Optionen in stetiger Zeit Literatur Kapitel 17 * Uszczapowski:

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Werkstatt Euler und die Lösung der quadratischen Gleichung

Werkstatt Euler und die Lösung der quadratischen Gleichung Werkstatt Leonhard Euler und die Lösung der quadratischen Gleichungen Im Jahr 1767 hat der Mathematiker Leonhard Euler (1707 1783) das Buch Vollständige Anleitung zu Algebra im russischen Original veröffentlicht,

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO

Robert-Bosch-Gymnasium Physik (2-/4-stÉndig), NGO Seite - 1 - Bestimmung des kapazitiven (Blind-)Widerstandes und (daraus) der KapazitÄt eines Kondensators, / Effektivwerte von WechselstromgrÅÇen 1. Theoretische Grundlagen Bei diesem Experiment soll zunächst

Mehr

Übung Teil 2: Bevölkerung, Technologie, Demographie

Übung Teil 2: Bevölkerung, Technologie, Demographie Übung Teil 2: Bevölkerung, Technologie, Demographie Allgemeine Informationen Die Übungen finden in 14-tägigem Rhythmus statt abweichende Termine werden in der Vorlesung und auf der Homepage bekannt gegeben.

Mehr

Wie man leicht erkennen kann, steigt die Anzahl notwendiger Versuche zur Basis 2 bei jeder Modellerweiterung um einen weiteren Faktor.

Wie man leicht erkennen kann, steigt die Anzahl notwendiger Versuche zur Basis 2 bei jeder Modellerweiterung um einen weiteren Faktor. Ziel Prinzip Bestimmung der relevanten Einflussgrößen und Effekte unabhängiger Eingangsvariablen auf das Ergebnis eines Produktes oder Prozess mit einem Minimum an Versuchsaufwand. DoE (Design of Experiment)

Mehr

2011/2012 Abitur Sachsen - Leistungskurs Mathematik Nachtermin

2011/2012 Abitur Sachsen - Leistungskurs Mathematik Nachtermin Schriftliche Abiturprüfung Leistungskurs Mathematik - Nachtermin Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt...2 Aufgabe A...2 Aufgabe B 1...3 Aufgabe

Mehr

Auswertung von Custom Agilent ChIP on Chip Microarrays mittels MS-Excel für genomweite Methylierungsanalysen

Auswertung von Custom Agilent ChIP on Chip Microarrays mittels MS-Excel für genomweite Methylierungsanalysen Auswertung von Custom Agilent ChIP on Chip Microarrays mittels MS-Excel für genomweite Methylierungsanalysen Für die Datenanalyse wird MS-Excel ab Version 2010 benötigt. Ältere Versionen können wegen der

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

B 2.  Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!! Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden

Mehr

Induktivitätsmessung bei 50Hz-Netzdrosseln

Induktivitätsmessung bei 50Hz-Netzdrosseln Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die

Mehr

Dynamisch unterrichten mit Excel

Dynamisch unterrichten mit Excel Reimund Albers Dynamisch unterrichten mit Excel Erstellen von Schiebereglern 1 Dynamisch unterrichten mit Excel oder: Wie erstelle ich einen Schieberegler in Excel? Beispiel: Demonstration der Abhängigkeit

Mehr

Unterlagen zum Tutorium der Lehrveranstaltung. MATHEMATIK für NATURWISSENSCHAFTEN (STATISTIK) Christoph Huber FB Mathematik der Universität Salzburg

Unterlagen zum Tutorium der Lehrveranstaltung. MATHEMATIK für NATURWISSENSCHAFTEN (STATISTIK) Christoph Huber FB Mathematik der Universität Salzburg Unterlagen zum Tutorium der Lehrveranstaltung MATHEMATIK für NATURWISSENSCHAFTEN (STATISTIK) Christoph Huber FB Mathematik der Universität Salzburg Stand: 30. April 2008 INHALTSVERZEICHNIS I Inhaltsverzeichnis

Mehr

Ergänzungen zum Fundamentum

Ergänzungen zum Fundamentum Matura 2014 - Mathematik - Gymnasium Immensee 2 Ergänzungen zum Fundamentum Abstand eines Punktes zu einer Geraden d = AP v v Substitution ohne Grenzen Mit u = g(x) gilt: f(g(x))dx = 1 u f(u)du Matura

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

Fehlerrechnung. Aufgaben

Fehlerrechnung. Aufgaben Fehlerrechnung Aufgaben 2 1. Ein digital arbeitendes Längenmeßgerät soll mittels eines Parallelendmaßes, das Normalcharakter besitzen soll, geprüft werden. Während der Messung wird die Temperatur des Parallelendmaßes

Mehr

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte Anwendungen in der elementaren Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p= Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q =1+i Diskontfaktor (Abzinsungsfaktor) v =1/(1 + i) =q 1 Laufzeit n

Mehr

Bland-Altman-Plot in Excel 2010 erstellen

Bland-Altman-Plot in Excel 2010 erstellen Bland-Altman-Plot in Excel 2010 erstellen 1. Sie berechnen für jedes Messwertpaar den Mittelwert der beiden Methoden nach der Formel: (messwert_verfahren1 + messwert_verfahren2)/2, im Beispiel =(A5+B5)/2:

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

Toleranzberechnung/-Simulation

Toleranzberechnung/-Simulation Summenhäufigkeit zufallsgeneriert Toleranzberechnung/-Simulation Einführung Das Ziel ist es die Auswirkung von vielen Einzeltoleranzen auf ein Funktionsmaß zu ermitteln. Bekanntlich ist das addieren der

Mehr

1 Analogien zu Strom und Spannung

1 Analogien zu Strom und Spannung Zusatztext zum Lehrbrief Strom und Spannung Klaus Kuhnt 1 Analogien zu Strom und Spannung Mit Strom und Spannung ist der elektrische Strom bzw. die elektrische Spannung gemeint. Um sich diesen weder sichtbaren

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

M4 Oberflächenspannung Protokoll

M4 Oberflächenspannung Protokoll Christian Müller Jan Philipp Dietrich M4 Oberflächenspannung Protokoll Versuch 1: Abreißmethode b) Messergebnisse Versuch 2: Steighöhenmethode b) Messergebnisse Versuch 3: Stalagmometer b) Messergebnisse

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

1 Einleitung. 1.1 Motivation

1 Einleitung. 1.1 Motivation 1 Einleitung 1.1 Motivation Eine zunehmende Globalisierung in Verbindung mit der Verbreitung des elektronischen Handels, stets kürzer werdende Produktlebenszyklen und eine hohe Variantenvielfalt konstituieren

Mehr

Gantt-Diagramm - Diagramm zur Projektverfolgung

Gantt-Diagramm - Diagramm zur Projektverfolgung Gantt-Diagramm - Diagramm zur Projektverfolgung 5.06.206 3:29:35 FAQ-Artikel-Ausdruck Kategorie: Windows::MS Office::Excel Bewertungen: 0 Status: öffentlich (Alle) Ergebnis: 0.00 % Sprache: de Letzte Aktualisierung:

Mehr

Erstes Nyquistkriterium im Zeitbereich

Erstes Nyquistkriterium im Zeitbereich Erstes Nyquistkriterium im Zeitbereich Für dieses Kapitel wurde vorausgesetzt, dass die Detektion eines Symbols nicht durch Nachbarimpulse beeinträchtigt werden soll. Dies erreicht man durch die Detektion

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anfängerpraktikum Michelson Interferometer Gruppe 2, Team 5 Sebastian Korff Frerich Max 26.06.06 Inhaltsverzeichnis 1. Einleitung -3-1.1 Allgemeines -3-1.2 Funktionsweise -4-1.3 Relative

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Michelson - Interferometer

Michelson - Interferometer Michelson - Interferometer Matthias Lütgens 9. April 2005 Partner: Christoph Mahnke Betreuer: Dr. Enenkel Datum der Versuchsdurchführung: 5. April 2005 0.1 Ziel Experimentelle Nutzung des Michelson-Interferometers

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Messwerte und deren Auswertungen

Messwerte und deren Auswertungen Thema: Messwerte und deren Auswertungen Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Stichproben vertrauen Die Genauigkeit von Voraussagen (Vertrauensniveau) einer Stichprobenprüfung hängt

Mehr

Zahlen auf einen Blick

Zahlen auf einen Blick Zahlen auf einen Blick Nicht ohne Grund heißt es: Ein Bild sagt mehr als 1000 Worte. Die meisten Menschen nehmen Informationen schneller auf und behalten diese eher, wenn sie als Schaubild dargeboten werden.

Mehr

Excel. einzelne Zellen mit den Pfeiltasten oder durch Anklicken mit der linken Maustaste

Excel. einzelne Zellen mit den Pfeiltasten oder durch Anklicken mit der linken Maustaste Excel Oberfläche Nach dem Programmstart: Tabelle 1 ist geöffnet (Karteiblatt Tabelle 1 am unteren Rand im Vordergrund) Spalten sind mit Großbuchstaben A, B, C... beschriftet Zeilen mit Zahlen 1, 2, 3 Die

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Managementberichte verständlich gestalten

Managementberichte verständlich gestalten 2.06 Business Intelligence Managementberichte verständlich gestalten Rolf Hichert Managementberichte in Form von Statusübersichten oder Entscheidungsvorlagen sind wichtige Medien für die Vermittlung der

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik Name, Vorname:... verteilung Teil 1: Beschreibende Statistik Aufgaben

Mehr

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS 2008. Messtechnikpraktikum

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS 2008. Messtechnikpraktikum Friedrich-Schiller-Universität Jena Physikalisch-Astronomische Fakultät SS 2008 Protokollbuch Messtechnikpraktikum Erstellt von: Christian Vetter (89114) Helena Kämmer (92376) Christian.Vetter@Uni-Jena.de

Mehr

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach Logistisches Wachstum am Beispiel einer Hefekultur 16.04.2012 Inhaltsverzeichnis 1.0 Vorwort...3 2.0 Logistisches Wachstum allgemein...4 2.1

Mehr

Magnetoresistive Winkelsensoren für extreme Einsatzbedingungen

Magnetoresistive Winkelsensoren für extreme Einsatzbedingungen 4. Fachtagung Sensoren zum Messen mechanischer Größen im KFZ Haus der Technik Essen 23.-24. 2. 999 Magnetoresistive Winkelsensoren für extreme Einsatzbedingungen Gliederung: Dipl. Phys. Uwe Loreit IMO

Mehr