Lösungen zur Prüfung Mathematik III, Winter 2016 Prof. Dr. E. W. Farkas

Größe: px
Ab Seite anzeigen:

Download "Lösungen zur Prüfung Mathematik III, Winter 2016 Prof. Dr. E. W. Farkas"

Transkript

1 D-HEST Lösungen zur Prüfung Mathematik III, Winter 216 Prof. Dr. E. W. Farkas Bitte wenden!

2 1. Laplace-Transformation Im Folgenden bezeichne: L{f}(s) = e st f(t)dt die Laplace-Transformierte einer gegebenen Funktion f, sofern das Integral existiert und endlich ist. a) Wie lautet die Laplace-Transformation von: f(t) = σ(t 1) cos(t 1) + e t wobei σ(u) = 1 für u und σ(u) = für u <. s Die Laplace-Transformation von cos(t) lautet. Da die Funktion um 1 nach s 2 +1 rechts verschoben wird, kommt ein Faktor e s hinzu. Die Laplace-Transformation von e t 1 lautet. Wegen der Linearität der Laplace-Transformation erhalten wir s 1 also: L{f} = L{σ(t 1) cos(t 1)} + L{e t } = e s s s s 1. b) Bestimmen Sie unter Verwendung des Faltungssatzes die Originalfunktion h(t) zu: 1, mit a R, s(s a) 2 das heisst, bestimmen Sie die Funktion h(t) mit L{h}(s) = 1. s(s a) 2 Die Originalfunktionen zu 1 und 1 lauten 1 und te at. Es gilt also: s (s a) 2 t h(t) = 1 te at = ue au du = u 1 t a eau t 1 a eau = teat a 1 a 2 eau t = teat a eat 1. a 2 c) Für gegebene A, B R seien die Funktionen x 1 (t), x 2 (t) Lösungen des Differentialgleichungssystems: x 1 = x 2 (t) x 2 = x 1 (t) zu den Anfangsbedingungen x 1 () = A, x 2 () = B, wobei x i(t) = dx i (t)/dt für i = 1, 2 die Ableitung nach t bezeichnet. Siehe nächstes Blatt!

3 Seien F i = L{x i } für i = 1, 2. Bestimmen Sie F 1 in Abhängigkeit von s, A und B. Bestimmen Sie durch Rücktransformation die Funktion x 1 (t). Hinweis: Machen Sie eine Partialbruchzerlegung. Durch Laplace-Transformation und benützen des Ableitungssatzes erhalten wir: sf 1 A = F 2 sf 2 B = F 1. Auflösen der zweiten Gleichung nach F 2 und einsetzen in die erste Gleichung ergibt: sf 1 A = F 1 B. s Auflösen nach F 1 ergibt: F 1 = sa B s 2 1. Die Nullstellen des Nenners sind 1 und 1. Wir machen daher den Ansatz: F 1 = sa B s 2 1 = C s 1 + D s + 1 für die Partialbruchzerlegung. Durch Multiplikation mit s 2 1 erhalten wir: Koeffizientenvergleich ergibt: Es folgt: sa B = C(s + 1) + D(s 1). C = A B 2 A = C + D B = C D. und D = A + B. 2 Die Rücktransformationen von 1 und 1 sind s 1 s+1 et und e t. Die Lösung lautet also: x 1 (t) = A B e t + A + B e t. 2 2 Bitte wenden!

4 2. Fourier Reihen Die Funktion g(x) auf dem Intervall x [ 1, 1[ sei gegeben als: { 2x + x 2 1 x < g(x) := 2x x 2 x < 1 und die Funktion h(x) auf dem selben Intervall als: { 2x x 2 1 x < h(x) := 2x x 2 x < 1. Weiter ist die reelle Fourier-Reihe einer Funktion f(x): mit a, a n, b n R. f(x) = a 2 + a n cos(nx) + n=1 b n sin(nx) n=1 a) Zeigen Sie, dass die Funktion g ungerade und die Funktion h gerade ist. (4 Punkte: 2 pro Funktion) Damit die Funktion g ungerade ist, muss g( x) = g(x) gelten. Sei < a 1, dann ist: und für 1 a < ist ebenso: g( a) = 2a + a 2 g(a) = 2a + a 2 g( a) = 2a + a 2 g(a) = 2a + a 2. Die Funktion h sei gerade, es muss also h( x) = h(x) gelten. Sei < a 1, dann ist: und für 1 a < ist: h( a) = 2a a 2 h(a) = 2a a 2 h( a) = 2a a 2 h(a) = 2a a 2. Siehe nächstes Blatt!

5 b) Was können Sie jeweils über die Koeffizienten a n, b n der reellen Fourier-Reihen einer geraden beziehungsweise ungeraden Funktion aussagen? (2 Punkte: 1 pro Funktion) Die Funktion g ist ungerade, die Reihe enthält nur ungerade Reihenglieder, also gilt a =, a n = und b n. Die Funktion h ist gerade, die Reihe enthält nur gerade Reihenglieder, also gilt genau umgekehrt a, a n und b n =. c) Berechnen Sie die Koeffizienten der reellen Fourier-Reihen beider Funktionen. (6 Punkte: 2 pro b g n, a h, a h n) Die Periode beider Funktionen ist gleich der Intervalllänge, also T = 2 und somit ω = 2π. T Für g berechnen wir nur: b n = 2 T = 4 T = 2 = 4 1 = 4( 1)n+1 πn g(x) sin(nωx)dx g(x) sin(nωx)dx (2x x 2 ) sin(nωx)dx x sin(nωx)dx 2 x 2 sin(nωx)dx + 2( 1)n (π 2 n 2 2) + 4 π 3 n 3 = 4 2( 1)n (π 2 n 2 + 2). π 3 n 3 Für h berechnen wir a : a = 2 T = 4 T = 2 = 4 1 = h(x)dx h(x)dx x 2 2xdx xdx 2 x 2 dx = 4 3 Bitte wenden!

6 und a n : a n = 2 T = 4 T = 2 = 4 1 h(x) cos(nωx)dx h(x) cos(nωx)dx (2x x 2 ) cos(nωx)dx x cos(nωx)dx 2 = 4 (( 1)n 1) π 2 n 2 = 4 π 2 n. 2 4( 1)n π 2 n 2 x 2 cos(nωx)dx Abbildung 1: Näherungen mit n = 2, 4, 6, 8, 1 Reihengliedern. Die komplexe Darstellung der Fourier-Reihe einer Funktion f(x) schreibt sich: f(x) = c n e inωx mit c n C. n= d) Bestimmen Sie im Folgenden die Koeffizienten c n der komplexen Fourier Reihen von g und h. Siehe nächstes Blatt!

7 Abbildung 2: Näherungen mit n = 2, 4, 6, 8, 1 Reihengliedern. (3 Punkte: 1/2 pro c n, c, c n je Funktion) Die Umrechnungsregeln sind: Für die Funktion g finden wir: c = und für die Funktion h ergibt sich: c = 1 2 a c n = 1 2 (a n ib n ) c n = 1 2 (a n + ib n ). c n = i 2 b n = i( 1)n (π 2 n 2 + 2) 2i π 3 n 3 c n = i 2 b n = i( 1)n (π 2 n 2 + 2) + 2i π 3 n 3 c = 2 3 c n = 1 2 a n = 2 π 2 n 2 c n = 1 2 a n = 2 π 2 n 2. Die Koeffizienten von g sind rein imaginär und die Koeffizienten von h rein reell. Bitte wenden!

8 3. Kompartiment-Modell Gegeben seien die drei Teile K 1, K 2 und K 3, welche zu einem Kompartiment-Modell gehören: b 21 b 32 a K 1 K 2 K 3 b 12 c b 23 Die Substanz in den einzelnen Teilen wird über die Zeit durch die Funktionen y 1 (t), y 2 (t) und y 3 (t) beschrieben. a) Stellen Sie die Differentialgleichungen für die drei Funktionen y 1, y 2 und y 3 auf. (2 Punkte) Die drei gekoppelten Differentialgleichungen lauten: für t. y 1(t) = b 21 y 1 (t) + b 12 y 2 (t) + a y 2(t) = b 21 y 1 (t) (b 12 + b 32 + c)y 2 (t) + b 23 y 3 (t) y 3(t) = b 32 y 2 (t) b 23 y 3 (t) b) Das System lässt sich in Matrixform y = Ay + g schreiben. Finden Sie die 3 3 Matrix A sowie den Vektor g. Es sei y := [y 1, y 2, y 3 ] T. (2 Punkte) Das Differentialgleichungssystem ist: y 1(t) b 21 b 12 y 1 (t) a y (t) = y 2(t) = b 21 (b 12 + b 32 + c) b 23 y 2 (t) + y 3(t) b 32 b 23 y 3 (t) für t. Die Parameter haben folgende Werte: b 21 = 2, b 12 = 2, mit Zufluss a = 3 und Abfluss c = 3. Wir betrachten nun den Fall b 32 = und b 23 = wobei sich das Modell vereinfachen lässt. Siehe nächstes Blatt!

9 c) Zeichnen Sie das simplere Kompartiment-Modell und beschriften Sie die Pfeile. Achten Sie auch auf die korrekte Pfeilrichtung. Formulieren Sie anschliessend das System von zwei Differentialgleichungen z = Cz + h, welches dieses Modell beschreibt. C ist eine 2 2 Matrix und z := [z 1, z 2 ] T. (3 Punkte: 1 Zeichnung, 2 Gleichungssystem) Das vereinfachte Modell hat folgende Gestalt und die zugehörigen Differential- b 21 a K 1 K 2 c b 12 gleichungen lauten: z (t) = ( ) [ ] ( ) z 1 (t) b21 b z 2(t) = 12 z1 (t) b 21 (b 12 + c) z 2 (t) Mit den konkreten Werten ergibt sich daraus: ( ) [ ] ( ) z z (t) = 1 (t) 2 2 z1 (t) z 2(t) = z 2 (t) + ( ) 3. ( ) a. d) Berechnen Sie die Eigenwerte λ 1, λ 2 und Eigenvektoren ν 1 und ν 2 der Matrix C. (4 Punkte: 2 für Eigenwerte, 2 für Eigenvektoren) Die Eigenwerte sind: λ 1 = 6 λ 2 = 1 und die Eigenvektoren sind: ( ) 1 ν 1 = 2 ( ) 2 ν 2 =. 1 e) Berechnen Sie die Lösung z(t) des Differentialgleichungssystems für t zum Anfangswert z() = [, ] T. Nutzen Sie die Diagonalisierung der Matrix C um das System in zwei skalare Differentialgleichungen zu entkoppeln. Bitte wenden!

10 (4 Punkte) Es seien: und: P = [ [ ] ] 1 2 ν 1 ν 2 = 2 1 [ ] λ1 Λ = = λ 2 [ ] 6 1 und die Diagonalisierung ist dann C = PΛP 1. Wir entkoppeln damit das System: z = Cz + h z = PΛP 1 z + h P 1 z = ΛP 1 z + P 1 h u = Λu + h wobei u = P 1 z und erhalten zwei skalare Differentialgleichungen: Die Lösungen davon sind: u(t) = u 1 = λ 1 u 1 + h 1 u 2 = λ 2 u 2 + h 2. ( ) u1 (t) = u 2 (t) ( e 6t und wir bekommen mit z = Pu die Lösungen: e t 5 5 z 1 (t) = e 6t 1 12e t z 2 (t) = e 6t 5 6e t ) Siehe nächstes Blatt!

11 Abbildung 3: Lösungen z 1 (t) (rot) und z 2 (t) (blau). 4. Partielle Differentialgleichung Wir betrachten einen offenen Draht mit Temperaturleitungsfähigkeit D > und Länge 1 und suchen Lösungen der Wärmeleitungsgleichung: zu den Randbedingungen: u t = D 2 u für alle < x < 1, t > (1) x 2 u u (, t) = (1, t) = für alle t >. (2) x x a) Bestimmen Sie alle Lösungen von der Form u(x, t) = X(x)T (t) der Wärmeleitungsgleichung (1) mit den Randbedingungen (2). Aus der Vorlesung folgt, dass Basislösungen von der Form: sind. Die Ableitung nach x ist: (A cos(ωx) + B sin(ωx))e Dω2 t ω( A sin(ωx) + B cos(ωx))e Dω2t. Wegen der Randbedingung (2) gilt B = und ω = nπ für ein n {, 1, 2,... }. Die Lösungen lauten also: A cos(nπx)e D(nπ)2t. Bitte wenden!

12 b) Die Temperatur zum Zeitpunkt t = sei gegeben durch u(x, ) = x für alle x 1. Bestimmen Sie für diese Anfangswerte durch Superposition der gefundenen Lösungen aus a) die Lösung zur Wärmeleitungsgleichung (1) mit den Randbedingungen (2). Wir verwenden den Ansatz: v(x, t) = A n cos(nπx)e D(nπ)2t. (3) n=1 Die Koeffizienten A n bestimmen wir so, dass die Anfangsbedingung u(x, ) = u (x) erfüllt ist. Für t = ist (3) die Fourierreihe einer geraden Funktion. Wir betrachten daher die gerade 2-periodische Fortsetzung ū von u (x) = x für alle < x < 1. Da ū und cos(nπx) gerade sind, gilt für die Fourierkoeffizienten: A n = Mittels partieller Integration folgt: A n = 2 ( x sin(nπx) 1 nπ ū (x) cos(nπx)dx = 2 x cos(nπx)dx. ) sin(nπx)dx = 2 (nπ) 2 cos(nπx) 1 = Zudem ist A = 2 xdx = 1. Die Lösung lautet also: u(x, t) = 1 2 n ungerade 4 (nπ) 2 cos(nπx)e D(nπ)2t. { n gerade 4 (nπ) 2 n ungerade. c) Zeigen Sie: u(x, t)dx ist konstant für alle t, das heisst, die Wärme im Draht bleibt zeitlich konstant. Es gilt: d dt udx = u t dx = Du xx dx = Du x 1 =.

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 11. Bitte wenden!

D-HEST, Mathematik III HS 2017 Prof. Dr. E. W. Farkas M. Nitzschner. Lösung 11. Bitte wenden! D-HEST, Mathematik III HS 07 Prof. Dr. E. W. Farkas M. Nitzschner Lösung Bitte wenden! . Lösen von partiellen Differentialgleichungen mit Separationsansätzen a Betrachten Sie für D > 0 die partielle Differentialgleichung

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Musterlösung Serie 2

Musterlösung Serie 2 D-ITET Analysis III WS 13 Prof. Dr. H. Knörrer Musterlösung Serie 1. Wir wenden die Methode der Separation der Variablen an. Wir schreiben u(x, t = X(xT (t und erhalten Daraus ergeben sich die Gleichungen

Mehr

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3

, r [0, 2], ϕ [0,π/2], ϑ [0,π/6]. x 3. x 2 2 x 2 1. F(x) = x 2 3 Prof. Dr. Eck Höhere Mathematik 3 9.3.9 Aufgabe ( Punkte) Gegeben ist der Körper K mit der Parametrisierung x r cos ϕ cos ϑ K : x = Φ(r,ϕ,ϑ) = r sin ϕ cos ϑ, r [, ], ϕ [,π/], ϑ [,π/6]. x 3 r sin ϑ a) Berechnen

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13

15. Übungsblatt zur Höheren Mathematik III (P/ET/AI/IT/IKT/MP) WS 2012/13 Prof. Dr. L. Schwachhöfer Dr. J. Horst Fakultät Mathematik TU Dortmund 15. Übungsblatt zur Höheren Mathematik III P/ET/AI/IT/IKT/MP WS 1/13 Aufgabe 1 Bestimmen Sie eine auf der Menge M := {x, y R x + y

Mehr

Lösungsvorschläge zur Klausur

Lösungsvorschläge zur Klausur Prüfung in Höhere Mathematik 3 5. September 3 Lösungsvorschläge zur Klausur für bau, ernen, fmt, IuI, mach, tema, umw, verf, geod und so weiter ; Aufgabe : Punkte Im R 3 wird eine Fläche T durch die Abbildung

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1.

Apl. Prof. Dr. N. Knarr Musterlösung , 120min. cos(x), y(0) = 1. Apl. Prof. Dr. N. Knarr Musterlösung.9.6, min Aufgabe ( Punkte) Lösen Sie das folgende Anfangswertproblem: y = e y cos(x), y() =. Sei y : I R die maximale Lösung des gegebenen Anfangswertproblems (diese

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe (9 Punkte) Es sei die Fläche S R 3 gegeben durch S : { } (x, y, z) R 3 : 4z x + y 4, z. (a) ( Punkte) Geben Sie eine Parametrisierung für S an. (b) (4 Punkte) Berechnen Sie den Flächeninhalt von

Mehr

Mathematik für Sicherheitsingenieure II (MScS, MScQ)

Mathematik für Sicherheitsingenieure II (MScS, MScQ) Priv.-Doz. Dr. J. Ruppenthal Wuppertal,..28 Mathematik für Sicherheitsingenieure II (MScS, MScQ) Modulteil: Mathematik II Aufgabe. (6+7+7 Punkte) a) Bringen Sie folgende komplexe Zahlen in die Form x +

Mehr

Mathematik für Sicherheitsingenieure II (MScS, MScQ)

Mathematik für Sicherheitsingenieure II (MScS, MScQ) Priv.-Doz. Dr. J. Ruppenthal Wuppertal,.3.7 Mathematik für Sicherheitsingenieure II MScS, MScQ) Modulteil: Mathematik II Aufgabe. 8+6+6 Punkte) a) Bringen Sie folgende komplexe Zahlen in die Form x + iy

Mehr

PROBEPRÜFUNG MATHEMATIK I UND II

PROBEPRÜFUNG MATHEMATIK I UND II PROBEPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften Für diese Probeprüfung sind ca 4 Stunden vorgesehen. Die eigentliche Prüfung wird signifikant

Mehr

D-CHEM Mathematik III Sommer 2016 Prof. Dr. F. Da Lio. First Draft. 20 x ct x + ct x 4t x + 4t 20, 4t 20 x 20 4t.

D-CHEM Mathematik III Sommer 2016 Prof. Dr. F. Da Lio. First Draft. 20 x ct x + ct x 4t x + 4t 20, 4t 20 x 20 4t. D-CHEM Mathematik III Sommer 06 Prof. Dr. F. Da Lio First Draft. a) Der Wert u(x, t) kann für (x, t) berechnet werden, wenn (x, t) im Einflussgebiet von [ 0, 0] liegt (denn nur auf dem Intervall [ 0, 0]

Mehr

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld

D-BAUG Analysis I/II Winter 2015 Dr. Meike Akveld D-BAUG Analysis I/II Winter 5 Dr. Meike Akveld Lösung. [ Punkte] Es sei das Gebiet B {z C } z + Im(z) gegeben. a) Skizzieren Sie das Gebiet B in der komplexen Ebene. Für z x + iy gilt z + Im(z) x + y +

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Gewöhnliche Differentialgleichungen Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Gew. DGl 1-1 Zusammenfassung y (x) = F (x, y) Allgemeine

Mehr

Probeklausur Höhere Mathematik II für Elektrotechniker

Probeklausur Höhere Mathematik II für Elektrotechniker I. Bouw.7.8 U. Hackstein Probeklausur Höhere Mathematik II für Elektrotechniker Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 7 Punkte. Aufgabe. Skizzieren Sie folgenden Bereich: D = {(x, y) R x + y

Mehr

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11

Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 Mathematik Online Kurs Prüfungsvorbereitung HM 3 für kyb, mecha, phys WS 10/11 http://www.mathematik-online.org/ 2 http://www.mathematik-online.org/ Mathematik Online Kurs Prüfungsvorbereitung HM 3 für

Mehr

1 2, 2,v [1, 2]. R 2 : u

1 2, 2,v [1, 2]. R 2 : u Prof. Dr. H. Harbrecht Höhere Mathematik 3 07.09.00 Aufgabe (0 Punkte Gegeben sei die parametrisierte Fläche A mit A { ( Φ(u,v uv, v R : u u a Berechnen Sie die Funktionaldeterminante von Φ. b Bestimmen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4 Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)

Mehr

Prüfung zur Vorlesung Mathematik III

Prüfung zur Vorlesung Mathematik III Dr. A. Caspar ETH Zürich, Febbruar 2017 Prof. N. Hungerbühler HST, Lehrdiplom D-MATH Prüfung zur Vorlesung Mathematik III Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle

Mehr

Kapitel 3. Lineare Differentialgleichungen

Kapitel 3. Lineare Differentialgleichungen Kapitel 3. Lineare Differentialgleichungen 3.4 Die Laplace Transformation Sei F : R C eine reell oder komplexwertige Funktion auf R. Die Laplace Transformierten von F ist gegeben durch die Integraltransformation

Mehr

Kapitel 30. Aufgaben. Verständnisfragen. Aufgabe 30.1 Gegeben ist die Funktion. 0 <x π 2 π 2 <x π. x, π. f(x)=

Kapitel 30. Aufgaben. Verständnisfragen. Aufgabe 30.1 Gegeben ist die Funktion. 0 <x π 2 π 2 <x π. x, π. f(x)= Kapitel 3 Aufgaben Verständnisfragen Aufgabe 3.1 Gegeben ist die Funktion { fx= x,,

Mehr

Tutorium Mathematik II M WM

Tutorium Mathematik II M WM Tutorium Mathematik II M WM 9.6.7 Lösungen Lösen Sie folgende Systeme von Differentialgleichungen der Form x = A x + b mit. A = 6 und b = et. e t Hinweis: Die Eigenwerte und -vektoren der Matrix A lauten:

Mehr

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1.

Systeme von Differentialgleichungen. Beispiel 1: Chemische Reaktionssysteme. Beispiel 2. System aus n Differentialgleichungen 1. Ordnung: y 1. Systeme von Differentialgleichungen Beispiel : Chemische Reaktionssysteme System aus n Differentialgleichungen Ordnung: y (x = f (x, y (x,, y n (x Kurzschreibweise: y y 2 (x = f 2(x, y (x,, y n (x y n(x

Mehr

PRÜFUNG AUS MATHEMATIK 3

PRÜFUNG AUS MATHEMATIK 3 (8 P.) Berechnen Sie das Integral tan(ln x) dx. x (8 P.) Bestimmen Sie die allgemeine Lösung der Differentialgleichung y 2y + 2y = x 2 + 5 cos x. (8 P.) Entwickeln Sie f(x) = sin(x) für x [ π/2, π/2] mit

Mehr

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe / Dr Hanna Peywand Kiani 722 Anleitung zu Blatt 4 Differentialgleichungen I für Studierende der Ingenieurwissenschaften Lineare Differentialgleichungssysteme,

Mehr

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

5. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 5. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: e jωt -Funktionen sind sinusförmige, komplexe Funktionen. Sie sind

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 partielle Differentialgleichungen (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3

Mehr

Aufgabe 1 (12 Punkte)

Aufgabe 1 (12 Punkte) Aufgabe ( Punkte) Ein Medikament wirkt in drei Organen O, O, O 3. Seine Menge zur Zeit t im Organ O k wird mit x k (t) bezeichnet, und die Wechselwirkung wird durch folgendes System von Differentialgleichungen

Mehr

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13 Universität Stuttgart Fachbereich Mathematik Prof. Dr. E. Teufel, Dr. N. Röhrl, J. Spreer MUSTERLÖSUNG FÜR KLAUSUR Mathematik inf / sotech / tpinf Aufgabe 1 (4 Punkte) Zeigen Sie, dass für alle n gilt

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung

Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung Department Mathematik der Universität Hamburg SoSe 29 Dr. Hanna Peywand Kiani Schwache Formulierung der Poisson-Gleichung Finite Elemente Methoden Fouriermethoden für Wärmeleitungsgleichung Die ins Netz

Mehr

Spezieller Ansatz bei spezieller Inhomogenität.

Spezieller Ansatz bei spezieller Inhomogenität. Spezieller Ansatz bei spezieller Inhomogenität. Bei Inhomogenitäten der Form h(t) = e µt kann man spezielle Ansätze zur Bestimmung von y p (t) verwenden: Ist µ keine Nullstelle der charakteristischen Gleichung

Mehr

Differentialgleichungen für Ingenieure Lösung Klausur Juli

Differentialgleichungen für Ingenieure Lösung Klausur Juli Technische Universität Berlin Fakultät II Institut für Mathematik SS 0 Dozentin Dr Penn-Karras Assistentin Dr C Papenfuß Differentialgleichungen für Ingenieure Lösung Klausur Juli Rechenteil Aufgabe 8

Mehr

Lösungsvorschläge zur Klausur für bau, ernen, fmt, geod, mach, medtech, tema, umw, verf, verk )

Lösungsvorschläge zur Klausur für bau, ernen, fmt, geod, mach, medtech, tema, umw, verf, verk ) Lösungsvorschläge zur Klausur für bau, ernen, fmt, geod, mach, medtech, tema, umw, verf, verk Aufgabe : ( Punkte Gegeben ist der Körper K {(x,y,z R 3 x 2 + y 2 + z 2 ; x,y,z } (a Geben Sie K in Kugelkoordinaten

Mehr

Die Wärmeleitungsgleichung

Die Wärmeleitungsgleichung Die Wärmeleitungsgleichung In einem Stab der Länge 1 wird die Temperaturverteilung gegeben durch die Funktion u : ([0,1] [0, )) R, u(x,t) ist die Temperatur am Punkt x zum Zeitpunkt t. Die Funktion erfüllt

Mehr

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation.

Zuname: Vorname: KennNr: Matr.Nr: PRÜFUNG AUS MATHEMATIK 3. 1)(8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. (8 P.) Lösen Sie das folgende AWP mit Hilfe der Laplacetransformation. y 7y + 10y = sin(2x), y(0) = 1, y (0) = 3. x ( ) Bemerkung: Für festes a gilt L(e ax ) = 1 und L sin(ax) = arctan a. s a x s Die auftretenden

Mehr

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen

Fachbereich Mathematik/Informatik 16. Juni 2012 Prof. Dr. H. Brenner. Mathematik für Anwender II. Testklausur mit Lösungen Fachbereich Mathematik/Informatik 6. Juni 0 Prof. Dr. H. Brenner Mathematik für Anwender II Testklausur mit Lösungen Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Ein Skalarprodukt

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

Höhere Mathematik III für Physik

Höhere Mathematik III für Physik 8..8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Höhere Mathematik III für Physik 5. Übungsblatt - Lösungsvorschläge Aufgabe (Homogene Anfangswertprobleme) Lösen Sie erst die folgenden Differentialgleichungssysteme

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

HM3 (aer, mawi) WS 14 / 15 Blatt 8 Dr F. Leitner

HM3 (aer, mawi) WS 14 / 15 Blatt 8 Dr F. Leitner Besprechung in der 5. KW Hinweis: Bitte nehmen Sie sich die Zeit und füllen Sie den zur Vorlesung gehörenden Evaluationsbogen unter https://evasysw.unistuttgart.de/evasys/online.php?p=8vjf3 aus. Aufgabe

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, Februar 2018 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total

Mehr

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS

Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS Musterlösung der Präsenzaufgaben zu Mathematik I für ET/IT und ITS WS 0/0 Blatt 7. Bestimmen Sie eine Stammfunktion von sinx 4 und für alle n N π π sin nxdx. Lösung. Die Rekursionsformel lautet sinx n

Mehr

Klausur zur Höheren Mathematik 3

Klausur zur Höheren Mathematik 3 Prof. Dr. Ch. Hesse 3.09.202 Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Klausur zur Höheren Mathematik 3 für kyb, mecha, phys, Dipl el Erlaubte Hilfsmittel: 20 Blätter DIN

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 015 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Vollständigkeit

Mehr

Fourier- und Laplace- Transformation

Fourier- und Laplace- Transformation Übungsaufgaben zur Vorlesung Mathematik für Ingenieure Fourier- und Lalace- Transformation Teil : Lalace-Transformation Prof. Dr.-Ing. Norbert Hötner (nach einer Vorlage von Prof. Dr.-Ing. Torsten Benkner)

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 3 26. 2. 214 Lösungshinweise zur Klausur für Studierende der Fachrichtungen kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i)

Mehr

Lösungsvorschläge zur Klausur für mach, umw, fmt, bau, immo, tema, und zugehörige Technikpädagogik

Lösungsvorschläge zur Klausur für mach, umw, fmt, bau, immo, tema, und zugehörige Technikpädagogik Prüfung in Höhere Mathematik III. September 8 Lösungsvorschläge zur Klausur für mach, umw, fmt, bau, immo, tema, und zugehörige Technikpädagogik Aufgabe : 8 Punkte Gegeben ist A : v : Bestimmen Sie die

Mehr

6. Lineare DGL-Systeme erster Ordnung

6. Lineare DGL-Systeme erster Ordnung HJ Oberle Differentialgleichungen I WiSe 22/3 6 Lineare DGL-Systeme erster Ordnung A Allgemeines Wir betrachten ein lineares DGL System erster Ordnung y (t = A(t y(t + b(t (6 und setzen voraus, dass die

Mehr

Wärmeleitungsgleichung,

Wärmeleitungsgleichung, Fachbereich Mathematik der Universität Hamburg SoSe 2015 Dr. Hanna Peywand Kiani Wärmeleitungsgleichung, 05.06.2015 Die ins Netz gestellten Kopien der Anleitungsfolien sollen nur die Mitarbeit während

Mehr

Aufgabe 69 Wir wenden die Laplacetransformation auf das System von Differentialgleichungen an. Schreibe. Y 1, y 2. (1 s 2 )Y 2 (s) = 1.

Aufgabe 69 Wir wenden die Laplacetransformation auf das System von Differentialgleichungen an. Schreibe. Y 1, y 2. (1 s 2 )Y 2 (s) = 1. Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 3 7.7.3 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Klausurvorbereitung Höhere Mathematik Lösungen

Klausurvorbereitung Höhere Mathematik Lösungen Klausurvorbereitung Höhere Mathematik Lösungen Yannick Schrör Christian Mielers. Februar 06 Ungleichungen Bestimme die Lösungen für folgende Ungleichungen. x+ > x + x + Fall : x, x + > x + 6 Lösung im

Mehr

Höhere Mathematik für Ingenieure , Uhr (1. Termin)

Höhere Mathematik für Ingenieure , Uhr (1. Termin) Studiengang: Matrikelnummer: 1 3 4 5 6 Z Punkte Note Prüfungsklausur A zum Modul Höhere Mathematik für Ingenieure 1 17.. 14, 8. - 11. Uhr 1. Termin Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche

Mehr

Herbst Gesundheitswissenschaften und Technologie Bachelor Mathematik DZ und Mathematik Lehrdiplom. Prof. Dr. Erich Walter Farkas

Herbst Gesundheitswissenschaften und Technologie Bachelor Mathematik DZ und Mathematik Lehrdiplom. Prof. Dr. Erich Walter Farkas Herbst 213 Gesundheitswissenschaften und Technologie Bachelor Mathematik DZ und Mathematik Lehrdiplom 5.3 Lösung von Prof. Dr. Erich Walter Farkas ETH Zürich Kapitel 5. Partielle Differentialgleichungen

Mehr

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien.

1. Integrieren Sie die Funktion f(x, y, z) := xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) Hinweis: Verwenden Sie Symmetrien. 1. Integrieren Sie die Funktion f(x, y, z) : xyz über die Kugel mit Zentrum im Ursprung und Radius 1. (2 Punkte) inweis: Verwenden Sie Symmetrien. Lösung: Betrachte den Diffeomorphismus j : B 1 () B 1

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis

KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis KARLSRUHER INSTITUT FÜR TECHNOLOGIE Institut für Analysis Höhere Mathematik III für die Fachrichtung Elektro- und Informationstechnik D. A MR Frühjahr 2014 T R, M.S. 06.03.2014 Bachelor-Modulprüfung Aufgabe

Mehr

Klausur: Höhere Mathematik IV

Klausur: Höhere Mathematik IV Prof. Dr. Josef Bemelmans Templergraben 55 52062 Aachen Raum 00 (Hauptgebäude) Klausur: Höhere Mathematik IV Tel.: +49 24 80 94889 Sekr.: +49 24 80 9492 Fax: +49 24 80 92323 bemelmans@instmath.rwth-aachen.de

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch

Lineare Algebra und Numerische Mathematik D-BAUG. Sommer 2012 Prof. H.-R. Künsch b Prüfung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice: Sommer Prof. H.-R. Künsch Gegeben sei die folgende Matrix A = 4. 4 (a) x AA T ist eine 4 4 Matrix mit ( AA T) = 4. AA T ist

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

Bsp2: (einfach) (einfach) Lösung: 1) Nullstellen des Nenners und LFZ des Nenners. Vl (doppelt) Vl. Mathematik 3 MST.

Bsp2: (einfach) (einfach) Lösung: 1) Nullstellen des Nenners und LFZ des Nenners. Vl (doppelt) Vl. Mathematik 3 MST. Vl. 29.1.14 Bsp2: Lösung: 1) Nullstellen des Nenners und LFZ des Nenners (doppelt) (einfach) (einfach) Prof. Dr. B. Grabowski 1 2) Ansatz für die Partialbrüche (doppelt) Konstante Konstante 3) Konstanten

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen Partielle Differentialgleichungen Definition. Eine partielle Differentialgleichung ist eine Dgl., in der partielle Ableitungen einer gesuchten Funktion z = z(x 1, x 2,..., x n ) mehrerer unabhängiger Variabler

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 4.6.8 Mathematik Master Sicherheitstechnik) Übungsblatt 8 Aufgabe 5. Konvergenz von Fourierreihen) Der Sinus Hyperbolicus ist die Funktion sinhx) = e x e x). Es

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

1 Einführung, Terminologie und Einteilung

1 Einführung, Terminologie und Einteilung Zusammenfassung Kapitel V: Differentialgleichungen 1 Einführung, Terminologie und Einteilung Eine gewöhnliche Differentialgleichungen ist eine Bestimmungsgleichung um eine Funktion u(t) einer unabhängigen

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys

Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys Prof. Pöschel Höhere Mathematik III 3.9.5 Klausur zur Höheren Mathematik III für die Fachrichtungen: kyb, mecha, phys Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 8 Minuten Erlaubte Hilfsmittel:

Mehr

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse.

Fourier-Integrale: Ausgangsdaten und Transformierte sind jeweils Funktionen über der ganzen reellen Achse. Fourier-Reihen Fourier-Transformation Die Fourier-Transformation ist eines der wichtigsten Instrumente zur Behandlung linearer Systeme, seien es gewöhnliche oder partielle lineare Differentialgleichungen

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8 Übungsblatt Aufgaben mit Lösungen Aufgabe 6: Matrix Bestimmen Sie die allgemeine reelle Lösung des Differentialgleichungssystems u x = Aux für die A =, 9 indem Sie das System auf eine einzelne gewöhnliche

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, August 017 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Bitte

Mehr

Hochschule Augsburg Elektrotechnik/Mechatronik Semester: Mathematik 2 SS 2015 Seite 1/10

Hochschule Augsburg Elektrotechnik/Mechatronik Semester: Mathematik 2 SS 2015 Seite 1/10 Mathematik SS 015 Seite 1/10 Prüfungsfach: Mathematik Zeit: 90 Min. Prüfungstermin: 6.7.015 Prüfer: Prof. Dr. Hollmann, Prof. Dr. Zacherl Hilfsmittel: Formelsammlung (DIN-A4-Blatt) Kontrollieren Sie zunächst,

Mehr

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons.

Hertz ), also 1 Schwingung pro Sekunde. Der Vorfaktor A ist die Amplitude, er misst die Lautstärke des Tons. 1 Vorbereitungen 1.1 Was ist und wofür braucht man Fourieranalysis? Anwendungsgebiete der Fourier-Analysis sind z.b. Signalverarbeitung, Bildverarbeitung, Schaltkreisentwurf, Elektrodynamik, Optik, Akustik,

Mehr

BASISPRÜFUNG MATHEMATIK I UND II

BASISPRÜFUNG MATHEMATIK I UND II ETH Zürich Sommer 015 Dr. Ana Cannas BASISPRÜFUNG MATHEMATIK I UND II für die Studiengänge Agrar-, Erd-, Lebensmittelund Umweltnaturwissenschaften 1. Sei a) Ist das System lösbar? b) Lösen Sie das System

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8

Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 8 8.1 (Herbst 2012, Thema 2, Aufgabe 5) Bestimmen Sie die allgemeine Lösung der Differentialgleichung ( y

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 2009 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Bitte nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

Differentialgleichungen II für Studierende der Ingenieurwissenschaften

Differentialgleichungen II für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg SoSe 2006 Prof. Dr. R. Lauterbach Dr. K. Rothe Differentialgleichungen II für Studierende der Ingenieurwissenschaften Lösungen zu Blatt 4 Aufgabe 13: Gegeben

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 014 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total

Mehr

Übungen zu Mathematik für ET

Übungen zu Mathematik für ET Sommersemester 8 Prof. Dr. Henning Kempka Übungen zu Mathematik für ET Übungsblatt zum Thema Aufgaben zu Analysis. Uneigentliche Integrale Aufgabe Berechnen Sie die uneigentlichen Integrale der Form L[f](s)

Mehr

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik Karlsruher Institut für Technologie Institut für Analysis Dr. I. Anapolitanos Dipl.-Math. Sebastian Schwarz SS 7 4.5.7 Höhere Mathematik III für die Fachrichtung Elektrotechnik und Informationstechnik

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Mathematik I HM I A. SoSe Variante A

Mathematik I HM I A. SoSe Variante A Prof. Dr. E. Triesch Mathematik I SoSe 08 Variante A Hinweise zur Bearbeitung: Benutzen Sie zur Beantwortung aller Aufgaben ausschließlich das in der Klausur ausgeteilte Papier! Es werden nur die Antworten

Mehr