Magnetodynamik elektromagnetische Induktion

Größe: px
Ab Seite anzeigen:

Download "Magnetodynamik elektromagnetische Induktion"

Transkript

1 Physik A VL34 (5.0.03) Magnetodynamik elektromagnetische nduktion Das Faraday sche nduktionsgesetz nduktion in einem bewegten Leiter nduktion einem Leiterkreis/einer Spule Lenz sche egel Exkurs: Das Ohm sche Gesetz Wirbelströme Selbst- und Wechselseitige nduktion nduktivität einer Spule Der Transformator Wechselstrom

2 Magnetodynamik nduktion Das Faraday sche nduktionsgesetz isherige Erkenntnisse: Stromdurchflossene Leiter bewegte Ladungen erzeugen Magnetfelder erfahren Kräfte in Magnetfeldern Fragen: Was passiert bei ewegung eines Leiters (ohne Stromfluß)? Was passiert bei Änderung des Magnetfeldes oder ewegung des Magneten? Experiment: ewegter Leiter in Ladungsschaukel Leiter hängt ohne Stromdurchfluss im Magnetfeld eobachtung: ewegung erzeugt Spannungsstoß mkehrung des Prinzips des Elektromotors: Drehbewegung im Magnetfeld erzeugt Spannung nduktionsspannung

3 Magnetodynamik nduktion Das Faraday sche nduktionsgesetz ewegte Leiterschleife im Magnetfeld ewegung einer Drahtschleife im Magnetfeld: - otation: Spannungsstoß - senkrecht zu den Feldlinien: kein Spannungsstoß - waagrecht / in ichtung der Feldlinien: kein Spannungsstoß - Verformung der Schleife: Spannungsstoß Eine Spannung tritt immer dann auf, wenn sich der magnetische Fluss durch die Schleife ändert! Kein nterschied, ob Leiter oder Magnet bewegt werden: elativbewegung entscheidend! Magnetfeld oder Fläche können sich ändern: Φ r r da 3

4 Magnetodynamik nduktion Das Faraday sche nduktionsgesetz ewegte Leiterschleife im Magnetfeld Eine Spannung tritt auf, wenn der magnetische Fluss sich ändert Magnetfeld oder Fläche können sich ändern Φ r r da Spannungsstoß abhängig von Änderungsgeschwigkeit des Flusses id dφ Erweiterung: Leiterschleife Spule im Magnetfeld N Zahl der Wungen einer Spule dφ N Faraday sches nduktionsgesetz: Die uzierte Spannung in einem geschlossenen Leiterkreis ist gleich der Änderungsgeschwigkeit des magnetischen Flusses je schneller sich das Magnetfeld ändert, desto größer wird die Spannung 4

5 Magnetodynamik nduktion Das Faraday sche nduktionsgesetz n einem geschlossenen Leiterkreis: nduzierte Spannung durch Änderung des magnetischen Fluss Eine Spannung ruft einen Strom hervor Ein Strom erzeugt wiederum ein Magnetfeld! Energieerhaltung: Kräfte, die durch veränderlich Felder erzeugt werden, müssen sich kompensieren Lenz sche egel Der uzierte Strom ist stets so gerichtet, dass das vom ihm erzeugte Magnetfeld der rsache seiner Entstehung entgegenwirkt 5

6 Magnetodynamik nduktion Das Faraday sche nduktionsgesetz eispiel: ichtung der Kraft nach Lenz scher egel bei einer Spule Die uzierte Spannung erzeugt einen Strom, der die Änderung des Magnetfeldes verringert # - Magnet wird in eine Spule hineingeschoben: der uzierte i Strom schwächt ht das Fld Feld - Magnet wird aus der Spule herausgezogen: der uzierte Strom stärkt das Feld Der uzierte Strom versucht eine Änderung des magnetischen Flusses zu verhern. Zusammenhang mit dem Energieerhaltungssatz: Die Energie für den Aufbau der elektrischen Felder stammt aus dem Magnetfeld. Physikalische Aussage entsprechend dem Minuszeichen im nduktionsgesetz: d Φ A A r d r da Sonderfall Spule: Form/Querschnitt der Spule zeitlich konstant 6

7 Magnetodynamik nduktion Das Faraday sche nduktionsgesetz Anwendung: nduktionsherd wechselndes Magnetfeld durch Wechselstrom in einer nduktionsspule nduktion von (Wirbel-)Strömen in metallischen bzw. ferromagnetischen Materialien elektrischer Widerstand des Materials wandelt den Stromfluss in Wärme um Vorteil: Herdplatte wird nicht heiß! Funktioniert nur bei Kontakt! Nachteil: nduktionsherd benötigt Töpfe / Pfannen aus ferromagnetischem Material 7

8 nduktion in einem bewegten Leiter Magnetodynamik ewegung eines Leiters (Länge L) in konstantem Magnetfeld erzeugt nduktionsspannung erechnung der Spannung aus nduktionsgesetz: mit dφ d ( A) da ds l A l s Sonderfall bewegter Leiter: zeitlich konstantes Magnetfeld v ds vl durch hdie Spannungsuktion wird ein Strom uziert i vl Strom erzeugt eine Lorentzkraft, die versucht, die rsache (ewegung) zu verhern: r r r r r vl F l( ) F l v je schneller sich ein Leiter bewegt, desto stärker wirkt die Kraft dagegen Abbremsen der ewegung! Wirbelstrombremse 8

9 Magnetodynamik Exkurs: Das Ohm sche Gesetz durch Spannungsuktion wird ein Strom uziert vl Wird an einen Leiter eine elektrische Spannung angelegt, verändert sich der hurch fließende elektrische Strom proportional zu. Proportionalität der Spannung zur Stromstärke wird für die Definition des elektrischen Widerstandes benutzt: const. Ohm sches Gesetz Schreibweisen des Ohm schen Gesetzes: Georg Simon Ohm ( ) Mit Hilfe des Ohm schen Gesetzes lassen sich die drei Grundgrößen eines Strom- Kreises (Schaltkreises) )berechnen, wenn mestens zwei davon bekannt s. Die drei Grundgrößen s Spannung, Strom und der Widerstand. 9

10 Magnetodynamik Wirbelströme durch Spannungsuktion wird ein Strom uziert vl Statt bewegtem Leiter: ausgedehnte Materialplatte wird im Magnetfeld bewegt die Elektronen im Material bewegen sich so, dass auf sie eine Lorentzkraft wirkt, die der ewegung der Platte entgegenwirkt Die Elektronenbewegung erzeugt bremsenden ingströme: Wirbelströme 0

11 Wirbelströme Anwendung : Wirbelstrombremse Magnetodynamik remsen von rotierenden Metallrädern: Straßenbahn, Eisenbahn, Hometrainer, etc. Vorteile: - Kraft ist proportional zur Geschwigkeit: je schneller die ewegung, desto größer ist die remswirkung - Kraft ist proportional zum Strom direkte elektrische/elektronische egelung der remswirkung möglich - berührungsfrei und verschleißfrei eispiel CE 3 - pneumatische remse kann den Zug ab 60 km/h nicht innerhalb 000 Meter auf null abzubremsen: - Wirbelstrombremse: 300 km / h mit Haltestrecke < 000 Meter

12 Wirbelströme Magnetodynamik Anwendung : Metalldetektoren jedes leitende Objekt erzeugt im bewegten Magnetfeld einen nduktionsstrom verborgene Objekte können gefunden werden Suchdetektoren, Sicherheitsdetektoren (an Flughäfen etc.) Anwendung 3: E-Gitarre Schwingungen einer Saite einer E-Gitarre erzeugt nduktionsstrom in einer Spule aus: Cutnell / Johnson: Physics Anwendung 4: Mikrofon Das Mikrofon nimmt über Membran Schwingungen auf, die eine Spule im Magnetfeld bewegen nduktionsstrom: Tauchspulenmikrofon! mkehrung des Lautsprecher-Prinzips!

13 Selbstuktion Magnetodynamik jeder stromführende Leiter ist von einem Magnetfeld umgeben, dessen Fluss der Stromstärke im Leiter proportional ist Φ L L nduktivität eines Leiters Φ Vs L H (Henry) A eispiel: nduktivität einer Zylerspule mit N Wungen Spule mit N Wungen N-facher Fluss: L N Φ N ( A) μ 0 N A l μ0 N l N Φ L ändert sich in einer Spule die Stromstärke, ändert sich der magnetische Fluss d Φ d L,mit dφ N L μ 0 N l L A d Slb Selbstuktionsspannung idki nduktivität einer leeren Zylerspule 3

14 Magnetodynamik Selbstuktion Experiment: Stromänderung beim Ein- und Ausschalten einer Spule Schaltkreis mit Widerstand und Spule parallel geschaltet - einschalten: Strom an Spule erreicht erst nach einiger Zeit einen Maximalwert - ausschalten: Strom nimmt langsam wieder ab estimmung des Stroms beim Einschalten einer Spule bei Selbstuktion ges + d ges + L + ges, ges const d ges d ges ges ges ges + 0 d ges L ( ges nd ) + ( ges nd ) L d { 0 d nd d id L 4

15 Selbstuktion Magnetodynamik estimmung des Stroms beim Ein- und Ausschalten einer Spule bei Selbstuktion Einschaltvorgang: g 0 (t) 0 exp t L t Ausschaltvorgang: g e (t) exp t L τ Die Spule speichert Energie, da sie Anstieg und Abfall verlangsamt: L t magnetische Energiedichte nduktivität i w mag μ N μ0n 0 w mag L μ 0 l l l l μ 0 N μ0 L l w mag Energie einer Spule: W Spule w mag V la w mag Al A N W Spule L A L 5

16 Wechselseitige nduktion Magnetodynamik Wechselstrom in einer Spule erzeugt ein sich änderndes Magnetfeld, dass in einer anderen Spule in der Nähe wieder einen Wechselstrom uzieren kann: gegenseitige nduktion Φ Spule - Fluss durch Magnetfeld der Spule : Spule - Strom erzeugt Magnetfeld: N mit M χ H m Φ,mit N Φ M M Neuformulierung des Faraday-Gesetzes: m N χ μ 0 N Φ, N dφ d( N ) Φ d, M 6

17 Wechselseitige nduktion Magnetodynamik Anwendung: Transformatoren ein Transformator besteht aus zwei Spulen mit den Wungszahlen N und N, die auf ein Eisenjoch gewickelt s (Verstärkung von Spannungen und Strömen): gegenseitige nduktion ändert das Strom-Spannungsverhältnis d, M N dφ Φ zwei Spulen können genutzt t werden, um die Spannung zu erhöhen oder zu erniedrigen: gegenseitige nduktion ändert Strom-Spannungsverhältnis, - der magnetische Fluss ist in beiden Spulen gleich: N, N - die Leistung bleibt in beiden Spulen ebenfalls gleich: P,, Transformatorgleichung:,, N N 7

18 Magnetodynamik otierende Leiterschleife im Magnetfeld mkehrung des Elektromotor-Prinzips: Eine Spule wird mechanisch in Magnetfeld gedreht es wird ein nduktionsstrom erzeugt (generiert): Stromgenerator Fläche des Leiters im Magnetfeld ändert sich relativ zum Magnetfeld bei der otation der uzierte Strom ändert sich ebenfalls: Wechselstrom Φ r r A Acosα Φ cos( ω ) 0 t dφ ω Φ 0 sin( ω t ) 0 sin( ω t ) Dynamoprinzip: Werner von Siemens 8

19 Wechselstrom Magnetodynamik eispiel: Wechselstrom im Haushalt Die im Haushalt übliche Spannung ist eine Wechselspannung mit der Frequenz: ν ω π T 50 s - 50 Hz ( t) T π ω Leistung: P P( t) eff eff ( t) ( t) 0 t Das Stromnetz liefert eine effektive Spannung von eff 30 V Spitzenspannung: 0 eff 30 V 35 V Über Gleichrichter kann ein Kondensator auf über 300 V aufgeladen werden! 9

20 Zusammenfassung ewegungen von Ladungen und Leitern erzeugen Magnetfelder Änderungen von Magnetfeld oder Fluss erzeugen bewegte Ladungen Spannungstöße Ströme Faraday sches nduktionsgesetz dφ Φ N N Zahl der Wungen einer Spule Lenz sche egel: Ein uzierter Strom ist stets so gerichet, dass das von ihm erzeugte Magnetfeld der rsache seiner Entstehung entgegenwirkt. r r r vom veränderlichem Fluss erzeugte Ströme erzeugen Kräfte F l( ) Proportionalität der Spannung zur Stromstärke wird dfür die const. Definition des elektrischen Widerstandes benutzt: ausgedehnte Materialplatte wird im Magnetfeld bewegt Ohm sches Gesetz die Elektronen im Material bewegen sich, erzeugen bremsende ingströme: Wirbelströme Selbstuktion: Φ Vs Φ L L nduktivität eines Leiters L H (Henry) A d L Energie Selbstuktionsspannung WSpule L einer Spule, N dφ Transformatorgleichung: Wechselstrom/ Φ sin( ) N Dynamoprinzip: 0 ωt, 0

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Rotierende Leiterschleife

Rotierende Leiterschleife Wechselstrom Rotierende Leiterschleife B r Veränderung der Form einer Leiterschleife in einem magnetischen Feld induziert eine Spannung ( 13.1.3) A r r B zur kontinuierlichen Induktion von Spannung: periodische

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007.

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007. Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #29 am 19.06.2007 Vladimir Dyakonov Induktionsspannung Bewegung der Leiterschleife im homogenen

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

3.5. Aufgaben zur Wechselstromtechnik

3.5. Aufgaben zur Wechselstromtechnik 3.5. Aufgaben zur Wechselstromtechnik Aufgabe : eigerdiagramme Formuliere die Gleichungen für die alteile von (t) sowie (t) und zeichne ein gemeinsames eigerdiagramm für Spannung sowie Stromstärke, wenn

Mehr

4.12 Elektromotor und Generator

4.12 Elektromotor und Generator 4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt

Mehr

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Kondensator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T202 Welchen zeitlichen Verlauf hat die Spannung an einem entladenen Kondensator, wenn dieser über einen Widerstand an eine Gleichspannungsquelle

Mehr

Experimentiersatz Elektromotor

Experimentiersatz Elektromotor Experimentiersatz Elektromotor Demonstration der Erzeugung von elektrischem Stromfluss durch Umwandlung von mechanischer Energie (Windrad) in elektrische Energie. Einführung Historisch gesehen hat die

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG 2011 PHYSIK KLASSE 10

BESONDERE LEISTUNGSFESTSTELLUNG 2011 PHYSIK KLASSE 10 Staatliches Schulamt Bad Langensalza BESONDERE LEISTUNGSFESTSTELLUNG 2011 PHYSIK KLASSE 10 Arbeitszeit: 120 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner Tafelwerk Der Teilnehmer

Mehr

PS II - Verständnistest 24.02.2010

PS II - Verständnistest 24.02.2010 Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:

Mehr

RFH Rheinische Fachhochschule Köln

RFH Rheinische Fachhochschule Köln 4. 8 Meßzangen für Strom und Spannung Für die Messung von hohen Strömen oder Spannungen verwendet man bei stationären Anlagen Wandler. Für die nichtstationäre Messung von Strömen und Spannung, verwendet

Mehr

Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Schriftliche Abschlussprüfung Physik Realschulbildungsgang Sächsisches Staatsministerium für Kultus Schuljahr 1992/93 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Mehr

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......

Mehr

2.1.2 Durchführung drehbare Leiterschleife im homogenen Magnetfeld wird gedreht

2.1.2 Durchführung drehbare Leiterschleife im homogenen Magnetfeld wird gedreht U N S t U N S t I Wiederholung 1.1 Versuch Leiterschaukel auslenken = Ausschlag am Demomultimeter Wiederholung durch Schüler - Was passiert hier? II Hauptteil bisher primär mit Gleichstrom beschäftigt

Mehr

Workshop Lichtmaschine BMW 69-96. 31.01.2015 Rhein-Main

Workshop Lichtmaschine BMW 69-96. 31.01.2015 Rhein-Main Workshop Lichtmaschine BMW 69-96 31.01.2015 Rhein-Main Hans-Günter Kahl Stand 14.03.2015 Seite 1 Ziel des Workshop Verständnis für Aufbau und Funktion der Lichtmaschine (LiMa) zur nachgelagerten Entstörung

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Ph 15/63 T_Online-Ergänzung

Ph 15/63 T_Online-Ergänzung Ph 15/63 T_Online-Ergänzung Förderung der Variablen-Kontroll-Strategie im Physikunterricht S. I S. I + II S. II MARTIN SCHWICHOW SIMON CHRISTOPH HENDRIK HÄRTIG Online-Ergänzung MNU 68/6 (15.11.2015) Seiten

Mehr

Fachbereich Physik Dr. Wolfgang Bodenberger

Fachbereich Physik Dr. Wolfgang Bodenberger UniversitätÉOsnabrück Fachbereich Physik Dr. Wolfgang Bodenberger Der Transistor als Schalter. In vielen Anwendungen der Impuls- und Digital- lektronik wird ein Transistor als einfacher in- und Aus-Schalter

Mehr

Elektrische Maschinen

Elektrische Maschinen 1/5 Elektrische Maschinen 1 unktionsprinzipien 1.1 Kraftwirkung efindet sich ein stromdurchflossener, gerader Leiter der Leiterlänge l in einem homogenen Magnetfeld, so bewirkt die Lorentz-Kraft auf die

Mehr

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten.

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elektrizitätslehre I: Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elementarladung: Ladung: Q Einheit: 1 Coulomb = 1C = 1 Amperesekunde Stromstärke: I Einheit: 1 A = 1 Ampere elektrische

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Aufgabe 4.1.1. Bild 4.1. Bild 4.2. Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom

Aufgabe 4.1.1. Bild 4.1. Bild 4.2. Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom 4. Wechselstrom Aufgabe 4.1.1 Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom Schaltungsbeschreibung: Es stehen die Anschlüsse eines symmetrischen Dreiphasenwechselstromnetzes zur Messung und

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

Hinweise zu den Aufgaben:

Hinweise zu den Aufgaben: Versuchsworkshop: Arbeitsaufgaben Lehrerblatt Hinweise zu den Aufgaben: Blatt 1: Die Papierschnipsel werden vom Lineal angezogen.es funktioniert nicht so gut bei feuchtem Wetter. Andere Beispiele für elektrische

Mehr

Beschreibung Magnetfeld

Beschreibung Magnetfeld Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #21 am 1.06.2007 Vladimir Dyakonov Beschreibung Magnetfeld Magnetfeld: Zustand des Raumes, wobei

Mehr

Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung

Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung Kern-Hülle-Modell Ein Atom ist in der Regel elektrisch neutral: das heißt, es besitzt gleich viele Elektronen in der Hülle wie positive Ladungen im Kern Modellvorstellung zum elektrischen Strom - Strom

Mehr

Wechselspannung, Wechselstrom, Generatoren

Wechselspannung, Wechselstrom, Generatoren Wechselspannung, Wechselstrom, Generatoren Ein Generator ist eine Maschine, die kinetische Energie in elektrische Energie umwandelt. Generatoren erzeugen durch Induktion Strom (z.b. Fahrraddynamo). Benötigt

Mehr

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen)

Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Der Kondensator Kondensatoren ( Verdichter, von lat.: condensus: dichtgedrängt, bezogen auf die elektrischen Ladungen) Kondensatoren sind Bauelemente, welche elektrische Ladungen bzw. elektrische Energie

Mehr

Anschauliche Versuche zur Induktion

Anschauliche Versuche zur Induktion Anschauliche Versuche zur Induktion Daniel Schwarz Anliegen Die hier vorgestellten Versuche sollen Schülerinnen und Schüler durch die Nachstellung von Alltagstechnik für das Thema Induktion motivieren.

Mehr

Gleichstrommaschinen. Auf dem Anker sind viele in Reihe geschalten Spulen, dadurch sinkt die Welligkeit der Gleichspannung.

Gleichstrommaschinen. Auf dem Anker sind viele in Reihe geschalten Spulen, dadurch sinkt die Welligkeit der Gleichspannung. Matura Komplementärfragen Gleichstrommaschinen Allgemeines zu Spannungserzeugung im Magnetfeld: Die Ankerwicklung wird im Magnetfeld der feststehenden Aussenpole gedreht und dadurch wird eine Spannung

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

11. Elektrischer Strom und Stromkreise

11. Elektrischer Strom und Stromkreise 11. Elektrischer Strom und Stromkreise 11.1 Elektrischer Strom und Stromdichte 11.2 Elektrischer Widerstand d 11.3 Elektrische Leistung in Stromkreisen 11.4 Elektrische Schaltkreise 11.5 Amperemeter und

Mehr

Hochschule Bremerhaven

Hochschule Bremerhaven Hochschule Bremerhaven NSTTUT FÜ AUTOMATSEUNGS- UND EEKTOTEHNK Name: Matr Nr: ProfDr-ngKaiMüller Übungsklausur ETT2 / PT/VAT/SBT SS04 Bearbeitungszeit 20 Minuten --- Unterlagen gestattet --- Note: 2 3

Mehr

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen. Name: Elektrotechnik Mechatronik Abschlussprüfung E/ME-BAC/DIPL Elektronische Bauelemente SS2012 Prüfungstermin: Prüfer: Hilfsmittel: 18.7.2012 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr. Frey Taschenrechner

Mehr

BROTTEIG. Um Brotteig zu machen, mischt ein Bäcker Mehl, Wasser, Salz und Hefe. Nach dem

BROTTEIG. Um Brotteig zu machen, mischt ein Bäcker Mehl, Wasser, Salz und Hefe. Nach dem UNIT BROTTEIG BROTTEIG Um Brotteig zu machen, mischt ein Bäcker Mehl, Wasser, Salz und Hefe. Nach dem Mischen wird der Teig für mehrere Stunden in einen Behälter gegeben, um den Gärungsprozess zu ermöglichen.

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS Triode S 11 Bedienungsanleitung 1/15 ALF 1 5 7 1 Führungsstift Stiftkontakte Kathodenplatte Heizwendel 5 Gitter Anode 7 -mm-steckerstift zum Anschluss der Anode 1. Sicherheitshinweise

Mehr

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer:

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I Name: PTC und NTC Widerstände Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

IIE4. Modul Elektrizitätslehre II. Transformator

IIE4. Modul Elektrizitätslehre II. Transformator IIE4 Modul Elektrizitätslehre II Transformator Ziel dieses Versuches ist es, einerseits die Transformatorgesetze des unbelasteten Transformators experimentell zu überprüfen, anderseits soll das Verhalten

Mehr

Projektdokumentation

Projektdokumentation Inhaltsverzeichnis: Projektdokumentation 1. Allgemeine Informationen zum Projekt 2. Zusammenfassung 3. Projektdokumentation 3.1. Zielstellung 3.2. Beschreibung der Projektarbeit 3.3. Aufgabenverteilung

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert E 0 Ohmsches Gesetz & nnenwiderstand (Pr_Ph_E0_nnenwiderstand_5, 30.8.2009).

Mehr

Im Prinzip wie ein Fotokopierer

Im Prinzip wie ein Fotokopierer Im Prinzip wie ein Fotokopierer Mit diesem Experiment kannst Du das Grundprinzip verstehen, wie ein Fotokopierer funktioniert. Du brauchst : Styropor-Kügelchen Im Bild sind welche abgebildet, die es in

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

Elektrische Energie, Arbeit und Leistung

Elektrische Energie, Arbeit und Leistung Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Geneboost Best.- Nr. 2004011. 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. Geneboost Best.- Nr. 2004011 1. Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist. An den BNC-Ausgangsbuchsen lässt sich mit einem störungsfreien

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

M316 Spannung und Strom messen und interpretieren

M316 Spannung und Strom messen und interpretieren M316 Spannung und Strom messen und interpretieren 1 Einstieg... 2 1.1 Hardwarekomponenten eines PCs... 2 1.2 Elektrische Spannung (U in Volt)... 2 1.3 Elektrische Stromstärke (I in Ampere)... 3 1.4 Elektrischer

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Die Leiterkennlinie gibt den Zusammenhang zwischen Stromstärke I und Spannung U wieder.

Die Leiterkennlinie gibt den Zusammenhang zwischen Stromstärke I und Spannung U wieder. Newton 10 und / Elektrizitätslehre Kapitel 1 Gesetzmäßigkeiten des elektrischen Stromkreises 1.1 Widerstände hemmen den Stromfluss Ohm sches Gesetz und elekt- rischer Widerstand Seite 13 / 14 1. Welche

Mehr

Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen?

Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Das kann man nur verstehen, wenn man weiß, was ein magnetisches Feld ist und was das Induktionsgesetz

Mehr

Frühjahr 2000, Thema 2, Der elektrische Widerstand

Frühjahr 2000, Thema 2, Der elektrische Widerstand Frühjahr 2000, Thema 2, Der elektrische Widerstand Referentin: Dorothee Abele Dozent: Dr. Thomas Wilhelm Datum: 01.02.2007 1) Stellen Sie ein schülergemäßes Modell für einen elektrisch leitenden bzw. nichtleitenden

Mehr

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen.

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen. Spannung und Strom E: Klasse: Spannung Die elektrische Spannung gibt den nterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei Pole, mit unterschiedlichen Ladungen. uf der

Mehr

Anwendungen zum Elektromagnetismus

Anwendungen zum Elektromagnetismus Anwendungen zum Elektromagnetismus Fast alle Anwendungen des Elektromagnetismus nutzen zwei grundlegende Wirkungen aus. 1. Fließt durch eine Spule ein elektrischer Strom, so erzeugt diese ein Magnetfeld

Mehr

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Spule und Transformator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T301 n eine Spule wird über einen Widerstand eine Gleichspannung angelegt. Welches der nachfolgenden iagramme zeigt den

Mehr

Technical Note Nr. 101

Technical Note Nr. 101 Seite 1 von 6 DMS und Schleifringübertrager-Schaltungstechnik Über Schleifringübertrager können DMS-Signale in exzellenter Qualität übertragen werden. Hierbei haben sowohl die physikalischen Eigenschaften

Mehr

Liegt an einem Widerstand R die Spannung U, so fließt durch den Widerstand R ein Strom I.

Liegt an einem Widerstand R die Spannung U, so fließt durch den Widerstand R ein Strom I. Einige elektrische Grössen Quelle : http://www.elektronik-kompendium.de Formeln des Ohmschen Gesetzes U = R x I Das Ohmsche Gesetz kennt drei Formeln zur Berechnung von Strom, Widerstand und Spannung.

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Induktivitätsmessung bei 50Hz-Netzdrosseln

Induktivitätsmessung bei 50Hz-Netzdrosseln Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Netzausbau Konverter

Netzausbau Konverter Netzausbau Konverter Allgemeines über Konverter 2 Wenn von Konvertern die Rede ist, meinen die meisten damit Geräte zur Umwandlung von Dateien. Aber auch für die Stromübertragung werden Konverter benötigt

Mehr

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms Versuch 1a Wechselstromgenerator Dynamo Leerlauf Dynamo Wasser Klemme Loch Oszilloskop (alt) y-shift time 5 V/cm 1 ms Generatorprinzip: Rotiert eine Leiterschleife (Spule) mit konstanter Winkelgeschwindigkeit

Mehr

Experiment Audio-Elektronik

Experiment Audio-Elektronik Experiment Audio-Elektronik Workshop April 2008 2008 Schweizerische Gesellschaft für Mechatronische Kunst 1 Überblick 1. Grundbegriffe der Elektronik 2. Löttechnik 3. Bauteilkunde 4. Experiment Oszillator

Mehr

Lösungen zu Kapazitäten / Kondensatoren

Lösungen zu Kapazitäten / Kondensatoren Ein- und Ausschaltvorgänge mit Kapazitäten A47: (869, 870) Ein Kondensator von µf wird über einen Widerstand von 3 MΩ auf eine Spannung von 50 V geladen. Welche Werte hat der Ladestrom a) 0,3 s, b), s,

Mehr

Das statische magnetische Feld

Das statische magnetische Feld Das statische magnetische Feld M. Jakob Gymnasium Pegnitz 10. Dezember 2014 Inhaltsverzeichnis 1 Magnetisches Feld (2 Std.) 2 (6 Std.) Lorentzkraft E Magnetfeld (B-Feld) eines Stabmagneten LV: Eisenfeil-

Mehr

1 Wiederholung einiger Grundlagen

1 Wiederholung einiger Grundlagen TUTORIAL MODELLEIGENSCHAFTEN Im vorliegenden Tutorial werden einige der bisher eingeführten Begriffe mit dem in der Elektrotechnik üblichen Modell für elektrische Netzwerke formalisiert. Außerdem soll

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

Diese Energie, d.h. der elektrische Strom, kann durch bestimmte Materialien durch, andere hindern ihn am Weiterkommen.

Diese Energie, d.h. der elektrische Strom, kann durch bestimmte Materialien durch, andere hindern ihn am Weiterkommen. Spannende Theorie(n) Was wir bis jetzt wissen: In einer Batterie steckt offensichtlich Energie - was immer das auch genau ist. Wissenswertes über den Strom Was ist das? Diese Energie, d.h. der elektrische

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : von Messgeräten; Messungen mit Strom- und Spannungsmessgerät Klasse : Name : Datum : Will man mit einem analogen bzw. digitalen Messgeräte Ströme oder Spannungen (evtl. sogar Widerstände) messen, so muss

Mehr

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:...

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:... TP 6: Windenergie -TP 6.1- TP 6: Windenergie Zweck der ersuche: 1 ersuchsaufbau Der Aufbau des Windgenerators und des Windkanals (Abb.1) erfolgt mit Hilfe der Klemmreiter auf der Profilschiene. Dabei sind

Mehr

Elektromagnetische Induktion. 1. Erklärung für das Entstehen einer Induktionsspannung bzw. eines Induktionsstromes:

Elektromagnetische Induktion. 1. Erklärung für das Entstehen einer Induktionsspannung bzw. eines Induktionsstromes: Elektromagnetische Induktion Eperiment: Ergebnis: Ein Fahrraddynamo wandelt Bewegungsenergie in elektrische Energie um. Er erzeugt trom (zuerst pannung). Wir zerlegen einen Dynamo. Ein Dynamo besteht aus

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82)

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82) 3 Schaltungen mit frequenzselektiven Eigenschaften 35 a lg (8) a die Grenzkreisfrequenz ist Grenz a a (8) 3 esonanzkreise 3 eihenresonanzkreis i u u u u Bild 4 eihenresonanzkreis Die Schaltung nach Bild

Mehr

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 PW11 Wechselstrom II Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr.

Mehr

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig)

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig) Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6 1 2 3 4 5 6 Summe Matr.-Nr.: Nachname: 1 (5 Punkte) Drei identische Glühlampen sind wie im Schaltbild

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

5. Versuchsvorbereitung

5. Versuchsvorbereitung 5. Versuchsvorbereitung 5.1. Welche charakteristischen Merkmale besitzen Folien-DMS im Vergleich zu anderen DMS? Folien-DMS bestehen aus sehr dünn gewalzten Metallfolien (häufig Konstantan oder eine Ni-Cr-Legierung

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 05. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 05.

Mehr

Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol)

Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Heutiges Programm: 1 Wechselstrom (Widerstand von Kondensator, Spule, Ohmscher Widerst.) Elektrischer Schwingkreis Abstrahlung von elektromagnetischen Wellen (Hertzscher Dipol) Elektromagnetische Wellen

Mehr

Arbeitspunkt einer Diode

Arbeitspunkt einer Diode Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von

Mehr

Inhalt. Thema: Energie. Gedanke. Experiment/Spiel. Thema. Batterietests. Batterie. Batterien haben zwei Pole. Strom erzeugen

Inhalt. Thema: Energie. Gedanke. Experiment/Spiel. Thema. Batterietests. Batterie. Batterien haben zwei Pole. Strom erzeugen Inhalt Experiment/Spiel Thema Gedanke Batterietests Batterie Batterien haben zwei Pole. Experiment Elektrizität herstellen Strom erzeugen Elektrizität kann durch Bewegung erzeugt werden. Experiment Stromkreis

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Mündliche Prüfung Physik Leitfragen

Mündliche Prüfung Physik Leitfragen Mündliche Prüfung Physik Leitfragen Themengebiete: - Optik - Elektrik - Mechanik 1 Themengebiet: Optik 1 Wie lautet das Reflexionsgesetz? 2. Wie lautet das Brechungsgesetz? 3. Benenne die folgenden Linsentypen:

Mehr

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode Dioden - Anwendungen vereinfachte Diodenkennlinie Für die meisten Anwendungen von Dioden ist die exakte Berechnung des Diodenstroms nach der Shockley-Gleichung nicht erforderlich. In diesen Fällen kann

Mehr

Widerstandsdrähte auf Rahmen Best.-Nr. MD03803

Widerstandsdrähte auf Rahmen Best.-Nr. MD03803 Widerstandsdrähte auf Rahmen Best.-Nr. MD03803 Beschreibung des Gerätes Auf einem rechteckigen Rahmen (1030 x 200 mm) sind 7 Widerstandsdrähte gespannt: Draht 1: Neusilber Ø 0,5 mm, Länge 50 cm, Imax.

Mehr