Ermittlung elektromagnetischer Kennwerte. von Elektroblechen. Martin Baun

Größe: px
Ab Seite anzeigen:

Download "Ermittlung elektromagnetischer Kennwerte. von Elektroblechen. Martin Baun"

Transkript

1 Ermittlung elektromagnetischer Kennwerte von Elektroblechen

2 Inhalt Motivation Grundlegendes Messprinzip Theorie zur Messtechnik > Ermittlung der Neukurve > DC-Verfahren > Kommutierungsverfahren > Ermittlung der Eisenverluste Messtechnische Realisierung Eisenverluste nach Modellvorstellung Ermittlung der Induktivität Einflüsse bei der Messung Zusammenfassung

3 Motivation Verluste in elektro-magneto-mechanischen Energiewandlern Reibungsverluste Elektrische Eingangsleistung Pel Ventilationsverluste Stromwärmeverluste Eisenverluste M ω / F v Wirkungsgrad η Rotationsantrieb η= M ω 100 % P el Wärme Mechanische Leistung Linearantrieb η= F v 100 % P el 3

4 Motivation Neukurve (Magnetisierungskurve) B fe = f ( H fe ) B fe = H fe μ fe μ fe =μ r, fe μ 0 Ft Fn A H B μ0 μr Tangentialkraft Normalkraft Fläche magn. Feldstärke magn. Flussdichte Permeabilität (Vakuum) relative Permeabilität μ r, fe = f ( H fe ) Eisen Luft B B Kraft auf Grenzfläche A F t = B n B t μ0 A F n= ( B n B t ) μ0 A μ r, fe μ 0 4

5 Grundlegendes Messprinzip Problem: > Magnetische Feldstärke und magnetische Flussdichte lassen sich nicht direkt messen > Messung über Hall-Element zu ungenau (Streuung am Spalt, exakte Luftspaltweite,...) HallElement Ansatz: > Induktionsgesetz: Die Änderung des magnetischen Flusses durch eine Leiterschleife induziert eine Spannung Φ = ui, bei mehreren Windungen: t Φ(t) Φ Ψ N = = ui t t Verbindung zwischen Flussdichte und Fluss über die Geometrie Φ= B n da A fe 5

6 Ermittlung der Neukurve Ringförmige Probe mit aufgebrachter Wicklung Φσ Φh Ersatzschaltbild lfe Φσ t R i N R Lσ u Afe lfe Afe R Φh Φσ N Lh Φh N t mittlere Feldlinienlänge Querschnittsfläche Wicklungswiderstand Hauptfluss Streufluss Anzahl Windungen 6

7 Ermittlung der Neukurve Feldstärke H im Prüfling Θ=0 Durchflutungssatz R fe Θe Θe = N I N i= H t dl Annahme: Ht sei gleichmäßig über dem Umfang verteilt: N i= H fe l fe H fe = l fe Flussdichte B im Prüfling Geometrie liefert Ψ h = N Φh Induktion liefert Φ h= Bn da A fe Annahme: Bn sei homogen verteilt: Φ h= B A fe B= N i l fe Ψh = ui Ψ h = ui dt t Ψ h = N B A fe 1 u i dt N A fe 7

8 Ermittlung der Neukurve Maschengleichung u= R i+ u σ + u i R i ui =u R i uσ Problem: > Lσ nicht linear und nicht exakt bestimmbar > R ist temperaturabhängig R uσ Lσ u ui Lh 8

9 Ermittlung der Neukurve Zweispulen-Messtechnik (Transformatorprinzip) R p i p up uσ, p uσ, s=0 Φh Np t Φh Ns t R s i s =0 i s =0 us Windungszahlen beachten N p i p H fe = l fe B= 1 us dt N s A fe Messauswertung unabhängig von Streuinduktivitäten und Wicklungswiderständen 9

10 Ermittlung der Neukurve DC-Verfahren Messung mit DC-Verfahren > Strom in Primärwicklung einprägen (beliebige Stromform) > Primärstrom messen > Sekundärspannung messen > Berechne H aus ip > Berechne B aus us H fe = N p i p l fe B= 1 us dt N s A fe 10

11 Ermittlung der Neukurve DC-Verfahren Komplett entmagnetisiert > B H =0 =0 Restmagnetisierung > B H =0 0 Achtung: Prüfling muss vor der Messung komplett entmagnetisiert sein. Restmagnetisierung verfälscht die Messung! 11

12 Ermittlung der Neukurve Kommutierungsverfahren Messung mit Kommutierungsverfahren > konstante, möglichst geringe Messfrequenz (Einfluss von Wirbelströmen) > diskrete Flussdichten ansteuern > verbinden der Eckpunkte (Hmax bzw. Bmax) zur Neukurve 1

13 Ermittlung der Eisenverluste Eisenverluste entstehen durch sich zeitlich verändernde Magnetfelder Einteilung der Eisenverluste P v, fe = P h + P w Modellvorstellung nach Jordan P v, fe =k h f B + k w f B P v, fe =k h Pv,fe Ph Pw B0 f f0 B f +k w B0 f0 B B0 ( )( ) ( ) ( ) Eisenverluste Hystereseverluste Wirbelstromverluste Bezugsinduktion f0 kh kw Bezugsfrequenz Hysteresekoeffizient Wirbelstromkoeffizient 13

14 Ermittlung der Eisenverluste Messung Einspulenmesstechnik t+ T 1 P v, ges= i (t ) u(t) dt T t P v, fe = P v, ges R i eff i Lσ R Lh u Messung - Zweispulenmesstechnik Np 1 P v, fe = Ns T Pvf,fe Ph Pw B0 f0 Np Ns i t+ T i p (t) u s (t) dt t Rp Lσ Eisenverluste Hystereseverluste Wirbelstromverluste Bezugsinduktion Bezugsfrequenz Windungen primär Windungen sekundär Lσ Rs i s =0 up us Lh Lh 14

15 Messtechnik N p i p H fe = l fe Anforderungen > Strommessung, Spannungsmessung, Integration, Leistungsberechnung B= Oszilloskop > > > > Integration möglich, Zeitverläufe typ. 8 Bit vertikale Auflösung typ. Genauigkeit ± % (Spannung) typ. Genauigkeit ± 3%..5% (Strommesszange) P= 1 T 1 us dt N s A fe t+ T i (t ) u(t) dt t Power Analyzer > typ. Genauigkeit ± < 0,1% (Spannung) > typ. Genauigkeit ± < 0,1% (Strom) 15

16 Messtechnische Realisierung Power Analyzer: Integration nicht direkt möglich Umweg über Spitzenwerte B= > Gleichrichtwert wird im Power Analyzer berechnet urect = 1 T t+ T 1 us dt N s A fe u(t) dt t > Gleichrichtwert auf gewünschtes Integral umbiegen : 1 T t+ T t+ T t t u (t ) dt= T4 us dt Gilt für den Scheitelpunkt der Ummagnetisierungshysterese B= T u 4 N s A fe rect B= urect 4 f N s A fe H fe = N p i p l fe 16

17 Messtechnische Realisierung Steuerbare, analoge AC-Spannungsquelle (3) > Max. 00 VA Präzisions-Leistungsmessgerät (4) Gestufter Transformator (5) > Übersetzungen ü=1,,4,8 > Max. Û = ±40V > Max. Ieff = 64A Schutzbeschaltung (Überspannung) 17

18 Eisenverluste nach Modellvorstellung Probe aus paketiertem Elektroblech M800-50A > 800 > 50 > A maximal 8,0W/kg Eisenverluste bei B = 1,5T und f = 50Hz Blechdicke = 0,5mm Blech wurde schlussgeglüht Eisenverluste für wenige, diskrete B/fKombinationen gemessen Feldberechnungen (FEM / analytisch) benötigen Eisenverluste für beliebige B/f Modellvorstellung statt Inter- und Extrapolation 18

19 Eisenverluste nach Modellvorstellung Verlustmodell nach Jordan P v, fe =k h f f0 B f +k w B0 f0 B B0 ( )( ) ( ) ( ) P v, fe = f ( f i, B j, k w, k h ) Pv,fe Verluste, ermittelt durch das Modell P Gemessene Verluste kh Hysteresekoeffizient Materialabhängig Parametrierung des Modells kw Wirbelstromkoeffizient fi beliebige Frequenz Bi beliebige Flussdichte > Methode der kleinsten Fehlerquadrate > Große Abweichungen werden stärker bestraft n ( f ( f i, B i, k w, k h ) P i ) = f P i=1 min f P kh,kw Setze kh und kw so, dass die Summe der quadratischen Fehler minimal wird 19

20 Eisenverluste nach Modellvorstellung Ermittlung der Koeffizienten kh und kw > Bspw. mit Levenberg-Marquardt-Algorithmus > Matlab/Octave, Excel solver, Scientific Python,... Bsp.: Verwendung des Solvers in Excel > Variiere Zellen so, dass Inhalt der Zelle minimal wird kh = 3, kw = P v, fe =k h f f0 B f + kw B0 f0 0,5 0,5 0,5 1,0 1,0 1,0 B B0 f0=50 B0=1,5 P_mess P_Modell Diff [W/kg] [W/kg] 0,63 0,39 0,3 1,38 1,00 0,39,7 1,81 0,46 1,83 1,56 0,7 4,30 3,98 0,31 7,31 7,5 0,06 Summe der Fehlerquadrate= f [Hz] B [Vs] ,5 Diff ^ 0,06 0,15 0,1 0,07 0,10 0,00 0,59 ( )( ) ( ) ( ) 0

21 Eisenverluste nach Modellvorstellung Ergebnis für die Probe k h =4,45 W kg k w =1,098 W kg f P v, fe =4,45 50Hz ( )( B f + 1,098 1,5 T 50Hz ) ( )( B 1,5T ) 1

22 Ermittlung der Induktivität Die Induktivität kann direkt aus der Ψ(i) Kennlinie berechnet werden Verschiedene Definitionen der Induktivität Definition der (linearen) Induktivität: Black Box : > Linear: L = 1H, U = 1V Nach 1sec: I=1A > für ferromagnetische Werkstoffe ungeeignet, da nichtlinear Sekanteninduktivität L sek = Ψ I L sek ( I )= Ψ( I ) I > Magnetischer Fluss direkt anhand des Stromes bestimmbar > Geeignet für harmonische Rechenmodelle (bspw. dq-modell für Permanentmagneterregte Synchronmaschinen)

23 Ermittlung der Induktivität Differentielle Induktivität L diff = dψ di > Geeignete für transiente Berechnungen, bspw. Simulation elektrischer Schaltkreise mit Spice > Herleitung: di u L= L dt L L= ui= dψ dt di d Ψ = dt dt u L=u i (Kettenregel) Ψ= Ψ (i) i=i(t) d Ψ dt d Ψ = =Ldiff dt di di 3

24 Einflüsse bei der Messung Wird das Material in die Sättigung getrieben, so nimmt die Induktivität ab und der Strom steigt überproportional an Verzerrung des Stroms (Oberwellen) [Simulation] 4

25 Einflüsse bei der Messung Spannungsverzerrung durch parasitäre Effekte > Nicht up, sondern us soll sinusförmig sein, damit der Fluss Ψ und die Flussdichte B sinusförmig ist > Verzerrung durch i L > Wicklungswiderstand σ t R i > Streuinduktivität i s =0 us=u p R i L h i t up Lh i t Lh us i t 5

26 Einflüsse bei der Messung Spannungsabfall am Widerstand bei hohem Strom u s=u p R i Spannungsabfall an der Streuinduktivität bei großem Stromgradienten us=u p L h ( Lσ =0) i t (R=0) [Simulation] 6

27 Zusammenfassung Zwei Verfahren zur Neukurvenmessung Nutzung gängiger Messtechnik Modellparametrierung für Eisenverluste Bestimmung der Induktivitäten Wirkung der Sättigung auf Spannung und Strom Parasitäre Effekte bei der Messung 7

28 Kontakt: ebm-papst Mulfingen GmbH & Co. KG, Bachmühle, Mulfingen, Jens Krotsch, Tel: , Web:

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Hochschule Bremerhaven

Hochschule Bremerhaven Hochschule Bremerhaven NSTTUT FÜ AUTOMATSEUNGS- UND EEKTOTEHNK Name: Matr Nr: ProfDr-ngKaiMüller Übungsklausur ETT2 / PT/VAT/SBT SS04 Bearbeitungszeit 20 Minuten --- Unterlagen gestattet --- Note: 2 3

Mehr

Stromortskurve Asynchronmaschine

Stromortskurve Asynchronmaschine Stromortskurve der Asynchronmaschine Prof. Dr.-Ing. Carsten Fräger Folie 1 von 61 Prof. Dr.-Ing. Stromortskurve Asynchronmaschine Stromortskurve der Drehstrom-Asynchronmaschine mit kurzgeschlossenem Rotor

Mehr

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen Messtechnik-Praktikum 22.04.08 Messung elektrischer Größen Bestimmung von ohmschen Widerständen Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. Bestimmen Sie die Größen von zwei ohmschen Widerständen

Mehr

Rotierende Leiterschleife

Rotierende Leiterschleife Wechselstrom Rotierende Leiterschleife B r Veränderung der Form einer Leiterschleife in einem magnetischen Feld induziert eine Spannung ( 13.1.3) A r r B zur kontinuierlichen Induktion von Spannung: periodische

Mehr

Dreidimensionale transient thermische Analyse eines Lineardirektantriebs mit MAXWELL und

Dreidimensionale transient thermische Analyse eines Lineardirektantriebs mit MAXWELL und Dreidimensionale transient thermische Analyse eines Lineardirektantriebs mit MAXWELL und ANSYS Dipl.-Ing. Matthias Ulmer, Prof. Dr.-Ing. Wolfgang Schinköthe Universität Stuttgart, Institut für Konstruktion

Mehr

IIE4. Modul Elektrizitätslehre II. Transformator

IIE4. Modul Elektrizitätslehre II. Transformator IIE4 Modul Elektrizitätslehre II Transformator Ziel dieses Versuches ist es, einerseits die Transformatorgesetze des unbelasteten Transformators experimentell zu überprüfen, anderseits soll das Verhalten

Mehr

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen. Name: Elektrotechnik Mechatronik Abschlussprüfung E/ME-BAC/DIPL Elektronische Bauelemente SS2012 Prüfungstermin: Prüfer: Hilfsmittel: 18.7.2012 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr. Frey Taschenrechner

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen m eistungsbereich oberhalb 0,75 kw ("integral horsepower") sind etwa 7% der gefertigten elektrischen Maschinen Gleichstrommaschinen. Haupteinsatzgebiete sind Hüttenund Walzwerke,

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Werkstoffe elektrischer Stromkreise

Werkstoffe elektrischer Stromkreise 1.2 Werkstoffe elektrischer Maschinen Seite 1 Jede Maschine besteht grundsätzlich aus elektrischen Stromkreisen magnetischen Kreisen Werkstoffe elektrischer Stromkreise In Wicklungen einer Maschine wird

Mehr

Praktikum. Anzeigetechnik. Gruppe: 2. - Wallerath - Kleinstück - Spenst - Balyot. Touch-Panel. bei Prof. Dr. Schwedes

Praktikum. Anzeigetechnik. Gruppe: 2. - Wallerath - Kleinstück - Spenst - Balyot. Touch-Panel. bei Prof. Dr. Schwedes Praktikum Anzeigetechnik bei Prof. Dr. Schwedes Gruppe: 2 Teilnehmer: - Küster - Wallerath - Kleinstück - Spenst - Balyot Funktionsweise eines analog resistiven Touchscreen Abb.: mechanischer Aufbau des

Mehr

Einfluss von Messfehlern der elektrischen Leistung auf die Zusatzverlustbestimmung. Einführung Verfahren zur Wirkungsgradbestimmung

Einfluss von Messfehlern der elektrischen Leistung auf die Zusatzverlustbestimmung. Einführung Verfahren zur Wirkungsgradbestimmung Einfluss von Messfehlern der elektrischen Leistung auf die Zusatzverlustbestimmung Einführung Verfahren zur Wirkungsgradbestimmung Direkte Verfahren Indirekte Verfahren Toleranz der Wirkungsgradangabe

Mehr

Dampfkraftprozess Dampfturbine

Dampfkraftprozess Dampfturbine Fachgebiet für Energiesysteme und Energietechnik Prof. Dr.-Ing. B. Epple Musterlösung Übung Energie und Klimaschutz Sommersemester 0 Dampfkraftprozess Dampfturbine Aufgabe : Stellen Sie den Dampfkraftprozess

Mehr

E0401/E0402 2.2 Synthesizer Seite 14/57. Name:

E0401/E0402 2.2 Synthesizer Seite 14/57. Name: HF-Grundlagen. HF-Signalquellen Ausgabe.5 E41/E4. Synthesizer Seite 1/57 HF-Grundlagen. HF-Signalquellen Ausgabe.5 E41/E4. Synthesizer Seite 14/57 Mikrowellenquelle Prinzip-Blockschaltbild Mikrowellenquelle

Mehr

Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop

Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop TFH Berlin Messtechnik Labor Seite 1 von 7 Messung von Zeitverläufen und Kennlinien mit Hilfe des Oszilloskop Ort: TFH Berlin Datum: 07.04.2004 Uhrzeit: von 8.00 bis 11.30 Dozent: Kommilitonen: Prof. Dr.-Ing.

Mehr

Induktivitätsmessung bei 50Hz-Netzdrosseln

Induktivitätsmessung bei 50Hz-Netzdrosseln Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die

Mehr

A2.3: Sinusförmige Kennlinie

A2.3: Sinusförmige Kennlinie A2.3: Sinusförmige Kennlinie Wie betrachten ein System mit Eingang x(t) und Ausgang y(t). Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet. Der Zusammenhang zwischen dem Eingangssignal

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : von Messgeräten; Messungen mit Strom- und Spannungsmessgerät Klasse : Name : Datum : Will man mit einem analogen bzw. digitalen Messgeräte Ströme oder Spannungen (evtl. sogar Widerstände) messen, so muss

Mehr

Zusammenfassung elektrische Maschinen Gleichstrommaschine

Zusammenfassung elektrische Maschinen Gleichstrommaschine Gleichstrommaschine i F F F F U = R I + Ui U F = RF IF Gleichstrommaschine Induzierte Spannung: Ursache: Änderung des magnetischen Flusses in der Leiterschleife Ui = c φf Erzeugung des magnetischen Flusses:

Mehr

3B SCIENTIFIC PHYSICS

3B SCIENTIFIC PHYSICS B SCIENTIFIC PHYSICS Triode S 11 Bedienungsanleitung 1/15 ALF 1 5 7 1 Führungsstift Stiftkontakte Kathodenplatte Heizwendel 5 Gitter Anode 7 -mm-steckerstift zum Anschluss der Anode 1. Sicherheitshinweise

Mehr

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig)

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig) Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6 1 2 3 4 5 6 Summe Matr.-Nr.: Nachname: 1 (5 Punkte) Drei identische Glühlampen sind wie im Schaltbild

Mehr

Aufgabe 4.1.1. Bild 4.1. Bild 4.2. Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom

Aufgabe 4.1.1. Bild 4.1. Bild 4.2. Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom 4. Wechselstrom Aufgabe 4.1.1 Themenbereich: Wechselstromtechnik Dreiphasenwechselstrom Schaltungsbeschreibung: Es stehen die Anschlüsse eines symmetrischen Dreiphasenwechselstromnetzes zur Messung und

Mehr

Skalierung des Ausgangssignals

Skalierung des Ausgangssignals Skalierung des Ausgangssignals Definition der Messkette Zur Bestimmung einer unbekannten Messgröße, wie z.b. Kraft, Drehmoment oder Beschleunigung, werden Sensoren eingesetzt. Sensoren stehen am Anfang

Mehr

16 Übungen gemischte Schaltungen

16 Übungen gemischte Schaltungen 6 Übungen gemischte Schaltungen 6. Aufgabe Gemischt (Labor) a) Berechne alle Ströme und Spannungen und messe diese nach! 3 = Rges = + 3 = 4,39kΩ 3 =,939kΩ Iges= Rges =2,46mA=I U = * I = 5,32V = U3 = U

Mehr

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......

Mehr

Kennlinienaufnahme elektronische Bauelemente

Kennlinienaufnahme elektronische Bauelemente Messtechnik-Praktikum 06.05.08 Kennlinienaufnahme elektronische Bauelemente Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie eine Schaltung zur Aufnahme einer Strom-Spannungs-Kennlinie eines

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007.

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007. Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #29 am 19.06.2007 Vladimir Dyakonov Induktionsspannung Bewegung der Leiterschleife im homogenen

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert E 0 Ohmsches Gesetz & nnenwiderstand (Pr_Ph_E0_nnenwiderstand_5, 30.8.2009).

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

Induktionsgesetz (E13)

Induktionsgesetz (E13) Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.

Mehr

Widerstandsdrähte auf Rahmen Best.-Nr. MD03803

Widerstandsdrähte auf Rahmen Best.-Nr. MD03803 Widerstandsdrähte auf Rahmen Best.-Nr. MD03803 Beschreibung des Gerätes Auf einem rechteckigen Rahmen (1030 x 200 mm) sind 7 Widerstandsdrähte gespannt: Draht 1: Neusilber Ø 0,5 mm, Länge 50 cm, Imax.

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

2 Gleichstrom-Schaltungen

2 Gleichstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben

Mehr

Anschauliche Versuche zur Induktion

Anschauliche Versuche zur Induktion Anschauliche Versuche zur Induktion Daniel Schwarz Anliegen Die hier vorgestellten Versuche sollen Schülerinnen und Schüler durch die Nachstellung von Alltagstechnik für das Thema Induktion motivieren.

Mehr

Motorkennlinie messen

Motorkennlinie messen Aktoren kennlinie messen von Roland Steffen 3387259 2004 Aktoren, kennlinie messen Roland Steffen Seite 1/5 Aufgabenstellung: Von einer Elektromotor-Getriebe-Einheit ist eine vollständige kennlinienschar

Mehr

Elektrische Messtechnik, Labor

Elektrische Messtechnik, Labor Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Messverstärker Studienassistentin/Studienassistent Gruppe Datum Note Nachname, Vorname Matrikelnummer Email

Mehr

3.5. Aufgaben zur Wechselstromtechnik

3.5. Aufgaben zur Wechselstromtechnik 3.5. Aufgaben zur Wechselstromtechnik Aufgabe : eigerdiagramme Formuliere die Gleichungen für die alteile von (t) sowie (t) und zeichne ein gemeinsames eigerdiagramm für Spannung sowie Stromstärke, wenn

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. M. Prochaska Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3

Mehr

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1 Laborskript für WP-14 WS 13/14 Zugversuch Zugversuch 1) Theoretische Grundlagen: Mit dem Zugversuch werden im Normalfall mechanische Kenngrößen der Werkstoffe unter einachsiger Beanspruchung bestimmt.

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

RFH Rheinische Fachhochschule Köln

RFH Rheinische Fachhochschule Köln 4. 8 Meßzangen für Strom und Spannung Für die Messung von hohen Strömen oder Spannungen verwendet man bei stationären Anlagen Wandler. Für die nichtstationäre Messung von Strömen und Spannung, verwendet

Mehr

Komplexpraktikum Elektrotechnik - Elektrische Antriebe. Umrichtergespeister Drehstromantrieb

Komplexpraktikum Elektrotechnik - Elektrische Antriebe. Umrichtergespeister Drehstromantrieb April 2012 Komplexpraktikum Elektrotechnik - Elektrische Antriebe Umrichtergespeister Drehstromantrieb für tudiengang CT/AT, Fakultät ET 1. Versuchsziel ie lernen das stationäre Betriebsverhalten eines

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre GV: Gleichstrom Durchgeführt am 14.06.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Philip Baumans Marius Schirmer E3-463 Inhaltsverzeichnis

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

Neue Prüfung ergibt neue Werte. Härtemessung nach den Verfahren Shore A und D

Neue Prüfung ergibt neue Werte. Härtemessung nach den Verfahren Shore A und D Neue Prüfung ergibt neue Werte Härtemessung nach den Verfahren Shore A und D Härte A und Härte D Die Spitze des Stahl-Stifts drückt bei Shore A bzw. dringt bei Shore D in das Material ein. Die Eindruck-/Eindringtiefe

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen

Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen Jan Luiken ter Haseborg Christian Schuster Manfred Kasper Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen 18 1 Elektrische Gleichstromnetzwerke det(a 2 )

Mehr

Stromdurchossene Leiter im Magnetfeld, Halleekt

Stromdurchossene Leiter im Magnetfeld, Halleekt Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1

Mehr

TRAVEL POWER 230 V AC, 32 A, 50 Hz (991 00 12-01) Travel Power 7.0 + 5.0

TRAVEL POWER 230 V AC, 32 A, 50 Hz (991 00 12-01) Travel Power 7.0 + 5.0 Einbau und Bedienungsanleitung TRAVEL POWER 230 V AC, 32 A, 50 Hz (991 00 12-01) Travel Power 7.0 + 5.0 1 Allgemeine Informationen 1.1 SICHERHEITSHINWEISE Travel Power darf nicht für den Betrieb von lebenserhaltenen

Mehr

7.3 Anwendungsbeispiele aus Physik und Technik

7.3 Anwendungsbeispiele aus Physik und Technik 262 7. Differenzialrechnung 7.3 7.3 Anwendungsbeispiele aus Physik und Technik 7.3.1 Kinematik Bewegungsabläufe lassen sich durch das Weg-Zeit-Gesetz s = s (t) beschreiben. Die Momentangeschwindigkeit

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82)

1.3.2 Resonanzkreise R L C. u C. u R. u L u. R 20 lg 1 , (1.81) die Grenzkreisfrequenz ist 1 RR C . (1.82) 3 Schaltungen mit frequenzselektiven Eigenschaften 35 a lg (8) a die Grenzkreisfrequenz ist Grenz a a (8) 3 esonanzkreise 3 eihenresonanzkreis i u u u u Bild 4 eihenresonanzkreis Die Schaltung nach Bild

Mehr

4.12 Elektromotor und Generator

4.12 Elektromotor und Generator 4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt

Mehr

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms Versuch 1a Wechselstromgenerator Dynamo Leerlauf Dynamo Wasser Klemme Loch Oszilloskop (alt) y-shift time 5 V/cm 1 ms Generatorprinzip: Rotiert eine Leiterschleife (Spule) mit konstanter Winkelgeschwindigkeit

Mehr

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis ehrstuhl ür Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Pro. Dr.-Ing. Manred Albach Grundlagenpraktikum Elektrotechnik Teil Versuch 4: eihenschwingkreis Datum:

Mehr

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Elektrotechnik IIa SS 2011

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Elektrotechnik IIa SS 2011 Aufgabe 1: Berechnen Sie die Resonanzfrequenz des gegebenen Parallelschwingkreises! Lösen Sie die Aufgabe über den komplexen Leitwert! 5 2,5 10 100 Reihenschaltungszweig Parallelschaltung sämtlicher Bauteile

Mehr

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN)

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN) Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN). Einleitung Kraftmaschinen geben ihre Arbeit meistens durch rotierende Wellen ab. Die Arbeit, die pro Zeiteinheit über die

Mehr

Messen mit Dehnmessstreifen (DMS)

Messen mit Dehnmessstreifen (DMS) Fachbereich Ingenieurwissenschaften II Labor Messtechnik Anleitung zur Laborübung Messen mit Dehnmessstreifen (DMS) Inhalt: 1 Ziel der Laborübung 2 Aufgaben zur Vorbereitung der Laborübung 3 Grundlagen

Mehr

Laborübung Gegentaktendstufe Teil 1

Laborübung Gegentaktendstufe Teil 1 Inhaltsverzeichnis 1.0 Zielsetzung...2 2.0 Grundlegendes zu Gegentaktverstärkern...2 3.0 Aufgabenstellung...3 Gegeben:...3 3.1.0 Gegentaktverstärker bei B-Betrieb...3 3.1.1 Dimensionierung des Gegentaktverstärkers

Mehr

Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 4 10 am 14.03.1997

Aufg. P max 1 10 Klausur Elektrotechnik 2 14 3 8 4 10 am 14.03.1997 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 6141 4 10 am 14.03.1997 5 18 6 11 Σ 71 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene Hilfsmittel

Mehr

Prüfung von Blitzschutzsystemen Messen in der Praxis - Hinweise

Prüfung von Blitzschutzsystemen Messen in der Praxis - Hinweise Seite 1 von 6 Grundsätzlich stellt sich bei Messungen an Blitzschutzanlagen die Frage, was will ich messen? Ausbreitungswiderstand oder Schleifenwiderstand (Niederohmmessung)? Unter Schleifenwiderstand

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik2. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

Michelson-Interferometer. Jannik Ehlert, Marko Nonho

Michelson-Interferometer. Jannik Ehlert, Marko Nonho Michelson-Interferometer Jannik Ehlert, Marko Nonho 4. Juni 2014 Inhaltsverzeichnis 1 Einführung 1 2 Auswertung 2 2.1 Thermische Ausdehnung... 2 2.2 Magnetostriktion... 3 2.2.1 Beobachtung mit dem Auge...

Mehr

Grundschaltungen im Wechselstromkreis

Grundschaltungen im Wechselstromkreis 0.03.009 Grundschaltunen im Wechselstromkreis 1. eihenschaltun von Wirkwiderstand und idealer nduktivität. eihenschaltun von Wirkwiderstand und idealer Kapazität 3. Parallelschaltun von Wirkwiderstand

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Fachhochschule Kiel Fachbereich Informatik und Elektrotechnik Labor für Grundlagen der Elektrotechnik

Fachhochschule Kiel Fachbereich Informatik und Elektrotechnik Labor für Grundlagen der Elektrotechnik Fachhochschule Kiel Fachbereich Informatik und Elektrotechnik Labor für Grundlagen der Elektrotechnik Laborbericht zur Aufgabe Nr. 123 Messen von Widerständen Name: Name: Name: Bewertung: Bemerkungen /

Mehr

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007

PW11 Wechselstrom II. Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 PW11 Wechselstrom II Oszilloskop Einführende Messungen, Wechselstromwiderstände, Tiefpasse (Hochpass) 17. Januar 2007 Andreas Allacher 0501793 Tobias Krieger 0447809 Mittwoch Gruppe 3 13:00 18:15 Uhr Dr.

Mehr

3. Anwendungen. 3.1. Chemische Reaktionen. Aufgabe: Die Gleichung + +

3. Anwendungen. 3.1. Chemische Reaktionen. Aufgabe: Die Gleichung + + 1 3. Anwendungen 3.1. Chemische Reaktionen Aufgabe: Die Gleichung + + beschreibt die Verbrennung von Ammoniak zu Stickstoffoxid und Wasser Für welche möglichst kleine natürliche Zahlen x1, x2, x3 und x4

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Bestimmung des Wirkungsgrades. Felix Leumann. Motor Summit 2008, 26.11.2008 Zürich. wirkungsgrad-bestimmung.ppt Folie 1 November 2008

Bestimmung des Wirkungsgrades. Felix Leumann. Motor Summit 2008, 26.11.2008 Zürich. wirkungsgrad-bestimmung.ppt Folie 1 November 2008 wirkungsgrad-bestimmung.ppt Folie 1 November 2008 Bestimmung des Wirkungsgrades Felix Leumann Motor Summit 2008, 26.11.2008 Zürich Die Bedeutung einer möglichst genauen Wirkungsgradbestimmung kommt vor

Mehr

ρ = 0,055 Ωmm 2 /m (20 C)

ρ = 0,055 Ωmm 2 /m (20 C) 134.163 Grundlagen der Elektronik - Übungsbeispiele für den 11.05.2016 Beispiel C1: Berechnen Sie den Widerstand einer Glühlampe mit einem Wolframdraht von 0,024 mm Durchmesser und 30 cm Länge bei Raumtemperatur

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : Widerstand eins Drahtes; Widerstandmessung mit der Wheatstone-Brücke Kasse : Name : Datum : Versuchszie : Wir woen untersuchen, von wechen Größen der Widerstand eines Drahtes abhängig ist. Vermutung: Wir

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

E-Labor im WS / SS. Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz. Fakultät II Abteilung Maschinenbau. Gruppe:

E-Labor im WS / SS. Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz. Fakultät II Abteilung Maschinenbau. Gruppe: Abteilung Maschinenbau im WS / SS Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz Gruppe: Name Vorname Matr.-Nr. Semester Verfasser(in) Teilnehmer(in) Teilnehmer(in) Professor(in) / Lehrbeauftragte(r):

Mehr

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode

Dabei ist der differentielle Widerstand, d.h. die Steigung der Geraden für. Fig.1: vereinfachte Diodenkennlinie für eine Si-Diode Dioden - Anwendungen vereinfachte Diodenkennlinie Für die meisten Anwendungen von Dioden ist die exakte Berechnung des Diodenstroms nach der Shockley-Gleichung nicht erforderlich. In diesen Fällen kann

Mehr

Aufgabenblatt Nr.: 1 Grundlagen Elektrotechnik

Aufgabenblatt Nr.: 1 Grundlagen Elektrotechnik Aufgabenblatt Nr.: 1 Grundlagen Elektrotechnik 1) Berechnen Sie den Widerstand R einer Leitung, Cu spez. R 0.0175 Leitungslänge: 15 m R = Rho * l * 2 / A = 0.0175 * 15m * 2 / 1.5 = 0.350 Ohm Querschnitt:

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

PS II - Verständnistest 24.02.2010

PS II - Verständnistest 24.02.2010 Grundlagen der Elektrotechnik PS II - Verständnistest 24.02.2010 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 3 4 2 2 1 5 2 erreicht Aufgabe 8 9 10 11 12 Summe Punkte 4 2 3 3 4 35 erreicht Hinweise:

Mehr

Was sind Schwachstromanlagen? Betriebsspannung unter 50V AC (120VDC) Betriebsstrom unter 2 A

Was sind Schwachstromanlagen? Betriebsspannung unter 50V AC (120VDC) Betriebsstrom unter 2 A Kurztest Seite 1 NIN2010 Was sind Schwachstromanlagen? Betriebsspannung unter 50V AC (120VDC) Betriebsstrom unter 2 A Nennen Sie den Unterschied zwischen einem PEN Leiter und einem Schutzleiter. PEN :

Mehr

Achtung: Bei der Inbetriebnahme von TTL-Bausteinen ist zu beachten, daß der Anschluß

Achtung: Bei der Inbetriebnahme von TTL-Bausteinen ist zu beachten, daß der Anschluß Fakultät für Physik Prof. Dr. M. Weber, Dr.. abbertz B. iebenborn, P. ung, P. kwierawski, C. hiele 7. Dezember Übung Nr. 8 Inhaltsverzeichnis 8. L-Gatter............................................ 8.

Mehr

Halbleiterbauelemente

Halbleiterbauelemente Mathias Arbeiter 20. April 2006 Betreuer: Herr Bojarski Halbleiterbauelemente Statische und dynamische Eigenschaften von Dioden Untersuchung von Gleichrichterschaltungen Inhaltsverzeichnis 1 Schaltverhalten

Mehr

Allgemeine Speicherberechnung

Allgemeine Speicherberechnung doc 6. Seite von 5 Allgemeine Seicherberechnung echnische Daten Grundlage Die Berechnung eines Hydroseichers bezieht sich auf die Zustandsänderung des Gases im Hydroseicher. Die gleiche Veränderung erfolgt

Mehr

ACO Wärmebrückenkatalog

ACO Wärmebrückenkatalog Mai 2014 Wärmebrückenkatalog 1.0 Kundeninfo ACO Wärmebrückenkatalog Die Energieverluste über der Gebäudehülle werden nicht unerheblich durch Wärmebrücken beeinflusst. Praktisch heißt das, es sollte der

Mehr

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4 1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung

Mehr

Laborversuch. Druckregelventil

Laborversuch. Druckregelventil Laborversuch Druckregelventil Statische und dynamische Untersuchung eines Druckregelventils Inhalt: 1. EINFÜHRUNG... 2 2. DRUCK-REGELVENTIL NW 3... 3 3. VERSUCHSAUFBAU... 5 3.1 HW-Aufbau... 5 3.2 Software...

Mehr

E 1 - Grundversuche Elektrizitätslehre

E 1 - Grundversuche Elektrizitätslehre Universität - GH Essen Fachbereich 7 - Physik PHYSIKALISCHES PRAKIKUM FÜR ANFÄNGER Versuch: E 1 - Grundversuche Elektrizitätslehre Mit diesem Versuch sollen Sie in die Messung elektrischer Grundgrößen

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

2.1.2 Durchführung drehbare Leiterschleife im homogenen Magnetfeld wird gedreht

2.1.2 Durchführung drehbare Leiterschleife im homogenen Magnetfeld wird gedreht U N S t U N S t I Wiederholung 1.1 Versuch Leiterschaukel auslenken = Ausschlag am Demomultimeter Wiederholung durch Schüler - Was passiert hier? II Hauptteil bisher primär mit Gleichstrom beschäftigt

Mehr

Oszillographenmessungen im Wechselstromkreis

Oszillographenmessungen im Wechselstromkreis Praktikum Grundlagen der Elektrotechnik Versuch: Oszillographenmessungen im Wechselstromkreis Versuchsanleitung. Allgemeines Eine sinnvolle Teilnahme am Praktikum ist nur durch eine gute Vorbereitung auf

Mehr

Magnetics 4 Freaks Alles rund um den Elektromagnetismus Wintersemester 2011/12

Magnetics 4 Freaks Alles rund um den Elektromagnetismus Wintersemester 2011/12 Magnetics 4 Freaks Alles rund um den Elektromagnetismus Wintersemester 2011/12 Willkommen an der Reinhold Würth Hochschule in Künzelsau Die Kolloquiumsreihe von Hochschule und Industrie Prof. Dr.-Ing.

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr