B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

Größe: px
Ab Seite anzeigen:

Download "B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!"

Transkript

1 Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden Parametern: Federn A: α = 0,001 und β = 2 ; Federn B: α = 0,005 und β = 2 Das System funktioniert dann zuverlässig, wenn die Federn A 1 und A 2 und B 1 oder A 1 und A 2 und B 2 oder alle 4 Federn zuverlässig funktionieren. A 1 A 2 B 1! " Zeigen Sie, dass die Wahrscheinlichkeit dafür, dass eine Feder vom Typ A bzw. B eine Betriebszeit von 10 Monaten überlebt, 0,9 bzw. 0,6 beträgt. " Geben Sie die Wahrscheinlichkeit dafür an, dass das System eine Betriebszeit von 10 Monaten überlebt. dass das System innerhalb von 10 Monaten Betriebszeit ausfällt. #" Wie viele weitere Federn vom Typ B müssen parallel zu den beiden B-Federn (B 1 und B 2 ) geschaltet werden, damit die Wahrscheinlichkeit dafür, dass das System eine Betriebszeit von 10 Monaten überlebt, mindestens 80% (d.h. 80% oder mehr als 80%) beträgt? 8p $ Eine Leiterplatte wird mit 2 Dioden, 3 Transistoren und 5 Kondensatoren, die alle unabhängig voneinander funktionieren, in Serienschaltung bestückt. Die Ausfallraten pro Stunden der Bauteile sind wie folgt: Diode: 2, [1/h] ; Transistor: 0, [1/h] ; Kondensator : 0, [1/h] " Berechnen Sie " die Zuverlässigkeit des Systems. " die Wahrscheinlichkeit dafür, dass das System eine Betriebzeit von Stunden erreicht. #" die MTTF des Systems. " Um die Zuverlässigkeit des Systems zu verbessern, werden den beiden Dioden jeweils 2 baugleiche Dioden parallel geschaltet. Berechnen Sie %" die Zuverlässigkeit des neuen Systems. " die MTTF des neuen Systems. 8p & Ein Hersteller von elektronischen Bauteilen verwendet eine Anlage zum Fräsen von Linien in Leiterplatten. In jeder Leiterplatte sollen 20 identische Linien unabhängig voneinander gefräst werden. Die Wahrscheinlichkeit dafür, dass die Anlage eine Linie richtig einfräst, beträgt 0,85. Eine Leiterplatte wird dann akzeptiert (und als nicht-defekt angenommen), wenn mindestens 15 Linien richtig eingefräst wurden. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933). 2p!:!! "# " Aus dem laufenden Betrieb der Fräsanlage werden zufällig 100 Leiterplatten entnommen. (Wegen des großen Umfangs der Produktion kann diese Entnahme als Ziehen mit Zurücklegen angenommen werden.) Wie groß ist die Wahrscheinlichkeit, " dass mindestens 3 (d.h. 3 oder mehr als 3) defekte Leiterplatten dabei sind? " dass höchstens 3 (d.h. 3 oder weniger als 3) defekte Leiterplatten dabei sind?!:!!$!%! 4p " Ein Käufer möchte bei diesem Hersteller Leiterplatten bestellen. Wieviele Leiterplatten muss er bestellen, damit in der Bestellung mit einer Wahrscheinlichkeit von mehr als 0,99 mindestens 200 fehlerfreie Leiterplatten dabei sind? 10p B 2

2 '" Um defekte Leiterplatten zu entfernen, werden die Leiterplatten mit einem Prüfgerät geprüft. Tests haben folgendes gezeigt: Vom Prüfgerät werden nur 92% aller defekten Leiterplatten aussondiert. Leider werden durch das Prüfgerät auch 5% aller nicht-defekten Leiterplatten aussondiert. " Wie groß ist der Anteil aller (durch das Prüfgerät) aussondierten Leiterplatte aus der Gesamtproduktion? " Wie groß ist der Anteil der tatsächlich defekten Leiterplatten unter den (vom Prüfgerät) aussondierten Leiterplatten? #" Wenn man Leiterplatten prüfen würde, wie viele werden dann (vom Prüfgerät) aussondiert und wie viele von den aussondierten Leiterplatten wären dann tatsächlich defekt? 4p '" Um die Ergebnisse aus Teilaufgabe &' zu verbessern, werden 3 unabhängige identische Prüfgeräte gleichzeitig eingesetzt. Eine Leiterplatte soll dann entfernt werden, wenn mindestens 2 (d.h. 2 oder 3) Prüfgeräte eine Leiterplatte aussondieren. Wie groß ist nun die Wahrscheinlichkeit, dass eine Leiterplatte entfernt wird? (Wie groß ist nun der Anteil aller entfernten Leiterplatten?) 8p ( Die Messungen von Übertragungszeiten von binären Signalen eines Senders bis zu einem bestimmten Empfänger zeigten, dass die kürzeste Übertragungszeit α = 10 [ms] und die höchste Übertragungszeit β = 40 [ms] beträgt. Die Dichtefunktion der Wahrscheinlichkeitsverteilung für die Übertragungszeit ergab folgende stetige Gleichverteilung: Dichtefunktion der Gleichverteilung 1 f ( t ) ; für α t < β f ( t ) = β α 0 ; sonst " Zeigen und begründen Sie, dass f eine Dichtefunktion ist. α β t " Bestimmen Sie die Verteilungsfunktion von f. α + β #" Zeigen Sie, dass die durchschnittliche Übertragungszeit µ = beträgt. 2 %" Zeigen Sie, dass die Varianz für die Übertragungszeit 2 σ = ( 2 α ) 12 ist. " Wie groß ist die Wahrscheinlichkeit dafür, dass die Übertragungszeit mehr als 30 [ms] dauert? 8p ) Der Durchmesser von serienmäßig hergestellten Metallkugeln einer Firma sei eine normalverteilte Zufallsvariable mit dem Mittelwert = 3,0 [cm]. Ein Prüfer lies 1000 Kugeln aus der Serienproduktion durch ein Sieb fallen, dessen Löcher einen Durchmesser von 2,5 [cm] besitzen, so fielen 25 Kugeln durch das Sieb. Wie groß ist Standardabweichung der Durchmesser der Kugel aus der Produktion? 6p * Zwischen zwei bestimmten physikalischen Messgrößen x und y besteht folgender Zusammenhang y = x ; wobei α und β zwei Konstanten sind. α x + β Die folgende Tabelle gibt die Messwerte für y für verschiedene Werte von x. x y 0,4 0,2 0,2 0,6 1,0 " Bestimmen Sie die Werte für die Konstanten α und β. " Schätzen Sie y, wenn x = 0,5 ist. 8p + Die Länge von serienmäßig hergestellten Bolzen einer Produktionsanlage sei eine normalverteilte Zufallsvariable. Aus laufender Produktion wurde eine Stichprobe entnommen. Die Messung der Längen von 50 Bolzen ergab folgende Strichliste. Länge: [mm] [ 7, 5 ; 7,7 ) / / / / / / [ 7, 7 ; 7,9 ) / / / / / / / / [ 7, 9 ; 8,1 ) / / / / / / / / / / / / [ 8, 1 ; 8,3 ) / / / / / / / / [ 8, 3 ; 8,5 ) / / / / / / / / Erstellen Sie für diese Stichprobe eine Häufigkeitstabelle und zeichnen Sie die empirische Verteilungsfunktion und berechnen Sie den Mittelwert und die Standardabweichung. 6p

3

4

5

6 x 0

7

8

9

10

11

12

13

14

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005

Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Statistik II Wahrscheinlichkeitsrechnung und induktive Statistik Erste Klausur zum Sommersemester 2005 26. Juli 2005 Aufgabe 1: Grundzüge der Wahrscheinlichkeitsrechnung 19 P. Als Manager eines großen

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum)

Skriptum zur Veranstaltung. Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik. 1. Version (mehr Draft als Skriptum) Skriptum zur Veranstaltung Quantitative Methoden (Mathematik/Statistik) Teil Induktive Statistik 1. Version (mehr Draft als Skriptum) Anmerkungen, Aufzeigen von Tippfehlern und konstruktive Kritik erwünscht!!!

Mehr

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Wahrscheinlichkeitstheorie Was will die Sozialwissenschaft damit? Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall Auch im Alltagsleben arbeiten wir mit Wahrscheinlichkeiten, besteigen

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt.

Klausur Nr. 1. Wahrscheinlichkeitsrechnung. Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Klausur Nr. 1 2014-02-06 Wahrscheinlichkeitsrechnung Pflichtteil Keine Hilfsmittel gestattet, bitte alle Lösungen auf dieses Blatt. Name: 0. Für Pflicht- und Wahlteil gilt: saubere und übersichtliche Darstellung,

Mehr

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B

Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip. KLAUSUR Statistik B Universität Bonn 28. Juli 2010 Fachbereich Rechts- und Wirtschaftswissenschaften Statistische Abteilung Prof. Dr. A. Kneip Sommersemester 2010 KLAUSUR Statistik B Hinweise zur Bearbeitung: Bei allen Teilaufgaben

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt. Stock, Nordflügel R. 0-49 (Persike) R. 0- (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 008/009 Fachbereich

Mehr

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen:

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Messtechnik Gedächnisprotokoll Klausur 2012 24. März 2012 Dokument erstellt von: mailto:snooozer@gmx.de Aufgaben Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Index k 1 2 3 4 5

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2010/2011 Aufgabe 1 Nach einer

Mehr

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch

- Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch 1 2 - Eine typische Ausfallrate, wie sie bei vielen technischen Anwendungen zu sehen ist hat die Form einer Badewanne, deshalb nennt man diese Kurve auch Badewannenkurve. -mit der Badewannenkurve lässt

Mehr

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse

Kursthemen 12. Sitzung. Spezielle Verteilungen: Warteprozesse. Spezielle Verteilungen: Warteprozesse Kursthemen 12. Sitzung Folie I - 12-1 Spezielle Verteilungen: Warteprozesse Spezielle Verteilungen: Warteprozesse A) Die Geometrische Verteilung (Folien 2 bis 7) A) Die Geometrische Verteilung (Folien

Mehr

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden?

825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170 e 500 e 443 e 608 e. Zeichnen Sie das Box-Plot. Sind in dieser Stichprobe Ausreißer vorhanden? 1. Aufgabe: Eine Bank will die jährliche Sparleistung eines bestimmten Kundenkreises untersuchen. Eine Stichprobe von 12 Kunden ergab folgende Werte: 825 e 290 e 542 e 945 e 528 e 486 e 675 e 618 e 170

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

AQL. 9. Statistisches Qualitätsmanagement 9.3 Statistische Methoden der Warenannahme (AQL)

AQL. 9. Statistisches Qualitätsmanagement 9.3 Statistische Methoden der Warenannahme (AQL) 9.3 Statistische Methoden der Warenannahme (AQL) AQL Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Um was geht es? Stichprobensysteme insbesondere für Eingangsprüfungen. Diese werden durch

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Monty Hall-Problem. Wochen 3 und 4: Verteilungen von Zufallsvariablen. Lernziele. Diskrete Verteilungen

Monty Hall-Problem. Wochen 3 und 4: Verteilungen von Zufallsvariablen. Lernziele. Diskrete Verteilungen Monty Hall-Problem Wochen 3 und 4: Verteilungen von Zufallsvariablen US-amerikanische Fernseh-Show Let s make a deal, moderiert von Monty Hall: WBL 15/17, 04.05.2015 Alain Hauser

Mehr

Klausur: Einführung in die Statistik

Klausur: Einführung in die Statistik 1 Lösungen immer unter die jeweiligen Aufgaben schreiben. Bei Platzmangel auf die Rückseite schreiben (dann Nummer der bearbeiteten Aufgabe mit anmerken!!!). Lösungen, die nicht auf den Aufgabenblättern

Mehr

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007

DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 2006/07 28.02.2007 Wirtschaftswissenschaftliches Prüfungsamt DIPLOMVORPRÜFUNG GRUNDZÜGE DER STATISTIK, TEIL B WINTERSEMESTER 006/07 8.0.007 Lösung Prof. Dr. R Friedmann / Dr. R. Hauser Hinweise für die Klausurteilnehmer

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskontrolle 6. Allgemeines Für die Qualitätskontrolle in einem Unternehmen (produzierendes Gewerbe, Dienstleistungsunternehmen, ) gibt es verschiedene Möglichkeiten. Statistische

Mehr

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe Biometrieübung 5 Spezielle Verteilungen Aufgabe 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Anzahl weiblicher Mäuse (k) Anzahl Würfe

Mehr

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X)

P( X µ c) Var(X) c 2. mit. In der Übung wurde eine alternative, äquivalente Formulierung verwendet: P( X µ < c) 1 Var(X) Ich habe eine Frage zur Tschebyschew Ungleichung. In der Aufgabe 4 des Übungsblattes 3 benötigt man ja die Ungleichung. In diesem Falle war der Bereich (0, 20) symmetrisch um den Erwartungswert µ = 5.

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis:

Übungsaufgaben zu Kapitel 5. Aufgabe 101. Inhaltsverzeichnis: Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 5... 1 Aufgabe 101... 1 Aufgabe 102... 2 Aufgabe 103... 2 Aufgabe 104... 2 Aufgabe 105... 3 Aufgabe 106... 3 Aufgabe 107... 3 Aufgabe 108... 4 Aufgabe 109...

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006

Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 1 3.34 1.1 Angabe Übungsrunde 7, Gruppe 2 LVA 107.369, Übungsrunde 7, Gruppe 2, 28.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 11/2006 U sei auf dem Intervall (0, 1) uniform verteilt. Zeigen

Mehr

Nachhilfe: Wahrscheinlichkeitsrechnung Aufgaben. Aufgaben deren Lösungsansatz zu einer Vierfelder-Tafel oder einem Baumdiagramm führt.

Nachhilfe: Wahrscheinlichkeitsrechnung Aufgaben. Aufgaben deren Lösungsansatz zu einer Vierfelder-Tafel oder einem Baumdiagramm führt. deren Lösungsansatz zu einer Vierfelder-Tafel oder einem Baumdiagramm führt. 3.1.1 In einer Klasse mit 30 LT haben 19 LT ein Notebook und 40% der LT sind männlich. Genau fünf männliche LT haben kein Notebook.

Mehr

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013 BRP Mathematik VHS Floridsdorf 5.10.2013 Seite 1/6 Gruppe A Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Herbsttermin 2013 Notenschlüssel:

Mehr

Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten

Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten Zusatzaufgaben zur Vorlesung Stochastik für Informatikstudenten I.1 Erweitertes Urnenmodell mit Zurücklegen In einer Urne befinden sich ( N Kugeln, davon M 1 der Farbe F 1, M 2 der Farbe l ) F 2,..., M

Mehr

Kapitel 2 Wahrscheinlichkeitsrechnung

Kapitel 2 Wahrscheinlichkeitsrechnung Definition 2.77: Normalverteilung & Standardnormalverteilung Es sei µ R und 0 < σ 2 R. Besitzt eine stetige Zufallsvariable X die Dichte f(x) = 1 2 πσ 2 e 1 2 ( x µ σ ) 2, x R, so heißt X normalverteilt

Mehr

2011/2012 Abitur Sachsen - Leistungskurs Mathematik Nachtermin

2011/2012 Abitur Sachsen - Leistungskurs Mathematik Nachtermin Schriftliche Abiturprüfung Leistungskurs Mathematik - Nachtermin Inhaltsverzeichnis Vorwort...1 Hinweise für den Teilnehmer...2 Bewertungsmaßstab...2 Prüfungsinhalt...2 Aufgabe A...2 Aufgabe B 1...3 Aufgabe

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Arbeitsblätter zum Fach. Sicherheitstechnik. Abschnitt: Zuverlässigkeit technischer Systeme

Arbeitsblätter zum Fach. Sicherheitstechnik. Abschnitt: Zuverlässigkeit technischer Systeme TU DRESDEN Institut für Verfahrenstechnik & Umwelttechnik Professur für Verfahrensautomatisierung Prof. Dr.-Ing. habil. Klöden Arbeitsblätter zum Fach Sicherheitstechnik Abschnitt: Zuverlässigkeit technischer

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Messwerte und deren Auswertungen

Messwerte und deren Auswertungen Thema: Messwerte und deren Auswertungen Vorlesung Qualitätsmanagement, Prof. Dr. Johann Neidl Seite 1 Stichproben vertrauen Die Genauigkeit von Voraussagen (Vertrauensniveau) einer Stichprobenprüfung hängt

Mehr

9. Übungen. Statistik: Mittelwert und Standardabweichung Statistik: Median Statistik: Kennwerte

9. Übungen. Statistik: Mittelwert und Standardabweichung Statistik: Median Statistik: Kennwerte QM-Übungsaufgaben 9. Übungen F1 Statistik: Mittelwert und Standardabweichung F2 Statistik: Median F3 Statistik: Kennwerte F4 Statistik: Kennwerte F5 Lebensdauer F6 Vertrauensgrenzen und Histogramm F7 Statistik:

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Schleswig-Holstein 2011. Kernfach Mathematik

Schleswig-Holstein 2011. Kernfach Mathematik Aufgabe 6: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein. Machen Sie auch Angaben über die Verteilung der jeweiligen Zufallsvariablen. Eine repräsentative

Mehr

Kapitel VI - Lage- und Streuungsparameter

Kapitel VI - Lage- und Streuungsparameter Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VI - Lage- und Streuungsparameter Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Kapitel 4 Seite 1 von 23 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Kapitel 4 Seite 1 von 23 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Kapitel 4 3 Aufgabe 8 3 Aufgabe 9 3 Aufgabe 30 3 Aufgabe 31 3 Aufgabe 3 4 Aufgabe 33 4 Aufgabe 34 4 Aufgabe 35 4 Aufgabe 36 4 Aufgabe 37 4 Aufgabe 38 5 Aufgabe 39

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel

Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel Beispiele zur UE Wirtschaftsstatistik 1 bei Nagel 1 Ereignisse und Wahrscheinlichkeiten 1. Ein Würfel wird zweimal geworfen, der Stichprobenraum Ω ist Ihnen nicht neu. Versuchen Sie, den Stichprobenraum

Mehr

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist

Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist Frage Die Pareto Verteilung wird benutzt, um Einkommensverteilungen zu modellieren. Die Verteilungsfunktion ist k a F (x) =1 k>0,x k x Finden Sie den Erwartungswert und den Median der Dichte für a>1. (Bei

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Von der Normalverteilung zu z-werten und Konfidenzintervallen

Von der Normalverteilung zu z-werten und Konfidenzintervallen Von der Normalverteilung zu z-werten und Konfidenzintervallen Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH

Mehr

Uli Greßler. Qualitätsmanagement. Überwachung der Produkt- und Prozessqualität. Arbeitsheft. 2. Auflage. Bestellnummer 04796

Uli Greßler. Qualitätsmanagement. Überwachung der Produkt- und Prozessqualität. Arbeitsheft. 2. Auflage. Bestellnummer 04796 Uli Greßler Qualitätsmanagement Überwachung der Produt- und Prozessqualität Arbeitsheft 2. Auflage Bestellnummer 04796 Haben Sie Anregungen oder Kritipunte zu diesem Produt? Dann senden Sie eine E-Mail

Mehr

Risiko und Symmetrie. Prof. Dr. Andrea Wirth

Risiko und Symmetrie. Prof. Dr. Andrea Wirth Risiko und Symmetrie Prof. Dr. Andrea Wirth Gliederung 1. Einleitung Was ist eigentlich Risiko? 2. Risiko Mathematische Grundlagen 3. Anwendungsbeispiele Wo genau liegt der Schmerz des Risikos? 4. Sie

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test

Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test. und der Wilcoxon-Test Wahrscheinlichkeitsrechnung und Statistik für Biologen 5. Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) und der Wilcoxon-Test Dirk Metzler 22. Mai 2015 Inhaltsverzeichnis 1 Wiederholung:

Mehr

Fehlerrechnung. Aufgaben

Fehlerrechnung. Aufgaben Fehlerrechnung Aufgaben 2 1. Ein digital arbeitendes Längenmeßgerät soll mittels eines Parallelendmaßes, das Normalcharakter besitzen soll, geprüft werden. Während der Messung wird die Temperatur des Parallelendmaßes

Mehr

Teil III. Wahrscheinlichkeitsrechnung und Statistik

Teil III. Wahrscheinlichkeitsrechnung und Statistik Teil III Wahrscheinlichkeitsrechnung und Statistik 145 Kapitel 7 Grundlagen aus der Wahrscheinlichkeitsrechnung 7.1 Die Begriffe Zufallsvariable, Messmethode, Experiment Die Abhängigkeit einer Variablen

Mehr

1.3 Die Beurteilung von Testleistungen

1.3 Die Beurteilung von Testleistungen 1.3 Die Beurteilung von Testleistungen Um das Testergebnis einer Vp zu interpretieren und daraus diagnostische Urteile ableiten zu können, benötigen wir einen Vergleichsmaßstab. Im Falle des klassischen

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2008/2009. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2008/2009. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2008/2009 Aufgabe 1 Im Rahmen

Mehr

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen

6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen 6. Stochastische Modelle II: Stetige Wahrscheinlichkeitsverteilungen, insbesondere Normalverteilungen Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher: Diskrete Zufallsvariablen,

Mehr

Schleswig-Holstein Kernfach Mathematik

Schleswig-Holstein Kernfach Mathematik Aufgabe 5: Stochastik Der Schokoladenhersteller Nikolaus Hase produziert für namhafte Discounter Ostereier. Auf Grund langjähriger Erfahrungen ist davon auszugehen, dass 95 % der Produktion der Norm entsprechen

Mehr

Prüfungsvorbereitung Physik: Elektrischer Strom

Prüfungsvorbereitung Physik: Elektrischer Strom Prüfungsvorbereitung Physik: Elektrischer Strom Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt. Das heisst: Gut repetieren! Theoriefragen: Diese Begriffe müssen Sie auswendig in

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Übungsaufgaben zur Vorlesung Elektrotechnik 1

Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument

Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS. 11. Mai 2015. Mathematik. Teil-2-Aufgaben. Korrekturheft. öffentliches Dokument Standardisierte kompetenzorientierte schriftliche Reifeprüfung AHS 11. Mai 2015 Mathematik Teil-2-Aufgaben Korrekturheft Aufgabe 1 200-m-Lauf a) Lösungserwartung: s (t) = 7 75 t + 1,4 s (t) = 7 75 s (t)

Mehr

MATURITÄTSPRÜFUNGEN 2008

MATURITÄTSPRÜFUNGEN 2008 KANTONSSCHULE FRAUENFELD 4MC MATURITÄTSPRÜFUNGEN 2008 Hilfsmittel: Prüfungsdauer: Bemerkungen: Bewertung: - Formelsammlung DMK/DPK - Taschenrechner Texas Instruments TI-84-180 Minuten - Für jeden Aufgabenblock

Mehr

Praxisrelevante Extremwerte des Niederschlags (PEN)

Praxisrelevante Extremwerte des Niederschlags (PEN) Institut für Wasserwirtschaft, Hydrologie und landwirtschaftlichen Wasserbau Abschlussbericht Praxisrelevante Extremwerte des Niederschlags (PEN) 60-80 mm 80-100 mm 100-130 mm 130-160 mm 160-190 mm 190-220

Mehr

Portfolio Management

Portfolio Management Kapitel 3 Portfolio Management Josef Leydold c 2006 Mathematische Methoden III Portfolio Management 1 / 45 Lernziele Konzept der modernen Portfolio-Theorie Capital Asset Pricing Model Optimieren eines

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test

Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test 1/29 Biostatistik, WS 2015/2016 Der zwei-stichproben-t-test (t-test für ungepaarte Stichproben) Matthias Birkner http://www.staff.uni-mainz.de/birkner/biostatistik1516/ 11.12.2015 2/29 Inhalt 1 t-test

Mehr

Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006

Physikprotokoll: Fehlerrechnung. Martin Henning / Torben Zech / Abdurrahman Namdar / Juni 2006 Physikprotokoll: Fehlerrechnung Martin Henning / 736150 Torben Zech / 7388450 Abdurrahman Namdar / 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitungen 3 3 Messungen und Auswertungen

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Arbeitsblatt 27: Normalverteilung Kerzen

Arbeitsblatt 27: Normalverteilung Kerzen Erläuterungen und Aufgaben Zeichenerklärung: [ ] - Drücke die entsprechende Taste des Graphikrechners! [ ] S - Drücke erst die Taste [SHIFT] und dann die entsprechende Taste! [ ] A - Drücke erst die Taste

Mehr

Statistik im Versicherungs- und Finanzwesen

Statistik im Versicherungs- und Finanzwesen Springer Gabler PLUS Zusatzinformationen zu Medien von Springer Gabler Grimmer Statistik im Versicherungs- und Finanzwesen Eine anwendungsorientierte Einführung 2014 1. Auflage Übungsaufgaben zu Kapitel

Mehr

Bestimmung der Induktivität einer Spule durch Messung der Resonanzfrequenz in einem Parallelschwingkreis Versuchsprotokoll

Bestimmung der Induktivität einer Spule durch Messung der Resonanzfrequenz in einem Parallelschwingkreis Versuchsprotokoll Bestimmung der Induktivität einer Spule durch Messung der Resonanzfrequenz in einem Parallelschwingkreis Tobias Krähling email: Homepage: 22.04.2007 Version:

Mehr

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME):

Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): Veranstaltung Statistik (BWL) an der FH Frankfurt/Main im WS 2004/05 (Dr. Faik) Klausur 09.02.2005 - GRUPPE A - BEARBEITER/IN (NAME, VORNAME): MATRIKELNUMMER: Alte Prüfungsordnung/Neue Prüfungsordnung

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Wiederholung: Statistik I

Wiederholung: Statistik I Wiederholung: Statistik I Lehrstuhl für BWL, insb. Mathematik und Statistik Gegeben sei eine diskrete Zufallsvariable X. Für die möglichen Realisationen x i von X seien folgende Wahrscheinlichkeiten bekannt:

Mehr

1 Grundlagen der Datenverarbeitung

1 Grundlagen der Datenverarbeitung 6 1 Grundlagen der Datenverarbeitung 1 Grundlagen der Datenverarbeitung 1. Computer arbeiten nach dem EVA-Prinzip. Was ist darunter zu verstehen? 2. Aus welchen Baugruppen besteht in der Regel ein Computer?

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1

i x k k=1 i u i x i v i 1 0,2 24 24 0,08 2 0,4 30 54 0,18 3 0,6 54 108 0,36 4 0,8 72 180 0,60 5 1,0 120 300 1,00 2,22 G = 1 + 1 n 2 n i=1 1. Aufgabe: Der E-Commerce-Umsatz (in Millionen Euro) der fünf größten Online- Shopping-Clubs liegt wie folgt vor: Club Nr. Umsatz 1 120 2 72 3 54 4 30 5 24 a) Bestimmen Sie den Ginikoeffizienten. b) Zeichnen

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

3D outdoor Laser Scanner zur Personenzählung. PAC100-90-Y-n*1,5_D/14. Features. Anwendungsvorteile

3D outdoor Laser Scanner zur Personenzählung. PAC100-90-Y-n*1,5_D/14. Features. Anwendungsvorteile PAC100-90-Y-n*1,5 3D outdoor Laser Scanner zur Personenzählung Features 3D Range Image mit 4 Scanebenen Winkel zwischen Scanebenen: Außen 1,5 *n Innen 0,5 *n; mit n = 1,2,3 Punkte pro Scanebene: 500 Punkte

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

Zuverlässigkeitstechnik. Grundlagen. VL PLT-2 Professur für Prozessleittechnik

Zuverlässigkeitstechnik. Grundlagen. VL PLT-2 Professur für Prozessleittechnik Fakultät Elektrotechnik & Informationstechnik Institut für Automatisierungstechnik, Professur für Prozessleittechnik Zuverlässigkeitstechnik Grundlagen VL PLT-2 Professur für Prozessleittechnik Übersicht

Mehr

Statistiktraining im Qualitätsmanagement

Statistiktraining im Qualitätsmanagement Gerhard Linß Statistiktraining im Qualitätsmanagement ISBN-0: -446-75- ISBN-: 978--446-75-4 Leserobe Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978--446-75-4 sowie im Buchhandel

Mehr

Statistische Analyse von Messergebnissen

Statistische Analyse von Messergebnissen Da virtuelle Bildungnetzwerk für Textilberufe Statitiche Analye von Meergebnien 3 Hochchule Niederrhein Stand: 17..3 Seite 1 / 8 Im Abchnitt "Grundlagen der Statitik" wurde u.a. bechrieben, wie nach der

Mehr

1.4 Installation eines Qualitätsmanagementsystems

1.4 Installation eines Qualitätsmanagementsystems Ko n t r o l l f r a g e n : 1 Geben Sie vier Argumente an, die für die Installation eines Qualitätsmanagementsystems sprechen. 2 Erläutern Sie den Zusammenhang zwischen einem funktionierenden Qualitätsmanagementsystem

Mehr

Verkäufer/-in im Einzelhandel. Kaufmann/-frau im Einzelhandel. belmodi mode & mehr ein modernes Unternehmen mit Tradition.

Verkäufer/-in im Einzelhandel. Kaufmann/-frau im Einzelhandel. belmodi mode & mehr ein modernes Unternehmen mit Tradition. Eine gute Mitarbeiterführung und ausgeprägte sind dafür Das ist sehr identisch des Verkäufers. Eine gute Mitarbeiterführung und ausgeprägte sind dafür Das ist sehr identisch des Verkäufers. Eine gute Mitarbeiterführung

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen.

Bei Aufgaben, die mit einem * gekennzeichnet sind, können Sie neu ansetzen. Name: Elektrotechnik Mechatronik Abschlussprüfung E/ME-BAC/DIPL Elektronische Bauelemente SS2012 Prüfungstermin: Prüfer: Hilfsmittel: 18.7.2012 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr. Frey Taschenrechner

Mehr

ARCH- und GARCH-Modelle

ARCH- und GARCH-Modelle ARCH- und GARCH-Modelle Thomas Simon Analyse und Modellierung komplexer Systeme 04.11.2009 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle 04.11.2009 1 / 27 Ausgangssituation

Mehr