Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke

Größe: px
Ab Seite anzeigen:

Download "Schaltwerke. e = 0 z. e = 0 1 z. z neu. z = z = z???? z(t + ) = z neu = z(t) Schaltnetze und Schaltwerke"

Transkript

1 Schaltweke Schaltnete und Schaltweke Schaltnete dienen u Becheibung deen, wa innehalb eine Poeotakt abläuft. Die akteit de Poeo mu imme etwa göße ein al die Signallaufeit de Schaltnete. Damit wid ichegetellt, da am Ende de akt an allen Augängen tabile Signale anliegen. Schaltnete weden duch aykliche geichtete Gahen bechieben, d.h. dain ind keine geichteten Keie, im technichen Sinne alo keine Rückkolungen elaubt. Mit einem Schaltwek wid da Vehalten eine Poeo von einem akt um nächten bechieben. In Schaltweken weden Rückkolungen geielt eingeett, um betimmte Signale von einem Poeotakt um nächten tabil u halten. Bevo wi u getakteten Schaltungen kommen, wollen wi un allgemein mit den Effekten von Rückkolungen bechäftigen. NOR-Gatte mit Rückkolung und aynchone Fliflo Die folgende Abbildung eigt auf de linken Seite ein NOR-Gatte mit Rückkolung. Sett man fü da Eingangignal e = 0 voau, dann egibt ich ein cheinba wideüchliche Vehalten, denn da Sinal neu am Augang wäe die Negation de Eingangignal, abe andeeeit müen beide gleich ein. Eine andee Sicht egibt ich, wenn man da Vehalten al einen eitlichen Poe betachtet, bei dem die Schalteit de NOR-Gatte duch ein Veögeungglied ymboliiet wid. Dann egibt ich de Wet von neu et nach eine eitlichen Veögeung al Negation von. Idealiiet wüde diee Schaltung alo eine Schwingung eeugen, die abe nicht von einem entalen Zeittakt abhängt - man icht dehalb von einem aynchonen Schaltwek. e = 0 neu e = 0 neu = =???? neu (t + ) = neu = (t) Zeitvehalten: t

2 Man kann ich den oben bechiebenen Effekt u Nute machen, indem man die Identität al eine doelte Negation ealiiet und omit eine ich elbt tabiliieende Schaltung mit de folgenden Seifikation aufbaut: E gibt wei Eingänge (et) und (eet) und einen Augang Ein Imul = ett (mit Veögeung ) auf Ein Imul = ett (mit Veögeung ) uück auf 0 Die Situation = = wid augechloen. Die nachfolgende Abbildung eigt auf de linken Seiten eine Schaltung u Realiieung diee Seifikation. In de Mitte it die gleiche Schaltung mit veändete Platieung de beiden NOR-Gatte und ohne da ymboliche Veögeungglied abgebildet. Zuätlich um Augang gibt e noch den Augang, de die Negation von liefet. Auf de echten Seite wid ein neue Schaltymbol fü diee Net eingefüht. Man beachte, da dabei die Anchluoitionen de Augänge und vetaucht wuden. Aynchone RS Fliflo neu S Imul = ett Augang auf Imul = ett Augang auf 0 = R Schaltbild Synchoniation Da oben abgebidete Schaltwek, ein ogenannte RS-Fliflo, abeitet wiede aynchon. Une nächte Ziel it die Synchoniation eine olchen Fliflo mit einem entalen Zeittakt. Ein Geamttakt beteht au einen Abfagehae, in de den Wet hat, und eine Umchalthae, in de den Wet 0 hat. Augehend davon, da in jede Abfagehae alle Eingangwete atbil ind, will man eeichen, da ich die Augangwete nu in de nachfolgenden Umchalthae veänden, abe in de nächten Abfagehae wiede tabil ind. Ein ete Schitt dau it die Kontuktion eine RS-Latche (Latch = Schnachlo), mit dem vehindet wid, da Signale, die in de Umchalthae anfallen, eine Ändeung de Augangignal bewiken können. Dau wid einfach da UND von bw. von mit dem aktignal gebildet (bei = 0 keine Ändeungen).

3 Zeittakt Pegelgeteuete RS Latch & S & R t Schaltbild S C R Diee Schaltung hat gemeen an uneen Anfodeungen noch wei Mängel:. Da Vehalten bei = t = it unkla. 2. Da Augangignal it in de Umchalthae tabil, e ollte abe in de Abfagehae tabil ein. Da ete Poblem kann chnell behoben weden: Man veichtet auf den Eingang und lenkt tatt deen die Negation von auf den weiten Eingang. Diee Schaltung nennt man ein D-Latch, wobei da D fü delay teht. Die Bedeutung von hat ich jett im Vegleich u RS-Fliflo etwa veändet: Mit = wid de Augang auf geett und mit = 0 efolgt die Rücketung auf 0. Zu Löung de weiten Poblem chaltet man wei olche Bauteile hinteeinande und teuet da weite mit de Negation de aktignal an. Da weite D-Latch ehält alo einen Eingabewet in de Umchalthae und hält in de folgenden Abfagehae einen Augabewet tabil. Diee Schaltung nennt man ein taktflankengeteuete Fliflo (auch unte de Beeichnung Mate-Slave-Fliflo bekannt). Sie ealiiet eine taktgeteuete Veögeungglied (fü ein Bit). D Latch aktflankengeteuete Fliflo S C R S C R S C R Modellieung von Schaltweken mit endlichen Automaten Jede Schaltnet mit k Einängen und l Augängen ealiiet eine Booleche Funktion f : B k B l. Betachtet man ein Schaltwek, bei dem Rückkolungen auchließlich duch taktgeteuete Veögeunggliede efolgen, dann kann man

4 (gedanklich) die Veögeunggliede auch u eine Einheit außehalb de etlichen Schaltung uammenfaen, wobei diee Ret dann ückkolungfei - alo ein Schaltnet - it. Wenn da Schaltwek n Eingänge, m Augänge und k Veögeunggliede hat, dann ealiiet da Schaltnet eine Booleche Funktion f : B n+k B m+k, denn da volltändige Vehalten von einem akt um nächten wid duch n Eingangwete und die k aktuellen Augangwete de Rückkolungen betimmt und wähend de akte weden m Augabewete beechnet und k neue Wete in die Rückkolungen eingeeit. Von Außen ind die Wete in den Veögeungglieden nicht ichtba, d.h. man kann nu beobachten, welche Folge von Augabetueln au B m bei eine betimmten Folge von Eingabetueln au B n geneiet wid. Die Wetetuel de k Veögeunggliede kann man al einen inneen Zutand de Sytem anehen. Somit kann ein Schaltwek al ein dynamiche Sytem übe eine Zutandmenge Q angeehen weden, da duch eine Funktion δ : In Q Out Q bechieben wid, mit Q = B k, In = B n und Out = B m. Ein olche Sytem wid auch al Mealy-Automat beeichnet. Definition: Ein Mealy-Automat it ein 5-uel (Q, In, Out, δ, 0 ), wobei Q it eine endliche Zutandmenge In und Out ind wei endliche Mengen von Ein- und Augabeymbolen δ : In Q Out Q it eine Funktion, die al Zutandübefühungfunktion beeichnet wid. 0 Q it de Anfangutand. It a, a 2, a 3,..., a n eine Folge von Eingabeymbolen, dann wid duch den Automaten eine eindeutige Folge von Augabeymbolen c, c 2, c 3,..., c n beechnet: c egibt ich au: δ(a, 0 ) = (c, ) c 2 egibt ich au: δ(a 2, ) = (c 2, 2 ) allgemein egibt ich c k au: δ(a k, k ) = (c k, k ) Zu anchaulichen Becheibung von Mealy-Automaten vewendet man ogenannte Zutanddiagamme. Dabei weden die Zutände al Knoten geeichnet und die Zutandübefühungfunktion wid duch geichtete Kanten mit eiellen Makieungen bechieben. Dau betachtet man fü jede Paa (a, ) In Q den Funktionwet (c, ) = δ(a, ) und eichnet einen Pfeil von nach de mit dem Label a c makiet wid.

5 Beiiel : Binäe Seienaddiee mit In = B 2 und Out = B. Die Eingabe it eine Folge von Bitaaen (a 0, b 0 ), (a, b ),..., (a n, b n ), die wei Zahlen k = n i=0 a i 2 i und l = n i=0 b i 2 i datellen. Ziel it die Beechnung de Binädatellung de Summe k + l. Offenichtlich eichen wei innee Zutände, nämlich 0 wenn bei de letten Addition kein Übetag enttanden it und wenn ein Übetag enttanden it. (,) 0 (0,0) 0 (,0) (0,) 0 Anfangutand (0,0) (0,) 0 (,0) 0 (,) Beiiel 2: eilbakeit von Deimalahlen duch 3. Gegeben wid eine Deimalahl al Ziffenfolge (d.h. In= {0,, 2,..., 9}) und man oll augeben, ob die bihe eingegebene Zahl duch 3 teilba it ( fü Ja und 0 fü Nein). Man vewendet die atache, da eine Zahl genau dann duch 3 teilba it, wenn ich die Queummen de Zahl duch 3 teilen lät. Fü den Automaten benötigt man nu dei Zutände, nämlich die Rete beim eilen duch

6 Beiiel 3: eiltingekennung in Binäting. De Automat oll ekennen, ob die leten dei geleenen Zeichen die Fom 00 hatten. Wi kontuieen einen Automaten mit 3 Zutänden a, b, c, wobei de Zutand a ymboliiet, da da lette geleene Zeichen eine wa ode wi gan am Anfang tehen. Zutand b teht dafü, da die aktuelle Eingabe auf 0 endet (ode nu au dem Zeichen 0 beteht) und Zutand c ymboliiet, da die aktuelle Eingabe auf 00 endet. Nu wenn de Automat im Zutand c it und dann eine liet, kann e eine (alo Ja) augeben, mu dafü abe wiede uück in Zutand a. 0 a b c 0

Modul 4: Schaltwerke. Informatik I. Modul 4: Schaltwerke. Schaltwerke. Schaltwerke. Einführung in die Automatentheorie. Beispiel

Modul 4: Schaltwerke. Informatik I. Modul 4: Schaltwerke. Schaltwerke. Schaltwerke. Einführung in die Automatentheorie. Beispiel Hebtemete 2, Intitut f Infomatik IFI, UZH, Schwei Moul 4: Schaltweke Infomatik I Moul 4: Schaltweke Fomale Gunlagen Enliche Automaten Anchone Schaltweke, FlipFlop Snchone Schaltweke Speielle Schaltweke

Mehr

Parameter-Identifikation einer Gleichstrom-Maschine

Parameter-Identifikation einer Gleichstrom-Maschine Paamete-dentifikation eine Gleichtom-Machine uto: Dipl.-ng. ngo öllmecke oteile de Paamete-dentifikationvefahen eduzieung de Zeit- und Kotenaufwand im Püfpoze olltändige Püfung und Chaakteiieung von Elektomotoen

Mehr

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen

Symposium EME 2005. 5. - 7. September 2005 d. Numerische Feldberechnung im VCC EME - aktueller Sachstand und zukünftige Entwicklungen Sympoium EME 2005 5. - 7. Septembe 2005 d Titel de Beitage: Namen de Autoen: Name de Votagenden Fima, Dienttelle: Anchift: Emailadee: Numeiche Feldbeechnung im VCC EME - aktuelle Sachtand und zukünftige

Mehr

Einfacher loop-shaping Entwurf

Einfacher loop-shaping Entwurf Intitut für Sytemtheorie technicher Prozee Univerität Stuttgart Prof. Dr.-Ing. F. Allgöwer 6.4.24 Regelungtechnik I Loophaping-Entwurf t http://www.it.uni-tuttgart.de/education/coure/rti/ Einfacher loop-haping

Mehr

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor

Versuch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikschaltungen mit dem Bipolartransistor Hochchule Augburg Veruch 16 (früher I9) Aufbauten 16/36 (früher I7a/I7b) Logikchaltungen mit dem Bipolartranitor Phyikaliche Praktikum Die Funktionweie von Bipolartranitoren ollte vor Veruch 9 im Theorieteil

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Kapitel 5: Koordination der Personalführung im Führungssystem

Kapitel 5: Koordination der Personalführung im Führungssystem Kpitel 5: Koodintion de Peonlfühung im Fühungytem 5. Beziehungen zwichen Contolling und Peonlfühung Kpitel 5 5. Koodintion de Peonlfühung mit dem Infomtionytem 5.3 Koodintion de Peonlfühung mit Plnung

Mehr

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013

Lehreinheit 09 Prozesssimulation II: Prozesssimulation mit einfachen Petri-Netzen Wintersemester 2012/2013 Dynamiche Unternehmenmodellierung und -imulation (ehemal: Buine Dynamic - Dynamiche Modellierung und Simulation komplexer Gechäftyteme, Arbeitwienchaft V) Lehreinheit 09 Prozeimulation : Prozeimulation

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

Dynamisches Verhalten einer Asynchronmaschine

Dynamisches Verhalten einer Asynchronmaschine ehtuhl fü Elektiche Antiebe und Mechatonik Pof. D.-ng. D.-ng. S. Kulig Paktikumveuch BENT 6 Dynamiche Vehalten eine Aynchonmachine c S-EAM (9) Veuchthematik Die Aynchonmachine, die übe eine Welle mit eine

Mehr

Schaltwerke Schaltwerk

Schaltwerke Schaltwerk Schaltwerke Bisher habe wir uns nur mit Schaltnetzen befasst, also Schaltungen aus Gattern, die die Ausgaben als eine Funktion der Eingaben unmittelbar (durch Schaltvorgänge) berechnen. Diese Schaltnetze

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Brustkrebs. Genetische Ursachen, erhöhte Risiken. Informationen über familiär bedingten Brust- & Eierstockkrebs

Brustkrebs. Genetische Ursachen, erhöhte Risiken. Informationen über familiär bedingten Brust- & Eierstockkrebs Brutkreb Genetiche Urachen, erhöhte Riiken Informationen über familiär bedingten Brut- & Eiertockkreb Brutkreb: Wie und wo er entteht Wenn bei der Zellteilung ein Fehler paiert Alle Zellen unere Körper

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Drehzahlregelung eines Gleichstrommotors 1

Drehzahlregelung eines Gleichstrommotors 1 Techniche Univerität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungyteme Leitung: Prof. Dr.-Ing. Jörg Raich Praktikum Digitale Signalverabeitung Praktikum Regelungtechnik 1 (Zeitdikrete

Mehr

7. Reglerentwurf im Frequenzbereich

7. Reglerentwurf im Frequenzbereich H A K O 7 Reglerentwurf im Frequenzbereich In dieem Kapitel werden zwei unterchiedliche Reglerentwurfverfahren im Frequenzbereich dikutiert Da o genannte Frequenzkennlinienverfahren it auf Regelkreie mit

Mehr

Beispiellösungen zu Blatt 84

Beispiellösungen zu Blatt 84 µatheaticher κorrepondenz- zirkel Matheatiche Intitut Georg-Augut-Univerität Göttingen Aufgabe 1 Beipiellöungen zu Blatt 84 Welche der folgenden Zahlen it größer? 2009 + 2010 + 2010 + 2009, 2009 + 2009

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Hauptprüfung 2009 Aufgabe 4

Hauptprüfung 2009 Aufgabe 4 Haptpüfng 9 Afgabe 4 Gegeben ind die Geaden g: x nd h: x mit, 4. Beechnen Sie die Koodinaten de Schnittpnkte de Geaden g nd h. Beechnen Sie den Schnittwinkel δ de Geaden g nd h. Becheiben Sie die beondee

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV

Berechnung der vorhandenen Masse von Biogas in Biogasanlagen zur Prüfung der Anwendung der StörfallV Beechnung de vohandenen Masse von Biogas in Biogasanlagen zu Püfung de Anwendung de StöfallV 1. Gundlagen Zu Püfung de Anwendbakeit de StöfallV auf Betiebsbeeiche, die Biogasanlagen enthalten, muss das

Mehr

V10 : Elektronenspinresonanz

V10 : Elektronenspinresonanz V10 : Elektonenspinesonanz Vesuchsaufbau: Kontollaum des Tandemgebäudes Beteue SS 2008 - Robet Lahmann 09131/85-27147, Raum TG223 Robet.Lahmann@physik.uni-elangen.de - Rezo Shanidze (Vetetung) 09131/85-27091,

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

Kundeninformationen zu Secure Mail

Kundeninformationen zu Secure Mail Kreiparkae Trauntein-Trotberg -1- Kreiparkae Trauntein-Trotberg Allgemeine Kaum einer macht ich beim Verenden einer E-Mail Gedanken über die Sicherheit. Dabei it eine normale E- Mail ungefähr o icher und

Mehr

banking n So funktioniert es am iphone & ipad best banking: Welche Infrastruktur stellt Smart Engine zur Verfügung?

banking n So funktioniert es am iphone & ipad best banking: Welche Infrastruktur stellt Smart Engine zur Verfügung? banking KundenbindungOnline-Vergleich- und Einkaufmöglichkeiten verändern da längt und ucht nach effizienten Kundenzugängen. Smart Managing Partner von Smart Engine, die zahlreichen Vorteile bet banking:

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Magische Zaubertränke

Magische Zaubertränke Magische Zaubetänke In diese Unteichtseinheit waten auf Ihe SchüleInnen magische Zaubetänke, die die Fabe wechseln. Begiffe wie Säue, Base, Indikato und Salz können nochmals thematisiet bzw. wiedeholt

Mehr

Das ist das Schaltungskonzept einer Bitspeicherzelle in einem SRAM. gate

Das ist das Schaltungskonzept einer Bitspeicherzelle in einem SRAM. gate 9. Speiheelemete Die Wiug vo Rüoppluge Shaltetze habe eie haateitihe Eigehaft: ie ethalte eie Rüoppluge. Welhe Wiug eie Rüopplug habe a, oll a folgedem Beipiel gezeigt wede. 1 1 1 1 1 1 Duh die Rüoppluge

Mehr

Zeitabhängige Felder, Maxwell-Gleichungen

Zeitabhängige Felder, Maxwell-Gleichungen Zeiabhängige Felde, Mawell-Gleichungen Man beobache, dass ein eiabhängiges Magnefeld ein elekisches Feld eeug. Dies füh.. u eine Spannung an eine Dahschleife (ndukion). mgekeh beobache man auch: ein eiabhängiges

Mehr

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von:

Protokoll zur Laborübung Verfahrenstechnik. Übung: Filtration. Betreuer: Dr. Gerd Mauschitz. Durchgeführt von: Protokoll zur Laborübung Verahrentechnik Übung: Filtration Betreuer: Dr. Gerd Mauchitz Durchgeührt von: Marion Pucher Mtk.Nr.:015440 Kennzahl: S6 Mtk.Nr.:015435 Kennzahl: S9 Datum der Übung:.06.004 1/11

Mehr

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1

Laborpraktikum Sensorik. Versuch. Füllstandssensoren PM 1 Otto-von-Gueicke-Univesität Magdebug Fakultät fü Elektotechnik und Infomationstechnik Institut fü Miko- und Sensosysteme (IMOS) Labopaktikum Sensoik Vesuch Füllstandssensoen PM 1 Institut fü Miko- und

Mehr

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer.

Wertsteigerung Frei Haus. Der Kostenlose Glasfaseranschluss für Hauseigentümer. Wertteigerung Frei Hau. Der Kotenloe Glafaeranchlu für Haueigentümer. Darüber freuen ich nicht nur Ihre Mieter. 40 Millimeter, 1.000 Vorteile. Im Bereich der Kommunikation it Glafaer die Zukunft. 12.000

Mehr

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung

Der Einfluss der Lichtquellengeometrie auf die Entfernungsmessung NESER, S., A. SEYFARTH: De Einfluss de Lichtquellengeometie auf die Entfenungsmessung von PMD- Kameas, in Th. Luhmann/Ch. Mülle (Hsg.) Photogammetie-Lasescanning Optische 3D-Messtechni, Beitäge de Oldenbuge

Mehr

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus.

Im Gegensatz zum idealen Gas bildet sich bei realen Gasen ein flüssiger und fester Aggregatzustand (Phase) aus. Aggregatzutände: Im Gegenatz zum idealen Ga bildet ich bei realen Gaen ein flüiger und feter Aggregatzutand (Phae) au. Dicht benachbarte Atome üben anziehende Kräfte aufeinander au E ot E ot Ideale Ga

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Techniche Univerität München Fakultät für Informatik Forchung- und Lehreinheit Informatik IX Thema: Morphologiche Operationen Proeminar: Grundlagen Bildvertehen/Bildgetaltung Johanne Michael Kohl Betreuer:

Mehr

WIG-Schweißen mit Impulsen im höheren Frequenzbereich

WIG-Schweißen mit Impulsen im höheren Frequenzbereich WIG-Schweißen mit Impulen im höheren Frequenzbereich N. Knopp, Münderbach und R. Killing, Solingen Einleitung Beim WIG-Impulchweißen im khz-bereich wird der Lichtbogen eingechnürt und erhöht da Einbrandverhalten

Mehr

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m.

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m. www.schullv.de Basiswissen > Gundlagen > Dynamik Dynamik Skipt PLUS Einfühung Die Dynamik bescheibt die Bewegung von Köpen unte dem Einfluss von Käften. De Begiff stammt von dem giechischen Wot dynamis

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung.

Die Inhalte des Studiums zum Bachelor of Arts bzw. zum Master of Arts ergeben sich gemäß den Anlagen 1 und 2 zu dieser Studienordnung. Neufaung de Studienodnung (Satzung) fü den Bachelo- und den konekutiven Mate-Studiengang de Witchaftinfomatik am Fachbeeich Witchaft de Fachhochchule Kiel Aufgund de 86 Ab. 7 de Hochchulgeetze (HSG) in

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung

Mehr

Statistische Analyse von Messergebnissen

Statistische Analyse von Messergebnissen Da virtuelle Bildungnetzwerk für Textilberufe Statitiche Analye von Meergebnien 3 Hochchule Niederrhein Stand: 17..3 Seite 1 / 8 Im Abchnitt "Grundlagen der Statitik" wurde u.a. bechrieben, wie nach der

Mehr

Nach der Bearbeitung dieses Kapitels soll der Leser in der Lage sein,

Nach der Bearbeitung dieses Kapitels soll der Leser in der Lage sein, 3 1 Einführung Nach der Bearbeitung diee Kapitel oll der Leer in der Lage ein, die Funktionen Invetition und Finanzierung in die Geamtheit der Betriebwirtchaftlehre einzuordnen, ihre Bedeutung für die

Mehr

Richtungsweisend für Universalbanken

Richtungsweisend für Universalbanken n Deutche Bundebank beurteilt Steuerung nach dem Kundenfoku Richtungweiend für Univeralbanken Von den Umetzungerfolgen einzelner Sparkaen ermutigt, entchied ich der Vortand der Sparkae Berchtegadener Land

Mehr

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging

Aufgabenblatt 3. Lösungen. A1. Währungsrisiko-Hedging Aufgabenblatt 3 Lösungen A. Wähungsisiko-Hedging. Renditen fü BASF und Baye in EUR Kus in t Kus in t- / Kus in t- Beobachtung fällt daduch weg. Kuse fü BASF und Baye in USD z.b. BASF am 8.05.: EUR 570

Mehr

STP, RSTP und MSTP. 8. Juli 2004 SS 2004 Veranstaltungsnummer 260130

STP, RSTP und MSTP. 8. Juli 2004 SS 2004 Veranstaltungsnummer 260130 STP, RSTP und MSTP Volesung Rechnenetze und Intenet Fotgeschittene Themen 8. Juli 2004 SS 2004 Veanstaltungsnumme 260130 Guido Wessendof Zentum fü Infomationsveabeitung Westfälische Wilhelms-Univesität

Mehr

Geometrie-Dossier Symmetrie in der Ebene

Geometrie-Dossier Symmetrie in der Ebene Geometrie-oier Symmetrie in der Ebene Name: Inhalt: Symmetrieeienchaft und bbildun: eriffe chenymmetrie und Geradenpieelun rehymmetrie und rehun Punktymmetrie und Punktpieelun Verwendun: iee Geometriedoier

Mehr

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt.

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt. Lichtbechung Veau eines kegeömigen Stahenbündes in eine Sammeinse Bei de Beechnung von Daten optische Ssteme untescheidet man ogende Veahen: Optikechnen tigonometische Beechnung ü Stahen in de Meidionaebene

Mehr

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme.

Brandenburgische Technische Universität Cottbus. Fakultät für Mathematik, Naturwissenschaften und Informatik Lehrstuhl Grafische Systeme. Bandenbugische Technische Univesität Cottbus Fakultät fü Mathematik, atuwissenschaften und Infomatik Lehstuhl Gafische Systeme Diplomabeit Umsetzung eines vollautomatisieten Objektefassungs- Systems übe

Mehr

Anmeldung zum Studium

Anmeldung zum Studium nmeldun zum tudium Wi empfehlen, da anlieende Pomula diital auzufüllen. itte ducken ie da auefüllte omula anchließend au und untezeichnen ie e handchiftlich an den mit einem euz ekennzeichneten tellen.

Mehr

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1

Musterlösung Klausur Mathematik (Wintersemester 2012/13) 1 Mustelösung Klausu Mathematik Wintesemeste / Aufgabe : 8 Punkte Fü die Nahfage Dp nah einem Podukt als Funktion seines Peises p sollen folgende Szenaien modelliet weden:. Wenn de Peis um einen Euo steigt,

Mehr

Dynamisches Verhalten von OPVs

Dynamisches Verhalten von OPVs TECHNISCHE UNIVERSITÄT ILMENAU Fakultät ür Elektrotechnik und Inormationtechnik Fachgebiet Elektroniche Schaltungen und Syteme Dynamiche Verhalten von OPV Veruch 6 im Inormationelektronichen Praktikum

Mehr

2 Kinetik der Erstarrung

2 Kinetik der Erstarrung Studieneinheit II Kinetik de Estaung. Keibildung. Keiwachstu. Gesatkinetik R. ölkl: Schelze Estaung Genzflächen Kinetik de Phasenuwandlungen Nach Übescheiten eines Uwandlungspunktes hätte das vollständig

Mehr

Zahnarztangst? Wege zum entspannten Zahnarztbesuch. Mit einer von Marc A. Pletzer konzipierten und gesprochenen Trance. Bearbeitet von Lea Höfel

Zahnarztangst? Wege zum entspannten Zahnarztbesuch. Mit einer von Marc A. Pletzer konzipierten und gesprochenen Trance. Bearbeitet von Lea Höfel Zahnaztangst? Wege zum entspannten Zahnaztbesuch. Mit eine von Mac A. Pletze konzipieten und gespochenen Tance Beabeitet von Lea Höfel 1. Auflage 2012. Taschenbuch. 136 S. Papeback ISBN 978 3 7945 2870

Mehr

6. Numerische Filterung: Polfilter, Diffusion und Lärmfilter. 6.1 Polfilter

6. Numerische Filterung: Polfilter, Diffusion und Lärmfilter. 6.1 Polfilter 6. Numeice Fileug: Polfile Diffuio ud Lämfile 6. Polfile De e geige zoale ieuabad i Poläe efode eie e uze Zeici de da Modell ieffizie mac. Diee Naceil wid veige idem ma ab eie beimme Beie die ieue albie

Mehr

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009

Mustertexte. Auftrag nach 11 BDSG. Gegenstand Auftrag nach 11 BDSG 2009 Mustetexte Auftag nach 11 BDSG Gegenstand Auftag nach 11 BDSG 2009 Soweit die DMC ode eine ihe Efüllungsgehilfen als Datenschutzbeauftagte i.s. des 4f Abs. 2 Satz 3 BDSG bestellt und tätig ist, beziehen

Mehr

Anhang V zur Vorlesung Kryptologie: Hashfunktionen

Anhang V zur Vorlesung Kryptologie: Hashfunktionen Anhang V zu Volesung Kyptologie: Hashfunktionen von Pete Hellekalek Fakultät fü Mathematik, Univesität Wien, und Fachbeeich Mathematik, Univesität Salzbug Tel: +43-0)662-8044-5310 Fax: +43-0)662-8044-137

Mehr

1. lst die Mutter psychisch krank? lst der Vater psychisch krank? Sind beide Elternteile psychisch krank?

1. lst die Mutter psychisch krank? lst der Vater psychisch krank? Sind beide Elternteile psychisch krank? 1. lst die Mutte psychisch kank? lst de Vate psychisch kank? Sind beide Eltenteile psychisch kank? 2. Handelt es sich um eine akute Kankheitsphase? Wie lange dauet diese Phase schon an? 3. lst die Ekankung

Mehr

Arbeitsgemeinschaft Corporate Finance. 3. Feb 2011 RKU Heidelberg David Dell

Arbeitsgemeinschaft Corporate Finance. 3. Feb 2011 RKU Heidelberg David Dell Abeitsgemeinschaft Copoate Finance 3. Feb 2011 RKU Heidelbeg David Dell Gundpinzipien de Finanzieung Investition = Entscheidung fü eine bestimmte Vewendungsmöglichkeiten von Kapital Aufgaben de Finanzieung

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

Finanzmathematik Kapitalmarkt

Finanzmathematik Kapitalmarkt Finanzmathematik Kapitalmakt Skiptum fü ACI Dealing und Opeations Cetificate und ACI Diploma In Zusammenabeit mit den ACI-Oganisationen Deutschland, Luxemboug, Östeeich und Schweiz Stand: 02. Apil 2010

Mehr

Abiturprüfung Hessen 2014 Deutsch Grundkurs Vorschlag A. Sehnsucht

Abiturprüfung Hessen 2014 Deutsch Grundkurs Vorschlag A. Sehnsucht Abitupüfung Hessen 2014 Deutsch Gundkus Voschlag A Sehnsucht Elaubte Hilfsmittel: 1. ein Wötebuch zu deutschen Rechtscheibung 2. eine Liste de fachspezifischen Opeatoen 3. Büchne: Lenz Aufgaben: 1. Intepetieen

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

7 DIE ASYNCHRONMASCHINE

7 DIE ASYNCHRONMASCHINE Gunlagen e Elektichen Enegietechnik - Elektomechaniche Enegieumfomung 119 7 DE ASYNCHRONMASCHNE 7.1 Magnetiche Stuktu Da Funktioninzi e nuktionmoto bzw. e Aynchonmachine (ASM) wue Ene e 19. Jahhunet von

Mehr

Aufgaben Ladungen im elektr. und mag. Feld

Aufgaben Ladungen im elektr. und mag. Feld Aufgaben Ladungen i ekt. und ag. Fd 85. Elektonen teten au eine Glühkathode K au und weden duch ein Fd zwichen ih und de Anode A (Spannung zwichen K und A betägt U = 5, V) zu letztee hin bechleunigt. Duch

Mehr

Geometrie-Dossier Der Satz des Pythagoras

Geometrie-Dossier Der Satz des Pythagoras Geometrie-Doier Der Satz de Pythagora Name: Inhalt: Wer war Pythagora? Der Satz de Pythagora mit Beweien Anwendung de Satz von Pythagora in der Ebene Anwendung de Satz von Pythagora im Raum Kontruktion

Mehr

(z. B.: 1 Baud = 1 bit/s, wenn je Schritt ein Bit übertragen wird.)

(z. B.: 1 Baud = 1 bit/s, wenn je Schritt ein Bit übertragen wird.) 1.1.1. Übungen zu asynchonen, seiellen Schnittstelle 1) Was vesteht man unte dem Begiff Baudate und wie ist e definiet? Altenativ zu Übetagungsate kann die Übetagungsgeschwindigkeit duch die Schittgeschwindigkeit

Mehr

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004

HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 12-19.11.2004 Pro. Dr. F. Koch Dr. H. E. Porteanu koch@ph.tum.de porteanu@ph.tum.de WS 004-005 HÖHERE PHYSIK SKRIPTUM VORLESUNGBLATT V 1-19.11.004 OPTIK geometriche und phyikaliche Optik C. Polariation Al tranverale

Mehr

Vortrag von Sebastian Schreier

Vortrag von Sebastian Schreier Sloshing in LNG Tanks Fist Analyses Votag von Zum Thema Este Analysen zum Sloshingvehalten von LNG-Tanks auf Schiffen Im Rahmen de Volesungseihe 1 Gliedeung Einleitung Motivation Modellieung Modellvesuche

Mehr

Beobachten und Messen mit dem Mikroskop

Beobachten und Messen mit dem Mikroskop Phyikaliche Grundpraktikum Veruch 006 Veruchprotokolle Beobachten und een mit dem ikrokop Aufgaben 1. Betimmen de ildungmaßtabe der vorhandenen ektive mit Hilfe eine echraubenokular. Vergleich mit den

Mehr

Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4. Kapitel 4: Schaltungen mit Delays Seite 1

Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4. Kapitel 4: Schaltungen mit Delays Seite 1 Kapitel 4 Schaltungen mit Delays (Schaltwerke) Literatur: Oberschelp/Vossen, Kapitel 4 Kapitel 4: Schaltungen mit Delays Seite 1 Schaltungen mit Delays Inhaltsverzeichnis 4.1 Einführung 4.2 Addierwerke

Mehr

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007

Fußball. Ernst-Ludwig von Thadden. 1. Arbeitsmarktökonomik: Ringvorlesung Universität Mannheim, 21. März 2007 Fußball Enst-Ludwig von Thadden Ringvolesung Univesität Mannheim, 21. Mäz 2007 1. Abeitsmaktökonomik: 1 Ausgangsbeobachtung: Fußballspiele sind Angestellte wie andee Leute auch. Deshalb sollte de Makt

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

.RQ]HSWI UGLH,PSOHPHQWLHUXQJHLQHU2QOLQH6XFKH DXIHLQHPJUR HQ'DWHQEHVWDQG

.RQ]HSWI UGLH,PSOHPHQWLHUXQJHLQHU2QOLQH6XFKH DXIHLQHPJUR HQ'DWHQEHVWDQG a.rq]hswi UGLH,PSOHPHQWLHUXQJHLQHU2QOLQH6XFKH DXIHLQHPJUR HQ'DWHQEHVWDQG,QKDOWVYHU]HLFKQLV A Aufgabentellung & Ziel... 2 B Allgemeine Har- un Softwareanforerungen... 2 B.1 RDBMS (Datenbankytem)... 2 B.2

Mehr

Logik mit Gedächtnis : Sequentielle Logik

Logik mit Gedächtnis : Sequentielle Logik Logik mit Gedächtnis : Sequentielle Logik Schaltwerke Grundkomponenten zur Informationspeicherung: Flip-Flops Typische Schaltwerke Entwurf eines Schaltwerks Wintersemester 12/13 1 asynchrone und synchrone

Mehr

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als

1925 Einstein: Für ein ideales Bose-Gas ist in einer 3-dimensionalen Box gilt für die Temperatur T c : definiert ist als Übeblick. Vobemekungen. Ideale ose-gas im goßkanonischen Ensemble ose-veteilungsfunktion. Makoskopische esetzung des Gundzustandes. Übegangstempeatu c 4. Spezifische Wäme in de Umgebung von c 5. finit-size

Mehr

Polar-, Zylinder-, Kugelkoordinaten, Integration

Polar-, Zylinder-, Kugelkoordinaten, Integration Pola-, Zlinde-, Kugelkoodinaten, Integation Die Substitutionsegel b a f()d = t t f(g(t)) g (t)dt mit g(t ) = a und g(t ) = b lässt sich auf mehdimensionale Beeiche eweiten, z. B. B f(,) dd = f((u,v),(u,v))

Mehr

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke!

J und κ =1, 4 behandelt werden. kg K. a) Berechnen Sie die fehlenden Temperaturen und Drücke! Übung 11 Aufgabe 7.6: Offene Gaturbine Eine Gaturbinenanlage untercheidet ich vom reveriblen oule-proze dadurch, da der Verdichter und die Turbine nicht ientrop arbeiten. E gilt vielmehr: η S,V =0, 85

Mehr

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen

Strahlungseffekte bei instationären Heizdrahtmessungen an porösen Wärmedämmstoffen Stahlungseffekte bei instationäen Heizdahtmessungen an poösen Wämedämmstoffen Von de Fakultät fü Maschinenbau, Vefahens- und Enegietechnik de Technischen Univesität Begakademie Feibeg genehmigte DISSERTATION

Mehr

Transformation der Cauchy-Riemann-DGLen

Transformation der Cauchy-Riemann-DGLen Tansfomation de Cauchy-Riemann-DGLen von Benjamin Schwaz 4 Mai 27 Tansfomationsfomel Fü gewöhnlich weden die Cauchy-Riemannschen Diffeentialgleichungen fü eine Abbildung f : U R 2 mit U R 2 bezüglich de

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Bestimmung der massebezogenen Aktivität von Radionukliden

Bestimmung der massebezogenen Aktivität von Radionukliden Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT Beabeite:. Wiechen H. Rühle K. Vogl ISS 1865-8725 Bestiung de assebezogenen ktivität von Radionukliden ÄQUIVL/MSSKT-01 Die auf die Masse

Mehr

2 Theoretische Grundlagen

2 Theoretische Grundlagen 2 Theoetische Gundlagen 2.1 Gundlagen de dielektischen Ewämung 2.1.1 Mechanismen de dielektischen Ewämung Die dielektische Ewämung beuht auf de Wechselwikung atomae Ladungstäge elektisch nicht leitende

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

Musteraufgaben für die zentrale Klassenarbeit

Musteraufgaben für die zentrale Klassenarbeit Muteraufgaben für die zentrale Klaenarbeit im ach Grundlagen der Technik im Technichen Berufkolleg I (BKT) Bewertungchlüel für die Korrektur der zentralen Klaenarbeit Endpunktezahl Note 60 7,,0 7,,,,0

Mehr

Möglichkeiten und Grenzen einer Marktbewertung von Krediten

Möglichkeiten und Grenzen einer Marktbewertung von Krediten 7 B e i c h t e Möglichkeiten und Genzen eine Maktbewetung von Kediten von ofesso D. homas Hatmann-Wendels * Gliedeung oblemstellung 2 Bewetung von Kediten bei vollkommenem Kapitalmakt 2. De Fall sichee

Mehr

Studienarbeit. Thema: Bestimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Messgerät VSM100

Studienarbeit. Thema: Bestimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Messgerät VSM100 Studienarbeit Thema: Betimmung der Schichtdicke von Aluminium auf Siliziumoxid mit dem Vier-Spitzen-Megerät VSM00 angefertigt von: Robert Uath Matrikelnummer: 99047 Betreuer: Prof. Dr.-Ing. B. K. Glück

Mehr

Physikpraktikum. Versuch 2) Stoß. F α F * cos α

Physikpraktikum. Versuch 2) Stoß. F α F * cos α Phyikpraktikum Veruch ) Stoß Vorbereitung: Definition von: Arbeit: wenn eine Kraft einen Körper auf einem betimmten Weg verchiebt, o verrichtet ie am Körper Arbeit Arbeit = Kraft * Weg W = * S = N * m

Mehr

Versuch 1: Drehzahlregelung eines Gleichstrommotors

Versuch 1: Drehzahlregelung eines Gleichstrommotors Techniche Univerität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungyteme Leitung: Prof. Dr.-Ing. Jörg Raich Praktikum Grundlagen der Regelungtechnik Sommeremeter 2012 Veruchbechreibung

Mehr

Abschlussprüfung Berufliche Oberschule 2011 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2011 Physik 12 Technik - Aufgabe II - Lösung mathphy-online Abchluprüfung Berufliche Oberchule Phyik Technik - Aufgabe II - Löung Teilaufgabe. Ein Satellit bewegt ich antrieblo auf einer Kreibahn mit dem Radiu R um die Erde. Für einen Umlauf benötigt

Mehr

Sparkassen. Gut für Deutschland. s WEITERLESEN

Sparkassen. Gut für Deutschland. s WEITERLESEN Sparkaen. Gut für Deutchland. WEITERLESEN Leitfaden Mitarbeiterdialog b Vorwort 2 Vorwort Georg Fahrenchon Liebe Mitarbeiterinnen und Mitarbeiter der Sparkaen-Finanzgruppe, e it o weit: Endlich tartet

Mehr