Wärmeleitung. Stab. Abb. 1: Grundversuch zur Wärmeleitung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Wärmeleitung. Stab. Abb. 1: Grundversuch zur Wärmeleitung"

Transkript

1 LEI: Wärmeleitung. Physikalische Grundlagen. Wärmeleitung im Stab Der ransport von Wärme erfolgt durch Wärmestrahlung, Wärmeleitung und Wärmeströmung (Konvektion). Je nach Medium (Vakuum, Gas, Flüssigkeit, Feststoff) dominiert ein anderer Mechanismus. In diesem Versuch untersuchen wir das Wärmeverhalten in einem Metallzylinder. Wir betrachten dementsprechend nur die Wärmeleitung. Sie beruht darauf, dass Energie in Form von Schwingungsenergie von einem Molekül eines Körpers auf ein Nachbarmolekül übertragen wird, von diesem auf das nächste und so fort. Makroskopisch lässt sich die Wärmeleitung anhand des folgenden eindimensionalen Grundversuchs er läutern: 2 Stab 2 > 2 0 dx L x Abb. : Grundversuch zur Wärmeleitung Ein homogener Stab befindet sich zwischen zwei Wärmereservoiren und 2 der konstanten emperaturen und 2. Der Stab nehme an der Berührungsstelle die emperatur des Reservoirs an. Seitwärts zur Umgebung soll der Stab keine Wärme abgeben (vollständige Wärmeisolation zur Umgebung). Der Stab hat eine Querschnittsfläche A und eine Länge L. Wenn > 2 ist, geht ständig Energie (Wärme) vom Reservoir durch den Stab auf das Reservoir 2 über. Für das Folgende wird die wesentliche Annahme gemacht, dass sich die emperaturen und 2 trotz der Energieübertragung nicht verändern. Das ist möglich, wenn dem Reservoir so viel Energie von außen zugeführt wird, wie es durch den Stab verliert und dem Reservoir 2 so viel Energie entzogen wird, wie ihm durch den Stab zugeführt wird. Stellen Sie sich zur Veranschaulichung vor, dass die emperatur in Reservoir von einem emperaturregler mittels einer Heizung konstant gehalten wird. Aus Resevoir 2 könnte die überschüssige Energie zum Beispiel mittels eines Kühlers abgeführt werden, der von einem zweiten emperaturregler gesteuert wird.

2 P zu Grenze des Systems 2 P P ab 2 > 2 Abb. 2: Darstellung der Energieströme Die übergehende Wärme je Zeiteinheit bezeichnet man als Wärmestrom (Energiestrom). Der Wärmestrom ist eine Leistung, wie man z. B. aus seiner Einheit sehen kann: Wärme (Energie) Q [Q ] = J = Nm = Ws Wärme Zeit = Energie Zeit = Leistung P = Q [P ] = J t s = W Als Wärmestromdichte q (Energiestromdichte, Leistungsdichte; auch mit dem Formelzeichen j Q bezeichnet) bezeichnet man den Wärmestrom je Flächeneinheit: Wärmestromdichte = Energie Zeit Fläche P q = Q A = t A [q ] = J s m W =. m 2 2 Betrachtet man einen eil des Stabquerschnitts, z. B. ein Drittel der Querschnittsfläche, so fließt durch dieses Drittel auch nur ein Drittel der Energie, die durch den ganzen Querschnitt fließt. Die Wärmestromdichte bleibt dagegen gleich, das heißt: durch jedes Querschnittsflächenelement des Stabes wird die gleiche Leistung hindurchtransportiert. Im Stab stellt sich ein emperaturgefälle entlang der x-richtung ein: Schreitet man von einer beliebigen Stelle x um dx voran (siehe Abb. ), so nimmt die emperatur um d ab. Das emperaturgefälle ist negativ: d/dx < 0. d/dx heißt auch emperaturgradient. Es ist anschaulich einleuchtend, dass bei einer großen emperaturdifferenz zwischen Reservoir und Reservoir 2 das emperaturgefälle im Stab größer ist und mehr Energie durch den Stab transportiert wird als bei einem geringeren Unterschied zwischen und 2. Man findet als Ergebnis von Experimenten, dass die Wärmestromdichte q dem emperaturgefälle d/dx proportional ist: () q d = d x Gleichung () wird als Wärmeleitungsgleichung für den stationären Fall bezeichnet. Im stationären Fall verändern sich die emperaturen mit der Zeit nicht. Da die emperaturen und 2 konstant gehalten werden, ist auch der Wärmestrom zeitlich konstant: die Energie strömt völlig gleichmäßig von Reservoir nach Reservoir 2.

3 Der Proportionalitätsfaktor heißt Wärmeleitfähigkeit und ist eine Materialkonstante. Als Einheit erhält man aus () [ ] = W m K. Wärmeleitfähigkeit einiger Stoffe (bei 20 C) in W m K : Kupfer 384 Wasser 0,580 Aluminium 220 Styropor 0,036 Eisen 74 Luft 0,034 Bei Metallen verändern bereits geringe Beimengungen anderer Materialien die Wärmeleitfähigkeit erheblich. Für den homogenen Stab konstanten Durchmessers ist die Wärmestromdichte unabhängig von x, das heißt q = const. Dadurch lässt sich die Wärmeleitungsgleichung () lösen, also die emperatur an jedem Ort x des Stabes bestimmen. Aus () erhält man durch rennung der Variablen q (2) d = dx und durch Integration daraus q (3) d ' = dx' ; 0 x (4) q = x+. Gleichung (4) gilt für alle Punkte des Stabes (0 x L) und ist die Gleichung einer Geraden. Der emperaturverlauf entlang des Stabes ist linear. Er wird durch eine Gerade mit negativer Steigung beschrieben. An den Stabenden und jenseits davon sind die emperaturen und 2 konstant. Was versteht man unter einem stationären Zustand bei der Wärmeleitung? Wie ändert sich der emperaturverlauf im Stab (Abb. 3), wenn die emperatur erhöht wird? 2 0 L Abb. 3: emperaturverlauf entlang des Stabes 2 x

4 Schreibt man (4) um, so ergibt sich x (5) q = ( ) und damit für die gesamte Länge L des Stabes (6) q ( ) L = 2 = Δ = k Δ. L /L = k wird als Wärmeleitzahl ("k-wert") des Materials bezeichnet. Die Dimension ist: [k] = W K - m -2. Der k-wert spielt in der Praxis eine bedeutende Rolle, z. B. beim Vergleich der Wärmedämmwirkung verschiedener Dämmmaterialien angegeben. Da die Wärmestromdichte ("transportierte Energie pro Zeit und Fläche") proportional zum k-wert ist, spiegelt er unmittelbar die ransportfähigkeit für Energie wieder. Große k-werte bedeuten guten Wärmetransport, geringe k-werte lassen auf wärmedämmende Wirkung schließen. Der k- Wert ist keine Materialkonstante, da in ihm die Dicke L des verwendeten Materials enthalten ist. Wichtig in der Praxis ist der Fall der Wärmeleitung durch mehrere Materialien verschiedener Dicke und Wärmeleitfähigkeit hindurch, z. B. durch zwei aneinander gefügte Stäbe der Längen L und L 2 (s. Abb. 4): Stab mit k = /L und Stab 2 mit k 2 = 2 /L 2. Der emperaturunterschied zwischen den Energiereservoiren A und B sei Δ. Er setzt sich additiv zusammen aus den emperaturdifferenzen Δ im Stab und Δ 2 im Stab 2: (7) Δ = Δ + Δ 2 A Δ Δ 2 B 2 Für den zusammengesetzten Stab ist die gesamte Wärmestromdichte (8) q = k Δ Abb. 4: Wärmeleitung im zusammengesetzten Stab Da die Wärmestromdichte q an allen Stellen gleich groß ist - es geht ja keine Energie verloren, und es häuft sich im stationären Zustand auch nirgendwo Energie in den Stäben an - gilt für die einzelnen Stäbe (9) q = k Δ (0) q = k Δ 2 2

5 Mit (7) ergibt sich insgesamt () q k q q = + k k 2 oder (2) = +. k k k2 Man kann also statt der beiden verschiedenen Stäbe einen Ersatzstab mit dem neuen k-wert nach (2) verwenden. Der Fall mehrerer wärmeleitender Materialien hintereinander lässt sich analog behandeln. So berechnet man z. B. für eine Mauer aus Ziegel, Isolierung und Putz zunächst aus den drei k-werten k Z, k I und k P den Ersatz-k-Wert, um diesen dann zur Ermittlung der Wärmestromdichte zu verwenden. Analog der Elektrizitätslehre können Stäbe auch parallel angeordnet werden (z. B. Fenster in einer Wand). Die Rechenregeln ändern sich entsprechend. Zusätzlich zur Wärmeleitung im Material (charakterisiert durch die Wärmeleitzahlen k i ) müssen noch die Übergänge von den Energiereservoiren A und B zum Material beschrieben werden. Sie werdem durch die Wärmeübergangszahlen α A (A Material ) bzw. α B (Material 2 B) charakterisiert ([α] = W K m 2, Werte für die meisten Stoffe α 6 W K m 2 ). Der k-wert der gesamten Anordnung ist die Wärmedurchgangszahl: k i = K mit ki =. α A α B k k2 Li Daneben ist noch gebräuchlich, den Wärmewiderstand R ges ([R ges ] =K/W) einzuführen, wobei A die Fläche ist. Rges =. ka

6 .2 Analogie zu elektrischen Größen Fließt ein elektrischer Strom durch einen Leiter mit dem Widerstand R, so sind die Verhältnisse ganz analog zu den oben beschriebenen für den Wärmestrom (Energiestrom). ransportiert wird die elektrische Ladung Q. Der (elektrische) Strom ist definiert als "Ladung/Zeit": I = Q/t. Die Stromdichte j ist Ladung pro Zeit und Fläche: U U U R I U 2 (3) j = Q t A Die die Ladungen antreibende Kraft ist die elektrische Feldstärke, also das Gefälle der Spannung du/dx. Die zu () analoge Gleichung lautet U 2 0 L x Abb. 5: Spannungsabfall am Widerstand (4) j du = σ d x σ ("Sigma") heißt die spezifische Leitfähigkeit des Leiters. Bekannter ist der spezifische Widerstand ρ ("Rho") des Leiters: ρ= /σ. Fragt man nach dem Verlauf der Spannung entlang dem homogenen Leiter, so ergibt die Lösung von (4) analog zur Gleichung (4) j (5) U = x+ U σ Die Spannung nimmt demnach linear mit x ab, das Spannungsgefälle ist durch eine Gerade darstellbar (Nutzanwendung zum Beispiel: Potentiometer; Spannungsabfall entlang eines Widerstandes). Auch hier gibt es eine Reihenschaltung und Parallelschaltung einzelner elektrischer Widerstände.

7 2. Versuchsbeschreibung 2. Versuchsaufbau Gemäß der stationären Wärmeleitungsgleichung () q d = d x soll die Proportionalität zwischen der Wärmestromdichte und dem emperaturgefälle in einem homogenen Stab gezeigt und die Wärmeleitfähigkeit des Stabmaterials ermittelt werden. Einem zylindrischen Metallstab Ms kann an seinem oberen Ende mit einer elektrischen Heizplatte Hp Wärme zugeführt werden. An seinem unteren Ende kann ihm die Wärme durch eine Kühlplatte Kp entzogen werden. Der Metallstab ist durch einen Isoliermantel Is gegen Wärmeverluste zur Seite hin geschützt. Entlang des Stabes befinden sich Bohrungen Bo, in die der emperaturfühler f eines elektrischen hermometers m eingeführt werden kann. Kennt man die Lage der Bohrungen entlang des Stabes, so kann damit der emperaturverlauf längs des Stabes ermittelt werden. Zur Vermessung der Bohrungen ist der Isoliermantel zu öffnen. Die emperatur am oberen Ende des Stabes wird durch einen elektronischen Regler Re durch Steuerung der Heizleistung konstant gehalten. Sie kann auf verschiedene Werte eingestellt werden. Die emperatur am unteren Ende des Stabes wird konstant gehalten, indem die Kühlplatte von Wasser konstanter emperatur angeströmt wird. Das Wasser wird von einem hermostaten h umgepumpt und auf konstanter emperatur gehalten. Die anfallende Wärme wird durch eine von Leitungswasser durchflossene Kühlschlange Ks abgeführt. Die Energie fließt somit aus dem Regler über die Heizplatte durch den Stab in die Kühlplatte, von dort über das hermostatenbad und die Kühlschlange in das abfließende Leitungswasser. Die Messung der dem Stab zugeführten Leistung P erfolgt elektrisch durch Messung von Spannung U und Strom I (P = U I) im Heizplattenkreis. Die gleiche Leistung würde sich im erwärmten Abwasser wiederfinden, wenn man von den Verlusten an die Umgebung absieht.

8 Bo = Bohrungen Hp = Heizplatte Is = Isoliermantel Kp = Kühlplatte Ks = Kühlschlange Ms = Metallstab Re = Regler f = emperaturfühler m = elektrisches hermometer h = hermostat Up = Umwälzpumpe Wb = Wasserbad Abb. 6: Versuchsaufbau

9 2.2 Versuchsdurchführung Es wird bei verschiedenen Heizleistungen P, also für verschiedene Wärmestromdichten im Stab, der emperaturverlauf (x) entlang des Metallstabes bestimmt. Die Einstellung des thermischen Gleichgewichts und eines stationären Zustands im Stab benötigt für jede eingestellte Heizleistung 5 Minuten. Um die Arbeitszeit gut auszunutzen, sollten Sie unmittelbar nach Aufnahme einer Messreihe die Einstellung für die nächste Messreihe vornehmen und während der Wartezeiten zwischen den Messreihen die verschiedenen Auswertungen vornehmen. Die einzelnen abellen sollten Sie als "offene" abellen anlegen, so dass Sie weitere Werte im Verlauf des Versuches hinzufügen können. Eine übersichtliche Darstellung ist bei diesem Versuch besonders wichtig. Sie gehen folgendermaßen vor: Nachdem Sie mindestens 5 Minuten für die Einstellung eines stationären Zustands abgewartet haben, messen Sie mit dem elektronischen hermometer die emperatur an den verschiedenen Messstellen (Anzeigegerät in die linke Hand nehmen, emperaturfühler mit der rechten Hand vorsichtig (!) und ganz in die Bohrungen einschieben, emperaturausgleich abwarten. Bei Beschädigung des Fühlers (ca. 50 EUR) haftet die Gruppe). Außerdem notieren Sie die angezeigte Leistung zur späteren Bestimmung der Wärmestromdichte. Unmittelbar im Anschluss daran stellen sie einen neuen Sollwert am elektronischen Regler ein. Bis zur nächsten emperaturmessreihe müssen Sie wiederum mindestens 5 Minuten warten usw.

10 3. Aufgabenstellung. emperaturverlauf im Stab. Vermessen Sie die Lage der Bohrungen im Stab. Messlineal in der Schublade; bemaßte Skizze erforderlich. (Stabdurchmesser = 80,0 mm ± 0,5 mm)..2 Zeichnen Sie den elektrischen Schaltplan. Bauen Sie unmittelbar im Anschluss daran die Schaltung auf und lassen sie diese vom Betreuer überprüfen. Schalten Sie mit dem Betreuer zusammen hermostat und Heizung ein..3 Messen Sie bei vier verschiedenen Wärmestromdichten q den emperaturverlauf längs des Stabes. Die den verschiedenen Wärmestromdichten entsprechenden vorgegebenen Sollwerte für den Regler sind:,,, (Werte am Arbeitsplatz) Bearbeiten Sie während der Wartezeiten folgende Aufgaben:.4 Stellen Sie für jede Meßreihe den emperaturverlauf (x) längs des Stabes dar und beschriften Sie die Graphen mit der jeweiligen Wärmestromdichte. Hinweis zur Skalierung: Höchste emperatur: 0 C.5 Entnehmen Sie der grafischen Darstellung durch Extrapolation die emperaturen am Stabanfang und am Stabende und stellen Sie sie für die verschiedenen Wärmestromdichten in einer abelle zusammen..6 Ergänzen Sie die abelle durch die Angabe des emperaturgefälles d /dx für die jeweilige Wärmestromdichte q..7 Stellen Sie die Wärmestromdichte q als Funktion des emperaturgefälles dar: q = q(d /dx). 2. Bestimmung der Wärmeleitfähigkeit des Stabs 2. Wenn Sie alle Punkte des Diagramms q = q(d /dx) ermittelt haben, bestimmen Sie aus der grafischen Darstellung die Wärmeleitfähigkeit des Metallstabes. 2.2 Berechnen Sie für die größte und die kleinste Wärmestromdichte q max bzw. q min die Unsicherheiten und zeichnen Sie diese in Form von Fehlerbalken in das Diagramm ein. 2.3 Ermitteln Sie unter Benutzung der Fehlerbalken die Unsicherheit von (Hinweis: AUS, Kap. 5). 2.4 Geben Sie das Ergebnis mit Unsicherheit an: ± Δ.

11 3. Wärmeleitung im Stab mit Isolierschicht (zuhause bearbeiten) Der Aluminiumstab sei vom unteren Stabende her um cm verkürzt gedacht und das fehlende Stück mit Styropor ausgefüllt. 3. Berechnen Sie die k-werte für den verkürzten Aluminiumstab (aus Ihrer Messung) und für den Styroporeinsatz (aus abellenwert). 3.2 Nehmen Sie für die Stabenden den größten emperaturunterschied an, den Sie bestimmt haben. Wie groß ist der Wärmestrom mit Isolierschicht? Vergleichen Sie mit dem gemessenen Wärmestrom. 3.3 Zeichnen Sie in ein Diagramm die emperaturprofile für die beiden verglichenen Fälle ein. 4. ransfer auf eine Zieglmauer mit Isolierschicht aus Styropor Stellen sie sich die Außenmauer eines modernen Hauses vor. Auf die Außenseite der Ziegelmauer ist eine dicke Isolierschicht aufgeklebt. 4. Wieviel Energie geht täglich durch eine 4 m 2,5 m große Zimmerwand aus 30 cm starkem Ziegelmauerwerk ( Ziege l = 0,75 W m K ) mit einer Isolierung aus 5 cm Styropor ( Styropor = 0,04 W m K ) verloren (Innentemperatur 22 C, Außentemperatur -0 C)? 4.2 Zeichen sie das emperaturgefälle maßstabsgetreu. 4.3 Zeichnen Sie den emperaturverlauf für den Fall, dass die gleiche Isolierung innen angebracht ist. 4.4 Machen sie sich mit dem Stichwort aupunkt und Dampfsperre vertraut. Der aupunkt bei 22 C und 60 % Luftfeuchte beträgt aupunkt = 4 C. Zeichnen sie diesen in beide vorherigen Zeichnungen ein. 4.5 Erklären sie, welche Dämmart bei der Hausdämmung zu bevorzugen ist und wann eine Dampfsperre nötig ist.

Versuch W7 für Nebenfächler Wärmeausdehnung

Versuch W7 für Nebenfächler Wärmeausdehnung Versuch W7 für Nebenfächler Wärmeausdehnung I. Physikalisches Institut, Raum 106 Stand: 7. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit

t ). Wird diese Verteilung experimentell ermittelt, so ist entsprechend Gl.(1) eine Bestimmung der Wärmeleitfähigkeit W 4 Wärmeleitfähigkeit. Aufgabenstellung. Bestimmen Sie aus der zeitlichen Änderung der Wassertemperatur des Kalorimeters den Wärmeaustausch mit der Umgebung.. Stellen Sie die durch Wärmeleitung hervorgerufene

Mehr

Stromdurchossene Leiter im Magnetfeld, Halleekt

Stromdurchossene Leiter im Magnetfeld, Halleekt Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1

Mehr

Vers. 3: Elektrizität 1 (Strom, Spannung, Leistung, Widerstände)

Vers. 3: Elektrizität 1 (Strom, Spannung, Leistung, Widerstände) Praktikum Technische Grundlagen ersuch 3 ers. 3: Elektrizität (Strom, Spannung, Leistung, Widerstände) orbereitung Literatur zu den Stichworten Ohmsches Gesetz, Strom, Spannung, Leistung, Widerstandsschaltungen,

Mehr

Michelson-Interferometer. Jannik Ehlert, Marko Nonho

Michelson-Interferometer. Jannik Ehlert, Marko Nonho Michelson-Interferometer Jannik Ehlert, Marko Nonho 4. Juni 2014 Inhaltsverzeichnis 1 Einführung 1 2 Auswertung 2 2.1 Thermische Ausdehnung... 2 2.2 Magnetostriktion... 3 2.2.1 Beobachtung mit dem Auge...

Mehr

Der elektrische Strom

Der elektrische Strom Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei

Mehr

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2

Institut für Physikalische und Theoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2 Institut für Physikalische und heoretische Chemie Physikalisch-Chemisches Praktikum für Studenten L2. Das Gasgesetz von Gay-Lussac hema In diesem ersuch soll das erhalten von Gasen bei Erwärmung unter

Mehr

Physikalisches Grundpraktikum. Wärmeleitung

Physikalisches Grundpraktikum. Wärmeleitung Fachrichtungen der Physik UNIVERSITÄT DES SAARLANDES Physikalisches Grundpraktikum WWW-Adresse Grundpraktikum Physik: http://grundpraktikum.physik.uni-saarland.de/ Kontaktadressen der Praktikumsleiter:

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

V8 - Auf- und Entladung von Kondensatoren

V8 - Auf- und Entladung von Kondensatoren V8 - Auf- und Entladung von Kondensatoren Michael Baron, Frank Scholz 07.2.2005 Inhaltsverzeichnis Aufgabenstellung 2 Theoretischer Hintergrund 2 2. Elektrostatische Betrachtung von Kondensatoren.......

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll

Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Experimentelle Übungen I E5 Kleine Widerstände / Thermoelement Protokoll Jan-Gerd Tenberge 1 Tobias Südkamp 2 6. Januar 2009 1 Matrikel-Nr. 349658 2 Matrikel-Nr. 350069 Experimentelle Übungen I E5 Tenberge,

Mehr

Übungsblatt 3 (10.06.2011)

Übungsblatt 3 (10.06.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt (0.06.0 Wärmedämmung Ein Verbundfenster der Fläche A =.0 m besteht aus zwei Glasscheiben der Dicke d =.5 mm, zwischen

Mehr

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1 Laborskript für WP-14 WS 13/14 Zugversuch Zugversuch 1) Theoretische Grundlagen: Mit dem Zugversuch werden im Normalfall mechanische Kenngrößen der Werkstoffe unter einachsiger Beanspruchung bestimmt.

Mehr

Spezifische Wärmekapazität

Spezifische Wärmekapazität Versuch: KA Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: L. Jahn B. Wehner J. Pöthig J. Stelzer am 01. 06. 1997 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher am

Mehr

Fehlerrechnung. Aufgaben

Fehlerrechnung. Aufgaben Fehlerrechnung Aufgaben 2 1. Ein digital arbeitendes Längenmeßgerät soll mittels eines Parallelendmaßes, das Normalcharakter besitzen soll, geprüft werden. Während der Messung wird die Temperatur des Parallelendmaßes

Mehr

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement 1. Einleitung Die Wheatstonesche Brücke ist eine Brückenschaltung zur Bestimmung von Widerständen. Dabei wird der zu messende Widerstand

Mehr

C04 Operationsverstärker Rückkopplung C04

C04 Operationsverstärker Rückkopplung C04 Operationsverstärker ückkopplung 1. LITEATU Horowitz, Hill The Art of Electronics Cambridge University Press Tietze/Schenk Halbleiterschaltungstechnik Springer Dorn/Bader Physik, Oberstufe Schroedel 2.

Mehr

Widerstandsdrähte auf Rahmen Best.-Nr. MD03803

Widerstandsdrähte auf Rahmen Best.-Nr. MD03803 Widerstandsdrähte auf Rahmen Best.-Nr. MD03803 Beschreibung des Gerätes Auf einem rechteckigen Rahmen (1030 x 200 mm) sind 7 Widerstandsdrähte gespannt: Draht 1: Neusilber Ø 0,5 mm, Länge 50 cm, Imax.

Mehr

Widerstände I (Elektrischer Widerstand, Reihen- und Parallelschaltung)

Widerstände I (Elektrischer Widerstand, Reihen- und Parallelschaltung) Übungsaufgaben Elektrizitätslehre Klassenstufe 8 Widerstände I (Elektrischer Widerstand, Reihen- und Parallelschaltung) 4 ufgaben mit ausführlichen Lösungen (3 Seiten Datei: E-Lehre_8_1_Lsg) Eckhard Gaede

Mehr

Prüfungsvorbereitung Physik: Elektrischer Strom

Prüfungsvorbereitung Physik: Elektrischer Strom Prüfungsvorbereitung Physik: Elektrischer Strom Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt. Das heisst: Gut repetieren! Theoriefragen: Diese Begriffe müssen Sie auswendig in

Mehr

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum:

Versuch W8 - Wärmeleitung von Metallen. Gruppennummer: lfd. Nummer: Datum: Ernst-Moritz-Arndt Universität Greifswald Institut für Physik Versuch W8 - Wärmeleitung von Metallen Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung 1.1. Versuchsziel Bestimmen

Mehr

5.4 Thermische Anforderungen

5.4 Thermische Anforderungen 5.4 Thermische Anforderungen 133 5.4 Thermische Anforderungen Bild 5-32 Testzentrum zur Wintererprobung in Arjeplog, Schweden (Foto: Bosch) Extreme Temperaturen im Fahrzeug können z. B. durch kalte Winternächte

Mehr

E-Labor im WS / SS. Versuch HS Homogenes Strömungsfeld / Passive Zweipole

E-Labor im WS / SS. Versuch HS Homogenes Strömungsfeld / Passive Zweipole Abteilung Maschinenbau im S / SS Versuch / Gruppe: Verfasser Name Vorname Matr.-Nr. Semester Teilnehmer Teilnehmer BTTE ANKREUZEN Messprotokoll Versuchsbericht Professor(in) / Lehrbeauftragte(r): Datum

Mehr

Versuch E2 Kennlinien von Widerständen

Versuch E2 Kennlinien von Widerständen Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch E2 Kennlinien von Widerständen Aufgaben 1. -s-kennlinien a. Messen Sie die -s-kennlinien eines metallischen Widerstands (Glühlampe),

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. M. Prochaska Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr

2 Gleichstrom-Schaltungen

2 Gleichstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben

Mehr

2-1. 2. Der einfache Gleichstromkreis. 2.1 Einführung. 2.2 Elektrische Spannung und Leistung

2-1. 2. Der einfache Gleichstromkreis. 2.1 Einführung. 2.2 Elektrische Spannung und Leistung 2.1 Einführung Strom kann nur in einem geschlossenen Kreis fließen. Eine Spannungsquelle trennt positive und negative Ladungen. Es kann ein Stromfluss vom Pluspol zum Minuspol der Spannungsquelle stattfinden,

Mehr

Stationsunterricht im Physikunterricht der Klasse 10

Stationsunterricht im Physikunterricht der Klasse 10 Oranke-Oberschule Berlin (Gymnasium) Konrad-Wolf-Straße 11 13055 Berlin Frau Dr. D. Meyerhöfer Stationsunterricht im Physikunterricht der Klasse 10 Experimente zur spezifischen Wärmekapazität von Körpern

Mehr

IIW6. Modul Wärmelehre. Peltier-Wärmepumpe

IIW6. Modul Wärmelehre. Peltier-Wärmepumpe IIW6 Modul Wärmelehre Peltier-Wärmepumpe In dem vorliegenden Versuch wird die Thermoelektrizität anhand einer Peltier-Wärmepumpe untersucht. Unter Thermoelektrizität versteht man die umkehrbaren Wechselwirkungen

Mehr

Bandabstand von Germanium

Bandabstand von Germanium von Germanium Stichworte: Leitfähigkeit, Bändermodell der Halbleiter, Eigenleitung, Störstellenleitung, Dotierung Einführung und Themenstellung Sehr reine, undotierte Halbleiter verhalten sich bei sehr

Mehr

T6 - Temperaturabhängigkeit der molaren Wärmekapazität

T6 - Temperaturabhängigkeit der molaren Wärmekapazität 6 - emperaturabhängigkeit der molaren Wärmekapazität Aufgaben: 1. Messung der molaren Wärmekapazität von Aluminium bzw. Kupfer als Funktion der emperatur im Bereich von 196 C bis Zimmertemperatur. 2. Berechnung

Mehr

Versuch W6 für Nebenfächler Wärmeleitung

Versuch W6 für Nebenfächler Wärmeleitung Versuch W6 für Nebenfächler Wärmeleitung I. Physikalisches Institut, Raum 104 Stand: 4. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

TEP 5.4.18-01. Dosimetrie

TEP 5.4.18-01. Dosimetrie Dosimetrie TEP Verwandte Themen Röntgenstrahlung, Ionisierungsenergie, Energiedosis, Äquivalentdosis, Ionendosis, Ortsdosis, Dosisraten, Qualitätsfaktor, quadratisches Abstandsgesetz, Dosimeter. Prinzip

Mehr

DOWNLOAD. Physik kompetenzorientiert: Elektrizitätslehre 3. 7. / 8. Klasse

DOWNLOAD. Physik kompetenzorientiert: Elektrizitätslehre 3. 7. / 8. Klasse DOWNLOAD Anke Ganzer Physik kompetenzorientiert: Elektrizitätslehre 3 7. / 8. Klasse Anke Ganzer Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel: Physik II kompetenzorientierte Aufgaben

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Auswertung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 7. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Grundlagen der Elektrik Kapitel 1

Grundlagen der Elektrik Kapitel 1 Grundlagen der Elektrik 1. Atomaufbau 2 2. Elektrische Leitfähigkeit 4 3. Elektrische Spannung 5 4. Elektrischer Strom 7 5. Elektrischer Widerstand 11 6. Ohmsches Gesetz 14 7. Grundschaltungen 17 8. Elektrische

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert E 0 Ohmsches Gesetz & nnenwiderstand (Pr_Ph_E0_nnenwiderstand_5, 30.8.2009).

Mehr

Versuchsprotokoll - Michelson Interferometer

Versuchsprotokoll - Michelson Interferometer Versuchsprotokoll im Fach Physik LK Radkovsky August 2008 Versuchsprotokoll - Michelson Interferometer Sebastian Schutzbach Jörg Gruber Felix Cromm - 1/6 - Einleitung: Nachdem wir das Interferenzphänomen

Mehr

Praktikum. Anzeigetechnik. Gruppe: 2. - Wallerath - Kleinstück - Spenst - Balyot. Touch-Panel. bei Prof. Dr. Schwedes

Praktikum. Anzeigetechnik. Gruppe: 2. - Wallerath - Kleinstück - Spenst - Balyot. Touch-Panel. bei Prof. Dr. Schwedes Praktikum Anzeigetechnik bei Prof. Dr. Schwedes Gruppe: 2 Teilnehmer: - Küster - Wallerath - Kleinstück - Spenst - Balyot Funktionsweise eines analog resistiven Touchscreen Abb.: mechanischer Aufbau des

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

EMPA: Abteilung Bautechnologien Bericht-Nr. 443 015-1 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7

EMPA: Abteilung Bautechnologien Bericht-Nr. 443 015-1 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7 Auftraggeber: Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur Seite 2 / 7 1 Auftrag Die Firma Toggenburger AG, Schlossackerstrasse 20, CH-8404 Winterthur, erteilte der EMPA Abt. Bautechnologien

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

STATIONÄRE WÄRMELEITUNG

STATIONÄRE WÄRMELEITUNG Wärmeübertragung und Stofftransport VUB4 STATIONÄRE WÄRMELEITUNG Bestimmung der Wärmeleitfähigkeit λ eines Metallzylinders durch Messungen der stationären Wärmeverteilung Gruppe 1 Christian Mayr 23.03.2006

Mehr

Schülerversuche Elektronik Widerstände

Schülerversuche Elektronik Widerstände Schülerversuche Elektronik Widerstände Praktikum am: 22.11.2000 & 6.12.2000 Von: Ursula Feischl Mtr.: 9855029 Inhaltsverzeichnis: Einleitung Inhaltsangabe 1 Allgemeines 2 Behandelte Anwendungsmöglichkeiten

Mehr

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1

Thermische Isolierung mit Hilfe von Vakuum. 9.1.2013 Thermische Isolierung 1 Thermische Isolierung mit Hilfe von Vakuum 9.1.2013 Thermische Isolierung 1 Einleitung Wieso nutzt man Isolierkannen / Dewargefäße, wenn man ein Getränk über eine möglichst lange Zeit heiß (oder auch kalt)

Mehr

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN

WÄRMELEITFÄHIGKEIT UND ELEKTRISCHE LEITFÄHIGKEIT VON METALLEN INSIU FÜR ANGEWANDE PHYSIK Physikaisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße WÄRMELEIFÄHIGKEI UND ELEKRISCHE LEIFÄHIGKEI VON MEALLEN Eineitung In diesem

Mehr

Stufenschaltung eines Elektroofens Berechnen Sie den Gesamtwiderstand des voll eingeschalteten Wärmegerätes!

Stufenschaltung eines Elektroofens Berechnen Sie den Gesamtwiderstand des voll eingeschalteten Wärmegerätes! TECHNOLOGSCHE GUNDLAGEN LÖSUNGSSATZ E.60 Stufenschaltung eines Elektroofens Berechnen Sie den Gesamtwiderstand des voll eingeschalteten Wärmegerätes! 40,3Ω 30V = 80, 6Ω = 80, 6Ω TECHNOLOGSCHE GUNDLAGEN

Mehr

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen.

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen. Spannung und Strom E: Klasse: Spannung Die elektrische Spannung gibt den nterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei Pole, mit unterschiedlichen Ladungen. uf der

Mehr

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert

Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert Physikalisches Praktikum Wirtschaftsingenieurwesen Physikalische Technik und Orthopädietechnik Prof. Dr. Chlebek, MSc. M. Gilbert TH 01 Wärmekapazität und Wirkungsgrad (Pr_PhI_TH01_Wärmekapazität_6, 30.8.009)

Mehr

11. Elektrischer Strom und Stromkreise

11. Elektrischer Strom und Stromkreise 11. Elektrischer Strom und Stromkreise 11.1 Elektrischer Strom und Stromdichte 11.2 Elektrischer Widerstand d 11.3 Elektrische Leistung in Stromkreisen 11.4 Elektrische Schaltkreise 11.5 Amperemeter und

Mehr

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw=

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw= c~åüüçåüëåüìäéaçêíãìåç k~ãéw mêçñkaêkjfåökdk_~äáéä c_p j~íêkjkêkw Klausur: Bordnetze 14.7.2004 Aufgabe 1: Es sollen zwei massive Cu-Leiter auf Ihre Stromtragfähigkeit untersucht werden. Der eine hat einen

Mehr

POGGENDORFSCHE KOMPENSATIONSMETHODE

POGGENDORFSCHE KOMPENSATIONSMETHODE Grundpraktikum der Physik Versuch Nr. 23 POGGENDORFSCHE KOMPENSATIONSMETHODE UND WHEATSTONE SCHE BRÜCKENSCHALTUNG Versuchsziel: Stromlose Messung ohmscher Widerstände und kapazitiver Blindwiderstände 1

Mehr

Festigkeit und Härte

Festigkeit und Härte Festigkeit und Härte Wichtige Kenngrößen für die Verwendung metallischer Werkstoffe sind deren mechanische Eigenschaften unter statischer Beanspruchung bei Raumtemperatur (RT). Hierbei hervorzuheben sind

Mehr

E-Technik 2C Das ohmsche Gesetz Seite 1 von 11

E-Technik 2C Das ohmsche Gesetz Seite 1 von 11 E-Technik 2C Das ohmsche Gesetz Seite 1 von 11 i = u R Strom (i) = Spannung (u) Widerstand (R) Das oben stehende ohmsche Gesetz beschreibt den Zusammenhang zwischen dem elektrischen Strom i, der elektrischen

Mehr

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer:

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I Name: PTC und NTC Widerstände Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Versuch 20. Kennlinie der Vakuum-Diode

Versuch 20. Kennlinie der Vakuum-Diode Physikalisches Praktikum Versuch 20 Kennlinie der Vakuum-Diode Name: Henning Hansen Datum der Durchführung: 9.09.2006 Gruppe Mitarbeiter: Christian Köhler ssistent: testiert: 3 Einleitung Die Vakuum-Diode

Mehr

Regelungstechnik 1 Praktikum Versuch 1.1. 1 Unterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch

Regelungstechnik 1 Praktikum Versuch 1.1. 1 Unterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch Regelungstechnik 1 Praktikum Versuch 1.1 1 nterschied zwischen Steuerung und Regelung Reglereinstellung mittels Schwingversuch Die Aufgabe der Regelungstechnik besteht im weitesten Sinne darin, einen bestimmten

Mehr

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung 1 Drehung der Polarisationsebene Durch einige Kristalle, z.b. Quarz wird

Mehr

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit

R-C-Kreise. durchgeführt am 07.06.2010. von Matthias Dräger und Alexander Narweleit R-C-Kreise durchgeführt am 07.06.200 von Matthias Dräger und Alexander Narweleit PHYSIKALISCHE GRUNDLAGEN Physikalische Grundlagen. Kondensator Ein Kondensator ist ein passives elektrisches Bauelement,

Mehr

16 Übungen gemischte Schaltungen

16 Übungen gemischte Schaltungen 6 Übungen gemischte Schaltungen 6. Aufgabe Gemischt (Labor) a) Berechne alle Ströme und Spannungen und messe diese nach! 3 = Rges = + 3 = 4,39kΩ 3 =,939kΩ Iges= Rges =2,46mA=I U = * I = 5,32V = U3 = U

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kennlinien elektrischer Leiter (KL) Frühjahrssemester 2016

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kennlinien elektrischer Leiter (KL) Frühjahrssemester 2016 Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kennlinien elektrischer Leiter (KL) Frühjahrssemester 2016 Physik-nstitut der Universität Zürich nhaltsverzeichnis 10 Kennlinien elektrischer Leiter

Mehr

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg

TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg TU Bergakademie Freiberg Institut für Werkstofftechnik Schülerlabor science meets school Werkstoffe und Technologien in Freiberg PROTOKOLL Modul: Versuch: Physikalische Eigenschaften I. VERSUCHSZIEL Die

Mehr

Elektrische Ladung und elektrischer Strom

Elektrische Ladung und elektrischer Strom Elektrische Ladung und elektrischer Strom Es gibt positive und negative elektrische Ladungen. Elektron Atomhülle Atomkern Der Aufbau eines Atoms Alle Körper sind aus Atomen aufgebaut. Ein Atom besteht

Mehr

Versuchsprotokoll. Die Röhrendiode. zu Versuch 25. (Physikalisches Anfängerpraktikum Teil II)

Versuchsprotokoll. Die Röhrendiode. zu Versuch 25. (Physikalisches Anfängerpraktikum Teil II) Donnerstag, 8.1.1998 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Physikalisches Anfängerpraktikum Teil II) zu Versuch 25 Die Röhrendiode 1 Inhaltsverzeichnis 1 Problemstellung 3 2 Physikalische

Mehr

Physikalisches Praktikum I Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik MSc. M. Gilbert

Physikalisches Praktikum I Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik MSc. M. Gilbert Physikalisches Praktikum I Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik MSc. M. Gilbert E 00 Elektrische Messgeräte (Pr_EX_E00_Messgeräte_6, 30.8.2009) Name Matr. Nr. Gruppe Team

Mehr

Der Elastizitätsmodul

Der Elastizitätsmodul Der Elastizitätsmodul Stichwort: Hookesches Gesetz 1 Physikalische Grundlagen Jedes Material verormt sich unter Einwirkung einer Krat. Diese Verormung ist abhängig von der Art der Krat (Scher-, Zug-, Torsionskrat

Mehr

3 Elektrische Leitung

3 Elektrische Leitung 3.1 Strom und Ladungserhaltung 3 Elektrische Leitung 3.1 Strom und Ladungserhaltung Elektrischer Strom wird durch die Bewegung von Ladungsträgern hervorgerufen. Er ist definiert über die Änderung der Ladung

Mehr

Übungsaufgaben zur Vorlesung Elektrotechnik 1

Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik

Mehr

Versuch 15. Wechselstromwiderstände

Versuch 15. Wechselstromwiderstände Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: 26.09.2006 Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert: 3 Einleitung

Mehr

Glühfaden Taschenlampe Durch den Glühfaden einer Taschenlampe fliesst ein Strom von Lampe ist 5 Minuten eingeschaltet.

Glühfaden Taschenlampe Durch den Glühfaden einer Taschenlampe fliesst ein Strom von Lampe ist 5 Minuten eingeschaltet. 1 ASE 2.1.1 Glühfaden Taschenlampe Durch den Glühfaden einer Taschenlampe fliesst ein Strom von Lampe ist 5 Minuten eingeschaltet. a) Welche Ladung bewegt sich durch den Glühfaden? b) Welcher Elektronenzahl

Mehr

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946

Beispiel für die Berechnung des Wärmedurchgangskoeffizienten eines zusammengesetzten Bauteiles nach DIN EN ISO 6946 Pro Dr-Ing hena Krawietz Beispiel ür ie Berechnung es Wärmeurchgangskoeizienten eines zusammengetzten Bauteiles nach DIN EN ISO 6946 DIN EN ISO 6946: Bauteile - Wärmeurchlasswierstan un Wärmeurchgangskoeizient

Mehr

Thermische Ausdehnung. heißt Volumenausdehnungskoeffizient. Betrachtet man nur eine Dimension, erhält man den Längenausdehnungskoeffizienten

Thermische Ausdehnung. heißt Volumenausdehnungskoeffizient. Betrachtet man nur eine Dimension, erhält man den Längenausdehnungskoeffizienten W1 Thermische Ausdehnung ie Volumenausdehnung von Flüssigkeiten und die Längenänderung von festen Körpern in Abhängigkeit von der Temperatur sollen nachgewiesen. 1. Theoretische Grundlagen 1.1 Allgemeines

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang

Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum Versuch VM 3 (Veterinärmedizin) Wärmekapazität und Wärmeübergang Aufgaben 1. Berechnen Sie die Wärmekapazität des Kalorimetergefäßes.

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Elektrische Einheiten und ihre Darstellung

Elektrische Einheiten und ihre Darstellung Die Messung einer physikalischer Größe durch ein Experiment bei dem letztlich elektrische Größen gemessen werden, ist weit verbreitet. Die hochpräzise Messung elektrischer Größen ist daher sehr wichtig.

Mehr

Elektrotechnik / Elektrik / Elektronik Basiskenntnisse Mess- und Prüfgeräte. Bildquelle: www.auto-wissen.ch. Elektrotechnik

Elektrotechnik / Elektrik / Elektronik Basiskenntnisse Mess- und Prüfgeräte. Bildquelle: www.auto-wissen.ch. Elektrotechnik Bildquelle: www.auto-wissen.ch Elektrotechnik Basiskenntnisse Mess- und Prüfgeräte AGVS Ausbildungszentrum Berner Oberland 1/14 INHALTSVERZEICHNIS OHMSCHES GESETZ... 3...3 Spannung...4 Strom...5 Widerstand...6

Mehr

Kennlinie der Vakuum-Diode

Kennlinie der Vakuum-Diode Physikalisches Grundpraktikum Versuch 17 Kennlinie der Vakuum-Diode Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

Grundlagen der Elektrotechnik 2 für WIng Teil 2 S.2

Grundlagen der Elektrotechnik 2 für WIng Teil 2 S.2 Teil 2 S.1 1 2 3 4 5 6 7 8 Summe Note 20 10 13 10 6 8 14 24 105............ Name Vorname Matr.-Nr. Unterschrift Zugelassene Hilfsmittel: Taschenrechner, Zeichenmaterial 2 Blätter = 4 Seiten selbst geschriebene

Mehr

Gleichstrom/Wechselstrom

Gleichstrom/Wechselstrom Gleichstrom/Wechselstrom 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 31.05.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Definition des Widerstandes Der

Mehr

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus

Praktikumsprotokoll. vom 25.06.2002. Thema: Radioaktiver Zerfall, radioaktive Strahlung. Tutor: Arne Henning. Gruppe: Sven Siebler Martin Podszus Praktikumsprotokoll vom 25.6.22 Thema: Radioaktiver Zerfall, radioaktive Strahlung Tutor: Arne Henning Gruppe: Sven Siebler Martin Podszus Versuch 1: Reichweite von α -Strahlung 1.1 Theorie: Die Reichweite

Mehr

Labor Regelungstechnik Versuch 4 Hydraulische Positionsregelung

Labor Regelungstechnik Versuch 4 Hydraulische Positionsregelung HS oblenz FB ngenieurwesen Prof. Dr. röber Seite von 7 Versuch 4: Hydraulische Positionsregelung. Versuchsaufbau.. mfang des Versuches m Versuch werden folgende Themenkreise behandelt: - Aufbau eines Prüfstandes

Mehr

Elektrischen Phänomene an Zellmembranen

Elektrischen Phänomene an Zellmembranen Konzeptvorlesung 17/18 1. Jahr Block 1 Woche 4 Physikalische Grundlagen der Bioelektrizität Physik PD Dr. Hans Peter Beck Laboratorium für Hochenergiephysik der niversität Bern HPB11 1 Elektrischen Phänomene

Mehr

Modellversuch zur Nutzung von Umgebungswärme mit der Peltier-Wärmepumpe ENT 7.3

Modellversuch zur Nutzung von Umgebungswärme mit der Peltier-Wärmepumpe ENT 7.3 Modellversuch zur Nutzung von Umgebungswärme ENT Schlüsselworte Peltier-Effekt, Peltierelement, Kältemaschine, Wärmepumpe, Thermogenerator, Geothermie Prinzip Fließt ein Gleichstrom durch ein Peltierelement,

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

Grundlagen der Elektrotechnik im Überblick. Brückenkurs Physik, 5. Tag

Grundlagen der Elektrotechnik im Überblick. Brückenkurs Physik, 5. Tag Grundlagen der Elektrotechnik im Überblick Brückenkurs Physik, 5. Tag Worum geht es? Elektrische Ladung Elektrische Spannung Elektrische Stromstärke Reihen- und Parallelschaltung von Widerständen 24.09.2014

Mehr

Vervollständigen Sie das Schema mit Stromversorgung und Widerstandsmessgerät!

Vervollständigen Sie das Schema mit Stromversorgung und Widerstandsmessgerät! Übungen Elektronik Versuch 1 Elektronische Bauelemente In diesem Versuch werden die Eigenschaften und das Verhalten nichtlinearer Bauelemente analysiert. Dazu werden die Kennlinien aufgenommen. Für die

Mehr

Name Matr. Nr. Gruppe Team. Protokoll ist ok O Datum Abtestat

Name Matr. Nr. Gruppe Team. Protokoll ist ok O Datum Abtestat Physikalisches Praktikum I Bachelor Wirtschaftsingenieurwesen Physikalische Technik, Orthopädietechnik Bachelor Chemieingenieurwesen, Wirtschaftsingenieurwesen Chemietechnik E 00 Elektrische Messgeräte

Mehr

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

Berechnungsgrundlagen

Berechnungsgrundlagen Inhalt: 1. Grundlage zur Berechnung von elektrischen Heizelementen 2. Physikalische Grundlagen 3. Eigenschaften verschiedener Medien 4. Entscheidung für das Heizelement 5. Lebensdauer von verdichteten

Mehr

Grundlagen der Elektrotechnik

Grundlagen der Elektrotechnik Grundlagen der Elektrotechnik Was hat es mit Strom, Spannung, Widerstand und Leistung auf sich Michael Dienert Walther-Rathenau-Gewerbeschule Freiburg 23. November 2015 Inhalt Strom und Spannung Elektrischer

Mehr

Aufgabe. Aufgabensammlung ET Elektrisches Strömungsfeld

Aufgabe. Aufgabensammlung ET Elektrisches Strömungsfeld Aufgabensammlung ET Elektrisches Strömungsfeld Liebe Freunde, Die vorliegende Sammlung von Aufgaben zum elektrischen Strömungsfeld ist als Ergänzung und Erweiterung zu den sonst übliche Aufgaben gedacht,

Mehr