Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Größe: px
Ab Seite anzeigen:

Download "Wie kann man beweisen, dass (H, ) eine Gruppe ist?"

Transkript

1 Wie kann man beweisen, dass (H, ) eine Gruppe ist?

2 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist)

3 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen:

4 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen:

5 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen

6 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität?

7 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Wicht Bsp: und Lemma 1: benutzen

8 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: und Lemma 1: benutzen

9 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: benutzen

10 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen

11 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist

12 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist

13 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2

14 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5

15 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5 r k S E2

16 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5 r k S E2 Die Menge von solche Drehungen ist geschlossen bzg Verkettung

17 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5 r k S E2 Die Menge von solche Drehungen ist geschlossen bzg Verkettung und Invertieren,

18 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5 r k S E2 Die Menge von solche Drehungen ist geschlossen bzg Verkettung und Invertieren, und ist deswegen eine Untegruppe von S E2

19 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5 r k S E2 Die Menge von solche Drehungen ist geschlossen bzg Verkettung und Invertieren, und ist deswegen eine Untegruppe von S E2 Diese Gruppe ist zur zyklische Gruppe aus 5 Elementen isomorph

20 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5 r k S E2 Die Menge von solche Drehungen ist geschlossen bzg Verkettung und Invertieren, und ist deswegen eine Untegruppe von S E2 Diese Gruppe ist zur zyklische Gruppe aus 5 Elementen isomorph (tatsächlich, r 1 r 1 = r 2,

21 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5 r k S E2 Die Menge von solche Drehungen ist geschlossen bzg Verkettung und Invertieren, und ist deswegen eine Untegruppe von S E2 Diese Gruppe ist zur zyklische Gruppe aus 5 Elementen isomorph (tatsächlich, r 1 r 1 = r 2, r r 2 = r 3,

22 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5 r k S E2 Die Menge von solche Drehungen ist geschlossen bzg Verkettung und Invertieren, und ist deswegen eine Untegruppe von S E2 Diese Gruppe ist zur zyklische Gruppe aus 5 Elementen isomorph (tatsächlich, r 1 r 1 = r 2, r r 2 = r 3,

23 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5 r k S E2 Die Menge von solche Drehungen ist geschlossen bzg Verkettung und Invertieren, und ist deswegen eine Untegruppe von S E2 Diese Gruppe ist zur zyklische Gruppe aus 5 Elementen isomorph (tatsächlich, r 1 r 1 = r 2, r r 2 = r 3,

24 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5 r k S E2 Die Menge von solche Drehungen ist geschlossen bzg Verkettung und Invertieren, und ist deswegen eine Untegruppe von S E2 Diese Gruppe ist zur zyklische Gruppe aus 5 Elementen isomorph (tatsächlich, r 1 r 1 = r 2, r r 2 = r 3, r r 4 = r 0 )

25 Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) (G2) ist einfach nachzuweisen: irgendeine Zeile muß die 0-Zeile wiederholen (G3) ist einfach nachzuweisen: In jeder Spalte muß e stehen Wie beweist man Assoziativität? Mann kann Satz 2: Untergruppe einer Gruppe ist eine Gruppe Wicht Bsp: (S M, ) ist eine Gruppe, und Lemma 1: It eine Gruppe (G, ) zu (H, ) isomorph, so ist (H, ) eine Gruppe benutzen Mann muß eine Untergruppe vom geeigneten S M finden, die zu (H, ) isomorph ist Bsp Wir beweisen, dass die zyklische Gruppe aus 5 Elementen Assoziativ ist Setze M = E 2 r k sei die Drehung um den Punkt O um den Winkel k 2π 5 r k S E2 Die Menge von solche Drehungen ist geschlossen bzg Verkettung und Invertieren, und ist deswegen eine Untegruppe von S E2 Diese Gruppe ist zur zyklische Gruppe aus 5 Elementen isomorph (tatsächlich, r 1 r 1 = r 2, r r 2 = r 3, r r 4 = r 0 ) Also, zyklische Gruppe aus 5 Elementen ist tatsächlich eine Gruppe

26 Wiederholung (Vorlesung 1, LAAG1):

27 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge

28 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M

29 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation

30 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2

31 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)

32 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation,

33 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z

34 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),

35 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N,

36 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0

37 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt:

38 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b

39 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b

40 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b,

41 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z

42 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp

43 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist

44 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2

45 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7

46 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12

47 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2,

48 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) )

49 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) ) Lemma 2

50 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) ) Lemma 2 Die Relation mod q ist eine Äquivalenzrelation

51 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) ) Lemma 2 Die Relation mod q Beweis ist eine Äquivalenzrelation

52 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) ) Lemma 2 Die Relation mod q Beweis (Reflexivität): ist eine Äquivalenzrelation

53 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) ) Lemma 2 Die Relation mod q ist eine Äquivalenzrelation Beweis (Reflexivität): a mod q a, weil a a = 0 = q 0

54 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) ) Lemma 2 Die Relation mod q ist eine Äquivalenzrelation Beweis (Reflexivität): a mod q a, weil a a = 0 = q 0

55 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) ) Lemma 2 Die Relation mod q ist eine Äquivalenzrelation Beweis (Reflexivität): a mod q a, weil a a = 0 = q 0 (Symmetrie):

56 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) ) Lemma 2 Die Relation mod q ist eine Äquivalenzrelation Beweis (Reflexivität): a mod q a, weil a a = 0 = q 0 (Symmetrie): Zz: Ist a mod q b,

57 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) ) Lemma 2 Die Relation mod q ist eine Äquivalenzrelation Beweis (Reflexivität): a mod q a, weil a a = 0 = q 0 (Symmetrie): Zz: Ist a mod q b, so ist b mod q a

58 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) ) Lemma 2 Die Relation mod q ist eine Äquivalenzrelation Beweis (Reflexivität): a mod q a, weil a a = 0 = q 0 (Symmetrie): Zz: Ist a mod q b, so ist b mod q a In der Tat, a b = q k

59 Wiederholung (Vorlesung 1, LAAG1): Sei M eine Menge Relation R ist einer Teilmenge von M M (Oft benutzt man die Bezeichnungen, für eine Relation In dem Fall schreibt man in m 1 m 2 bzw m 1 m 2 statt (m 1,m 2 ) R)Eine Relation heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch und transitiv ist Es sei M = Z (Die Menge von ganzen Zahlen),q N, q 0 Definiere die Relation mod q wie folgt: a mod q b q : a b, dh a b = q k für irgendein k Z Bsp Sei q = 5 Dann ist 3 mod 5 2 mod 5 7 mod 5 12 (Eigentlich, für jedes k Z ist 2 mod 5 5k + 2, weil 5 : 5k = 2 (5k + 2) ) Lemma 2 Die Relation mod q ist eine Äquivalenzrelation Beweis (Reflexivität): a mod q a, weil a a = 0 = q 0 (Symmetrie): Zz: Ist a mod q b, so ist b mod q a In der Tat, a b = q k = b a = q ( k)

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra

TECHNISCHE UNIVERSITÄT DRESDEN. Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra TECHNISCHE UNIVERSITÄT DRESDEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik Institut für Algebra Halbgruppen binärer Relationen auf einer 3-elementigen Menge Arbeit im Rahmen des

Mehr

Beispiele für Relationen

Beispiele für Relationen Text Relationen 2 Beispiele für Relationen eine Person X ist Mutter von einer Person Y eine Person X ist verheiratet mit einer Person Y eine Person X wohnt am gleichen Ort wie eine Person Y eine Person

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Qualitative Datenanalyse

Qualitative Datenanalyse Qualitative Datenanalyse Prof. Dr. Stefan E. Schmidt Francesco Kriegel TU Dresden Fakultät Mathematik Institut Algebra SS 2007 28. September 2008 Inhaltsverzeichnis Kapitel 1 Formale Begriffsanalyse 1

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Beispiel vor dem Beweis:

Beispiel vor dem Beweis: Beispiel vor dem Beweis: Beispiel vor dem Beweis: A = ¼3 6 2 3 11 2½ Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 3 11

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Homomorphe Verschlüsselung

Homomorphe Verschlüsselung Homomorphe Verschlüsselung Sophie Friedrich, Nicholas Höllermeier, Martin Schwaighofer 11. Juni 2012 Inhaltsverzeichnis Einleitung Motivation Mathematische Definitionen Wiederholung Gruppe Ring Gruppenhomomorphisums

Mehr

2 Algebraische Grundstrukturen

2 Algebraische Grundstrukturen 2 ALGEBRAISCHE GRUNDSTRUKTUREN 1 8. November 2002 2 Algebraische Grundstrukturen Definitionen. Eine binäre Operation (binary operation) oder zweistellige Verknüpfung auf einer Menge M ist eine Abbildung

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

5. Verschiedene Repräsentanten

5. Verschiedene Repräsentanten 5. Verschiedene Repräsentanten 5.1. Die Sätze Hall und König Sei I := {1,...,n}, und sei A(I) = (A 1,...,A n ) eine Familie von Teilmengen einer endlichen Menge E. Zu K I seien A(K) := (A i : i K) und

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Kapitel 7: Formaler Datenbankentwurf

Kapitel 7: Formaler Datenbankentwurf 7. Formaler Datenbankentwurf Seite 1 Kapitel 7: Formaler Datenbankentwurf Die Schwierigkeiten der konzeptuellen Modellierung sind zu einem großen Teil dadurch begründet, dass sich die relevanten Strukturen

Mehr

Zahlensysteme. von Christian Bartl

Zahlensysteme. von Christian Bartl von Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Umrechnungen... 3 2.1. Dezimalsystem Binärsystem... 3 2.2. Binärsystem Dezimalsystem... 3 2.3. Binärsystem Hexadezimalsystem... 3 2.4.

Mehr

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code)

Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Verfahren: symmetrisch klassisch: Verschiebechiffren (Spezialfall Caesar-Code) Multiplikative Chiffren monoalphabetische Substitutions-Chiffren:

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 29/ Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws9

Mehr

Algebra und Zahlentheorie Wintersemester 2013/14

Algebra und Zahlentheorie Wintersemester 2013/14 Algebra und Zahlentheorie Wintersemester 2013/14 Prof. Dr. Annette Huber-Klawitter Fassung vom 8. Februar 2014 Dies ist ein Vorlesungsskript und kein Lehrbuch. Mit Fehlern muss gerechnet werden! Math.

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract:

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract: Spezifikation der zulässigen Parameter Bemerkungen: Bei jeder (partiellen) Funktion muss man sich überlegen und dokumentieren, welche aktuellen Parameter bei einer Anwendung zulässig sein sollen. Der Anwender

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München

Diskrete Strukturen. Wilfried Buchholz. Skriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München Disrete Struturen Wilfried Buchholz Sriptum einer 3-std. Vorlesung im Sommersemester 2009 Mathematisches Institut der Universität München 1 Vollständige Indution Wir setzen hier das System Z = {..., 2,

Mehr

Fehlerkorrigierende Codes

Fehlerkorrigierende Codes Fehlerkorrigierende Codes SS 2013 Gerhard Dorfer 2 Inhaltsverzeichnis 1 Fehlerkorrigierende Codes 4 1.1 Einführende Beispiele................................. 4 1.2 Mathematische Grundlagen..............................

Mehr

MGI Lösungshinweise WS 05/06, Blatt 2-10, Version 1.0α, 4. Februar 2006

MGI Lösungshinweise WS 05/06, Blatt 2-10, Version 1.0α, 4. Februar 2006 MGI Lösungshinweise WS 05/06, Blatt 2-10, Version 1.0α, 4. Februar 2006 Es sind vermutlich noch Fehler enthalten, sorry vorab kontrollieren sie also die Lösungen, bevor sie sich darauf verlassen (Fehler

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

1 Gruppen: Definition und erste Eigenschaften

1 Gruppen: Definition und erste Eigenschaften 1 Gruppen: Definition und erste Eigenschaften Von allen algebraischen Strukturen, die man in der linearen Algebra kennenlernt, haben Gruppen die einfachste Definition. In der Tat sind viele andere algebraische

Mehr

Neues Thema: Inversion am Kreis (Kreisspiegelung)

Neues Thema: Inversion am Kreis (Kreisspiegelung) Neues Thema: Inversion am Kreis (Kreisspiegelung) Wir arbeiten in ( R 2,, standard ). Def. Betrachte einen Kreis um O vom Radius r > 0. Inversion (bzgl. des Kreises) ist eine Abbildung I O,r : R 2 \ {O}

Mehr

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie

Mathematik II für Studierende der Informatik Kapitel. Kodierungstheorie Mathematik II für Studierende der Informatik Kapitel Kodierungstheorie Markus Junker Sommersemester 2011 (korrigierte Version vom Sommersemester 2012) Einführung, Beispiele, Definitionen Ausgangspunkt

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

1 Das Lemma von Burnside und seine Anwendungen

1 Das Lemma von Burnside und seine Anwendungen Das Lemma von Burnside und seine Anwendungen Mit dem Lemma von Burnside lassen sich Zählprobleme lösen, bei denen Symmetrien eine Rolle spielen. Betrachten wir als einführendes Beispiel die Anzahl der

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43

Zahlenbereiche. Jörn Loviscach. Versionsstand: 20. Oktober 2009, 17:43 Zahlenbereiche Jörn Loviscach Versionsstand: 20. Oktober 2009, 17:43 1 Natürliche, ganze und rationale Zahlen Zum Zählen benötigt man die positiven natürlichen Zahlen 1, 2, 3,... In der Informatik zählt

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Didaktik der Grundschulmathematik 4.1

Didaktik der Grundschulmathematik 4.1 Didaktik der Grundschulmathematik 4.1 Didaktik der Grundschulmathematik Didaktik der Grundschulmathematik 4.2 Inhaltsverzeichnis Didaktik der Grundschulmathematik 1 Anschauungsmittel 2 Aufbau des Zahlbegriffs

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Elementare Zahlentheorie

Elementare Zahlentheorie Elementare Zahlentheorie Prof. Dr. L. Kramer WWU Münster, Sommersemester 2009 Vorlesungsmitschrift von Christian Schulte zu Berge 27. Juli 2009 Inhaltsverzeichnis 1 Primzerlegung 3 1.1 Grundlagen.............................................

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Elementare Kryptographie

Elementare Kryptographie Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik Elementare Kryptographie Kai Gehrs gehrs@mupad.de Paderborn, 9. Juli 2007 Inhaltsverzeichnis Grundlagen:

Mehr

(PRO-)SEMINAR ZUR ALGEBRA

(PRO-)SEMINAR ZUR ALGEBRA (PRO-)SEMINAR ZUR ALGEBRA U. GÖRTZ, C. KAPPEN, WS 200/ Einführung Kettenbrüche sind Ausdrücke der Form a 0 + a + a 2+... (beziehungsweise gewisse Varianten davon). Kettenbrüche sind ein klassisches und

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Codes und Codegitter. Katharina Distler. 27. April 2015

Codes und Codegitter. Katharina Distler. 27. April 2015 Codes und Codegitter Katharina Distler 7. April 015 Inhaltsverzeichnis 1 Codes 4 Codegitter 14 Einleitung Die folgende Seminararbeit behandelt das Konzept von Codes und Codegittern. Da sie bei der Informationsübertragung

Mehr

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012

SO(2) und SO(3) Martin Schlederer. 06. Dezember 2012 SO(2) und SO(3) Martin Schlederer 06. Dezember 2012 Inhaltsverzeichnis 1 Motivation 2 2 Wiederholung 2 2.1 Spezielle Orthogonale Gruppe SO(n)..................... 2 2.2 Erzeuger.....................................

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013

Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 7. November 2013 Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 7. November 2013 6 L p -Räume Mit Hilfe der Masstheorie können wir nun die sog. L p -Räume einführen. Diese Räume sind wichtig in vielen

Mehr

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die

Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Satz 2.8.3: Sei Q eine Intensitätsmatrix. Dann hat die Rückwärtsgleichung P (t) = QP (t), P (0) = E eine minimale nicht negative Lösung (P (t) : t 0). Die Lösung bildet eine Matrix Halbgruppe, d.h. P (s)p

Mehr

1. Terme und Gleichungen mit Klammern Leitidee L4: Funktionaler Zusammenhang: Terme und Gleichungen 1.1 Terme mit mehreren Variablen

1. Terme und Gleichungen mit Klammern Leitidee L4: Funktionaler Zusammenhang: Terme und Gleichungen 1.1 Terme mit mehreren Variablen Stoffverteilungsplan EdM 8RhPf Abfolge in EdM 8 Bleib fit im Umgang mit rationalen Zahlen Kompetenzen und Inhalte Umgang mit rationalen Zahlenim Zusammenhang 1. Terme und Gleichungen mit Klammern Leitidee

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Multiplikationstafeln

Multiplikationstafeln Multiplikationstafeln Rechenintensive Arbeiten in der Landesvermessung und Astronomie, sowie im Handel, machten es in früheren Jahrhunderten wünschenswert, höhere Rechenarten auf niedrigere zurück zu führen.

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement

1. 4-Bit Binärzahlen ohne Vorzeichen 2. 4-Bit Binärzahlen mit Vorzeichen 3. 4-Bit Binärzahlen im 2er Komplement 4. Rechnen im 2er Komplement Kx Binäre Zahlen Kx Binäre Zahlen Inhalt. Dezimalzahlen. Hexadezimalzahlen. Binärzahlen. -Bit Binärzahlen ohne Vorzeichen. -Bit Binärzahlen mit Vorzeichen. -Bit Binärzahlen im er Komplement. Rechnen im

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

EIN LEMMA ÜBER PERLENKETTEN. Christian SIEBENEICHER

EIN LEMMA ÜBER PERLENKETTEN. Christian SIEBENEICHER EIN LEMMA ÜBER PERLENKETTEN VON Andreas DRESS UND Christian SIEBENEICHER Abstract: We establish a diagram providing various bijections related to the theory of necklaces (or aperiodic words ) and clarifying

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

3.1 Schedules und Histories

3.1 Schedules und Histories 3 Concurrency Control: Korrektheit Wir betrachten zunächst nur das Seitenmodell (read/write)! 3.1 Schedules und Histories Bislang: Transaktionen = (partiell) geordnete Folgen von (Daten-) Operationen...

Mehr

3.5 OWL: WEB Ontology Language (1)

3.5 OWL: WEB Ontology Language (1) 3.5 OWL: WEB Ontology Language (1) 3.5.1 OWL-Syntax (Teil 1) A) Namensräume / RDF-Tag: Die OWL-Syntax basiert auf XML, XML-Schema, RDF und RDFS. Daher sind die zugehörigen Namensräume am Anfang des Quelltextes

Mehr

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis

Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber. Bachelor-Thesis Universität Bayreuth Fakultät für Mathematik und Physik Lehrstuhl für Mathematik II Algebraische Kombinatorik, Diskrete Strukturen Prof. Dr. Adalbert Kerber Bachelor-Thesis zur Erlangung des Grades Bachelor

Mehr

Berechnung von Eigenwerten und Eigenvektoren

Berechnung von Eigenwerten und Eigenvektoren Kapitel 5 Berechnung von Eigenwerten und Eigenvektoren 5.1 Einführung Bemerkung 5.1 Aufgabenstellung. Diese Kapitel behandelt numerische Verfahren zur Lösung des Eigenwertproblems. Gegeben sei A R n n.

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Kapitel WT:VIII (Fortsetzung)

Kapitel WT:VIII (Fortsetzung) Kapitel WT:VIII (Fortsetzung) VIII. Semantic Web WWW heute Semantic Web Vision RDF: Einführung RDF: Konzepte RDF: XML-Serialisierung RDF: Anwendungen RDFS: Einführung RDFS: Konzepte Semantik im Web Semantik

Mehr

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur

Analysis [1] Fachwissen verständlich erklärt. Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Lern-Buch Prüfungsvorbereitung für Oberstufe und Abitur Fachwissen verständlich erklärt Analysis [1] Kurvendiskussion Mitternachtsformel / pq-formel Polynomdivision Ableitung / Integration und mehr Kostenlose

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

RSA Verfahren. Kapitel 7 p. 103

RSA Verfahren. Kapitel 7 p. 103 RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008

Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Aufgaben des MSG-Zirkels 10b Schuljahr 2007/2008 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin 1 Hausaufgaben vom 12.09.2007 Zahlentheorie 1 Aufgabe 1.1 Berechne die (quadratischen)

Mehr

Arithmetik in der Grundschule I

Arithmetik in der Grundschule I WS 2007/08 Dr. Renate Motzer Arithmetik in der Grundschule I Inhaltsverzeichnis: 1. Einblick in den Lehrplan. Was ist wichtig im Mathematikunterricht der Grundschule? 2 2. Zahlaspekte 3 3. Relationen 5

Mehr

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen.

Matrixalgebra. mit einer Einführung in lineare Modelle. Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@stat.uni-muenchen. Matrixalgebra mit einer Einführung in lineare Modelle Stefan Lang Institut für Statistik Ludwigstrasse 33 email: lang@statuni-muenchende 25 August 24 Vielen Dank an Christiane Belitz, Manuela Hummel und

Mehr

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2

KANALCODIERUNG AUFGABEN. Aufgabe 1. Aufgabe 2 AUFGABEN KANALCODIERUNG Aufgabe Wir betrachten den Hamming-Code mit m = 5 Prüfbits. a) Wie gross ist die Blocklänge n dieses Codes? b) Wie viele gültige Codewörter umfasst dieser Code? c) Leiten Sie die

Mehr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr

Parallele und funktionale Programmierung Wintersemester 2013/14. 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr 8. Übung Abgabe bis 20.12.2013, 16:00 Uhr Aufgabe 8.1: Zeigerverdopplung Ermitteln Sie an folgendem Beispiel den Rang für jedes Listenelement sequentiell und mit dem in der Vorlesung vorgestellten parallelen

Mehr

Schnupperuni 2007. Holger Bluhm, 02.08.2007

Schnupperuni 2007. Holger Bluhm, 02.08.2007 Holger Bluhm, Prof. Dr. Martin Kreuzer, Stefan Kühling Aussagenlogik Elementares Wahrheitswerte Übersetzungen Übersetzungen CoCoA Einführung Logik Befehle Logik und Computerbeweise Computeralgebra Computerbeweise

Mehr

194 Beweis eines Satzes von Tschebyschef. Von P. E RDŐS in Budapest. Für den zuerst von T SCHEBYSCHEF bewiesenen Satz, laut dessen es zwischen einer natürlichen Zahl und ihrer zweifachen stets wenigstens

Mehr

Symmetrie und Anwendungen

Symmetrie und Anwendungen PC II Kinetik und Struktur Kapitel 6 Symmetrie und Anwendungen Symmetrie von Schwingungen und Orbitalen, Klassifizierung von Molekülschwingungen Auswahlregeln: erlaubte verbotene Übergänge IR-, Raman-,

Mehr

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen?

BITte ein BIT. Vom Bit zum Binärsystem. A Bit Of Magic. 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? BITte ein BIT Vom Bit zum Binärsystem A Bit Of Magic 1. Welche Werte kann ein Bit annehmen? 2. Wie viele Zustände können Sie mit 2 Bit darstellen? 3. Gegeben ist der Bitstrom: 10010110 Was repräsentiert

Mehr

Daten verarbeiten. Binärzahlen

Daten verarbeiten. Binärzahlen Daten verarbeiten Binärzahlen In Digitalrechnern werden (fast) ausschließlich nur Binärzahlen eingesetzt. Das Binärzahlensystem ist das Stellenwertsystem mit der geringsten Anzahl von Ziffern. Es kennt

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr