Fördermaterialienordner Mathematik 5/6

Größe: px
Ab Seite anzeigen:

Download "Fördermaterialienordner Mathematik 5/6"

Transkript

1 Fördermaterialienordner 5/6 Inhaltsverzeichnis 1 Zahl und Zahlbereiche 1.1 Natürliche Zahlen 1.2 Rechnen mit natürlichen Zahlen 1.3 Rechnen mit Größen 1.4 Brüche 1.5 Teilbarkeit 1.6 Rechnen mit Brüchen Ganze Zahlen 2 Geometrie 2.1 Grundbegriffe der Geometrie 2.2 Geometrie in der Ebene 2.3 Geometrische Körper 3 Funktionaler Zusammenhang 3.1 Zuordnungen 4 Daten und Zufall 4.1 Statistik 4.2 Wahrscheinlichkeitsrechnung 5 Allgemeine Methoden, Informationen und Vorlagen 5.1 Methoden 5.2 er 5.3 Hilfsmittel Anhang Impressum Hinweise zur CD

2 1 Zahl und Zahlbereiche 1.7 Informationen und Tests Informationen zum Test Teste dich! Arbeitsblätter in zwei Niveaustufen Brüche in umwandeln Brüche, und Prozentsätze vergleichen und ordnen im Kopf addieren im Kopf subtrahieren Schriftliche Addition und Subtraktion von Einkaufen Einfache Multiplikation und Division von Multiplikation von im Kopf Kreuzzahlrätsel zur Multiplikation von Dividieren im Kopf Terme und Vorrangregeln am Zahlenstrahl ablesen und ergänzen Aufgaben mit Worten Methoden, Infotexte und Spiele Methode Bruchrechnen mit dem Taschenrechner Brüche und (Memory-Spiel) Rechenkette zur Addition und Subtraktion Multiplikation von (Memory-Spiel) X X X X X X X X X X X X X X X X X X X X

3

4 1 Zahl und Zahlbereiche 1.7 Informationen und Tests Mithilfe der Teste dich! -Seiten können die Schülerinnen und Schüler prüfen, ob sie den Stoff des Themas verstanden haben und gegebenenfalls Lücken gezielt schließen: Die Tests bieten Aufgaben zu den wichtigsten Lernzielen des Themas. Die Lösungen auf der Rückseite des Tests bieten die Möglichkeit zur Selbstkontrolle. Vor jedem Test gibt es einen Feedback-Bogen, mit dessen Hilfe die Schülerinnen und Schüler überprüfen können, wie weit sie die Lernziele des Themas verstanden haben. Die Tabelle unten bietet Hinweise auf Arbeitsblätter mit vertiefendem Übungsmaterial. Teste dich! Tabelle mit Hinweisen auf Arbeitsblätter mit ähnlichen Aufgaben: Aufgabe Stoff Arbeitsblätter mit ähnlichen Aufgaben 1 Brüche in umwandeln (auch periodische ) und umgekehrt 2 und Brüche in Prozentsätze umwandeln 3, 4 mit Zehnerpotenzen multiplizieren und durch Zehnerpotenzen dividieren - Brüche in umwandeln - Brüche, und Prozentsätze - Brüche, und Prozentsätze - Einfache Multiplikation und Division von 4, 17 einfache Gleichungen lösen - im Kopf addieren - im Kopf subtrahieren - Terme und Vorrangregeln 5, 7 der Größe nach ordnen - vergleichen und ordnen 5, 8, 9, 12, 18 6, 9, 13, 18 addieren und subtrahieren multiplizieren 8, 10, 16 Aufgaben durch Überschlag lösen und Ergebnisse durch einen Überschlag kontrollieren 10, 11, durch natürliche 12 Zahlen dividieren 11, 18 durch dividieren 14, 15 am Zahlenstrahl ablesen und darstellen - im Kopf addieren - im Kopf subtrahieren - Schriftliche Addition und Subtraktion von - Einkaufen - Einkaufen - Multiplikation von im Kopf - Kreuzzahlrätsel zur Multiplikation von - im Kopf addieren - Einkaufen - Einfache Multiplikation und Division von - Dividieren im Kopf - am Zahlenstrahl ablesen und ergänzen 19 Texte in Terme umformen - Brüche, und Prozentsätze

5

6 Arbeitsblatt Feedback-Bogen Jetzt prüfe ich selbst, was ich kann! Was ich im Kapitel gelernt habe: Ich kann... Brüche in umwandeln (auch periodische ) und umgekehrt. einfache und gemeine Brüche in Prozentsätze umwandeln. mit Zehnerpotenzen multiplizieren und durch Zehnerpotenzen im Kopf dividieren. einfache Gleichungen lösen. der Größe nach ordnen. addieren und subtrahieren. multiplizieren. Aufgaben durch Überschlag lösen und Ergebnisse durch einen Überschlag kontrollieren. durch natürliche Zahlen dividieren. durch dividieren. am Zahlenstrahl ablesen und darstellen. Texte in Terme umformen. Ich habe noch nicht verstanden: Ich möchte noch üben: Meine Bewertung Wie ich die Aufgaben bearbeitet habe: Ich habe die Aufgabenstellungen verstanden. Ich konnte meine Antworten schriftlich formulieren. Ich konnte meine Antworten durch eine Zeichnung ergänzen. Ich konnte zusätzliche Informationen zum Thema finden und nutzen. Ich habe die im Unterricht besprochenen Themen so gut verstanden, dass ich mit ihrer Hilfe Lösungen zu neuen Problemen finden konnte. Ich konnte die Zeit, die ich für die Bearbeitung der Aufgaben benötigt habe, richtig einschätzen. Meine Bewertung 5

7 Infotext interaktiv Anleitung zum Feedback-Bogen Wie schätze ich mich selbst ein? Alles klar!? Die Teste-dich!-Seiten im Schülerbuch am Ende jedes Kapitels bieten dir eine Möglichkeit zu überprüfen, ob du den Inhalt des Kapitels verstanden hast und neu erlernte Arbeitstechniken anwenden kannst. Wieder alles vergessen!? Die meisten Inhalte merkt man sich am besten, wenn man die Zusammenhänge verstanden hat. Einige Inhalte müssen aber auch auswendig gelernt oder häufig geübt werden. Was kannst du und was weißt du? Bearbeite zuerst alle Aufgaben auf den beiden Teste-dich!-Seiten im Schülerbuch. Die Lösungen zu den Aufgaben findest du im Anhang des Buches. Aber nicht schummeln! Erst lösen, dann nachschlagen. Ordne deinen Lösungen im Heft einen Smiley zu: Ich konnte die Aufgabe richtig lösen. Ich konnte die Aufgabe nicht komplett lösen. Ich konnte die Aufgabe nicht lösen. Auf dem Feedback-Bogen kannst du nun den Lerninhalten jeweils einen Smiley zuordnen:, oder. Wie gut bist du? Beobachte dich selbst beim Lernen. Konntest du die Aufgaben des Testes lösen? Auf welche Schwierigkeiten bist du gestoßen? Der Feedback-Bogen hilft dir bei deiner Selbsteinschätzung. Verwende wieder die Smileys, und. Achtung! Die Feedback-Bögen können nicht immer alle Inhalte eines Kapitels abfragen. Sammle die Feedback-Bögen in deinem Hefter. Hast du dich im Laufe der Zeit verbessern können? 6

8 Arbeitsblatt Teste dich! - (1/5) 1 Wandle in einen gekürzten Bruch bzw. in eine Dezimalzahl um. a) 0,24 = ; 0,08 = ; 0,85 = ; 0,777 = 1 b) = 3 13 ; = ; = ; = 25 2 Wandle die Brüche bzw. die in Prozentsätze um. 3 1 a) = b) = 5 c) 4 1 = 2 d) 0,08 = e) 0,25 = f) 0,55 = 3 Multipliziere jeweils mit 10 und mit 100. a) 1,652 b) 0,951 c) 0,044 d) 15,6 4 Berechne die fehlende Zahl. a) 7,45 = 7450 = b) 100 = 450 = c) 9,05 = 90,5 = d) 0, = = e) = 4,56 = f) 100 = 0,58 = fuhren beim Bob-Weltcup-Rennen 4er-Herren in Lake Placid die ersten vier Bobs folgende Zeiten: Name Land 1. Durchgang 2. Durchgang Steven Holcomb USA 1 55,16 s 55,49 s Andre Lange GER 1 54,86 s 55,55 s Alexandr Zoubkov RUS 1 54,70 s 55,24 s Martin Annen SUI 1 54,99 s 55,44 s Die Platzierung ergibt sich aus der Summe der beiden Durchläufe. 7

9 Lösungsblatt Teste dich! - (1/5) 1 Wandle in einen gekürzten Bruch bzw. in eine Dezimalzahl um a) 0,24 = 25 ; 0,08 = 25 ; 0,85 = ; 0,777 = 1000 b) 1 = 0,2 ; 5 3 = 0,75 ; 4 13 = 0,4 ; = 0, Wandle die Brüche bzw. die in Prozentsätze um. a) 3 1 = 75 % b) = 5 20 % c) 4 1 = 50 % 2 d) 0,08 = 8 % e) 0,25 = 25 % f) 0,55 = 55 % 3 Multipliziere jeweils mit 10 und mit 100. a) 1,652 16,52; 165,2 b) 0,951 9,51; 95,1 c) 0,044 0,44; 4,4 d) 15,6 156; Berechne die fehlende Zahl. a) 7,45 = 7450 = 1000 b) 100 = 450 = 4,5 c) 9,05 = 90,5 = 10 d) 0, = = 2,3 e) = 4,56 = 0, f) 100 = 0,58 = 0, fuhren beim Bob-Weltcup-Rennen 4er-Herren in Lake Placid die ersten vier Bobs folgende Zeiten: Name Land 1. Durchgang 2. Durchgang Steven Holcomb USA 1 55,16 s 55,49 s Andre Lange GER 1 54,86 s 55,55 s Alexandr Zoubkov RUS 1 54,70 s 55,24 s Martin Annen SUI 1 54,99 s 55,44 s Die Platzierung ergibt sich aus der Summe der beiden Durchläufe. 1: RUS 1 (109,94 s); 2: GER 1 (110,41 s); 3: SUI 1 (110,43 s); 4: USA 1 (110,65 s) 8

10 Arbeitsblatt Teste dich! - (2/5) 6 Rechne möglichst geschickt im Kopf. a) 0,5 20 0,84 = b) 0,02 6, = c) 0,5 10 5,6 0,2 = d) 0,4 2,5 3,6 10 = e) 2 5,6 0,05 4 0,25 = 7 Ordne der Größe nach. Beginne mit der größten Zahl. 1,023; 1,203; 0,321; 1,032; 2,013; 1,230 8 Berechne schriftlich. Überschlage zunächst das Ergebnis. a) 235, , , ,3 b) 659,21 354,09 32, ,35 9 Auf dem Kassenzettel sind einige Beträge nicht mehr lesbar. 9

11 Lösungsblatt Teste dich! - (2/5) 6 Rechne möglichst geschickt im Kopf. a) 0,5 20 0,84 = 8,4 b) 0,02 6, = 63,2 c) 0,5 10 5,6 0,2 = 5,6 d) 0,4 2,5 3,6 10 = 36 e) 2 5,6 0,05 4 0,25 = 0,56 7 Ordne der Größe nach. Beginne mit der größten Zahl. 1,023; 1,203; 0,321; 1,032; 2,013; 1,230 2,013; 1,230; 1,203; 1,032; 1,023; 0,321 8 Berechne schriftlich. Überschlage zunächst das Ergebnis. a) 235, , , ,3 b) 659,21 354,09 32, ,35 a) 1456,496 b) 77,209 9 Auf dem Kassenzettel sind einige Beträge nicht mehr lesbar. 2,91; Total = 6,55; BAR = 20,55; 6,55 10

12 Arbeitsblatt Teste dich! - (3/5) 10 Setze im Dividenden das Komma so, dass das Ergebnis richtig ist. a) 438 : 12 = 3,65 b) 609 : 7 = 8,7 c) 9876 : 6 = 16,46 d) 5616 : 24 = 0,234 e) 675 : 15 = 0,45 11 Berechne schriftlich. a) 55,28 : 0,8 b) 0,9669 : 0,11 c) 98,76 : 1,2 d) 979,335 : 1,5 e) 14,04 : 0,009 f) 8,97 : 0,002 g) 6,59 : 1,25 12 Die Klasse 6 e fährt mit einem Bus zur Marksburg. Die Buskosten betragen 320,22. Für die Führung auf der Marksburg kommen pro Person nochmals 3 hinzu. Wie viel muss jeder der 27 Schüler bezahlen? 13 Die Klasse 6 a möchte vier Tage auf Langeoog verbringen. Wie viel kostet die Übernachtung mit Vollpension für 27 Schüler? Anzahl der Übernachtungen Preis pro Tag pro Person ,40 ab 4 20,60 11

13 Lösungsblatt Teste dich! - (3/5) 10 Setze im Dividenden das Komma so, dass das Ergebnis richtig ist. a) 43,8 : 12 = 3,65 b) 60,9 : 7 = 8,7 c) 98,76 : 6 = 16,46 d) 5,616 : 24 = 0,234 e) 6,75 : 15 = 0,45 11 Berechne schriftlich. a) 55,28 : 0,8 b) 0,9669 : 0,11 c) 98,76 : 1,2 d) 979,335 : 1,5 e) 14,04 : 0,009 f) 8,97 : 0,002 g) 6,59 : 1,25 a) 69,1 b) 8,79 c) 82,3 d) 652,89 e) 1560 f) 4485 g) 5, Die Klasse 6 e fährt mit einem Bus zur Marksburg. Die Buskosten betragen 320,22. Für die Führung auf der Marksburg kommen pro Person nochmals 3 hinzu. Wie viel muss jeder der 27 Schüler bezahlen? 320,22 : = 14,86 Jeder muss 14,86 zahlen. 13 Die Klasse 6 a möchte vier Tage auf Langeoog verbringen. Wie viel kostet die Übernachtung mit Vollpension für 27 Schüler? Anzahl der Übernachtungen Preis pro Tag pro Person ,40 ab 4 20,60 4 Tage, d.h. 3 Nächte; Die Übernachtungskosten liegen bei ,40 = 1814,40. 12

14 Arbeitsblatt Teste dich! - (4/5) 14 Zeichne einen passenden Zahlenstrahlausschnitt und markiere folgende : 2,3; 2,6; 2,45; 2,525; 2,375; 2,25 15 Stelle die durch die Großbuchstaben markierten Zahlen als und als gemischte Zahlen dar. 16 Löse durch Überschlag. Beim New-York-Marathon (42,195 km) wird die Strecke in Meilen angegeben. Wie viele Meilen müssen die Läufer hinter sich bringen? (1 Meile = 1,609 km) 13

15 Lösungsblatt Teste dich! - (4/5) 14 Zeichne einen passenden Zahlenstrahlausschnitt und markiere folgende : 2,3; 2,6; 2,45; 2,525; 2,375; 2,25 15 Stelle die durch die Großbuchstaben markierten Zahlen als und als gemischte Zahlen dar. A = 26,4 = B = 26,6 = C = 26,8 = D = 26,44 = E = 26,46 = F = 26,49 = G = 26,5 = Löse durch Überschlag. Beim New-York-Marathon (42,195 km) wird die Strecke in Meilen angegeben. Wie viele Meilen müssen die Läufer hinter sich bringen? (1 Meile = 1,609 km) 42 : 1,6 = 26,25 Die Läufer müssen ca. 26 Meilen zurücklegen. 14

16 Arbeitsblatt Teste dich! - (5/5) 17 Wie lautet die fehlende Zahl? a) 90,5 + = 101,652 = b) 10,802 = 4,003 = c) 0,128 = 2,05 = d) 7,5 + = 12,3 = 18 Trage die fehlenden Größen der Rechtecke in die Tabelle ein. Länge Breite Umfang Flächeninhalt 1,2 cm 3,4 cm 2,5 cm 13 cm 2 1,4 km 8,7 km 2,9 mm 1,2 mm 1,9 cm 7,9 mm 19 Rechenrätsel a) Dividiere 14,25 durch die Summe aus 1,15 und 3,6. b) Addiere zum Produkt aus 5,6 und 1,3 die Differenz der beiden Zahlen. c) Multipliziere die Summe aus 2,5 und 5,1 mit der Zahl 0,6. d) Subtrahiere den Quotienten aus 21,552 und 1,2 von 22,4. e) Dividiere die Differenz der Zahlen 18,3 und 6,1 durch ihre Summe. 15

17 Lösungsblatt Teste dich! - (5/5) 17 Wie lautet die fehlende Zahl? a) 90,5 + = 101,652 = 11,152 b) 10,802 = 4,003 = 6,799 c) 0,128 = 2,05 = 2,178 d) 7,5 + = 12,3 = 4,8 18 Trage die fehlenden Größen der Rechtecke in die Tabelle ein. Länge Breite Umfang Flächeninhalt 1,2 cm 0,5 cm 3,4 cm 0,6 cm 2 5,2 cm 2,5 cm 15,4 cm 13 cm 2 2,95 km 1,4 km 8,7 km 4,13 km 2 2,9 mm 1,2 mm 8,2 mm 3,48 mm 2 1,9 cm 7,9 mm 53,8 mm 150,1 mm 2 19 Rechenrätsel a) Dividiere 14,25 durch die Summe aus 1,15 und 3,6. 14,25 : (1,15 + 3,6) = 3 b) Addiere zum Produkt aus 5,6 und 1,3 die Differenz der beiden Zahlen. 5,6 1,3 + 5,6 1,3 = 11,58 c) Multipliziere die Summe aus 2,5 und 5,1 mit der Zahl 0,6. (2,5 + 5,1) 0,6 = 4,56 d) Subtrahiere den Quotienten aus 21,552 und 1,2 von 22,4. 22,4 21,552 : 1,2 = 4,44 e) Dividiere die Differenz der Zahlen 18,3 und 6,1 durch ihre Summe. (18,3 6,1) : (18,3 + 6,1) = 0,5 16

18 1 Zahl und Zahlbereiche 1.7 Arbeitsblätter in zwei Niveaustufen Alle Arbeitsblätter liegen in zwei Niveaustufen vor: Niveau 2 zielt auf das Grundniveau, Niveau 1 stellt ein Differenzierungsangebot für schwächere Schülerinnen und Schüler dar. Die Niveaustufe 1 bietet gleiche Inhalte und ähnliche Aufgaben wie Niveaustufe 2, verwendet aber einfacheres Zahlenmaterial und gibt zusätzlich Hilfestellungen. Beide Arbeitsblätter können parallel im Unterricht eingesetzt werden. Inhalt: Brüche in umwandeln Brüche, und Prozentsätze vergleichen und ordnen im Kopf addieren im Kopf subtrahieren Schriftliche Addition und Subtraktion von Einkaufen Einfache Multiplikation und Division von Multiplikation von im Kopf Kreuzzahlrätsel zur Multiplikation von Dividieren im Kopf Terme und Vorrangregeln am Zahlenstrahl ablesen und ergänzen Aufgaben mit Worten X X X X X X X X X X X X X X

19

20 Arbeitsblatt Brüche in umwandeln (Niveau 1) 1 Wandle die Brüche in um. 8 7 a) = b) = c) d) g) = f) 1 = e) = 5 h) = 10 i) 3 10 = 4 1 = 4 1 = 2 Wandle die Brüche durch Division in um. 87 a) = b) = c) = 4 5 d) = e) = 4 8 f) 20 = 3 19

21 Lösungsblatt Brüche in umwandeln (Niveau 1) 1 Wandle die Brüche in um. a) 8 = 2 b) 4 7 = 3,5 c) 2 10 = 2, d) = 0,5 e) = ,1 f) = 0, g) = 5 0,2 h) = 0,7 10 i) = 0, Wandle die Brüche durch Division in um. 87 a) = b) = 3,25 c) = 2,4 4 5 d) 55 = 13,75 e) 4 17 = 2,125 8 f) 20 = 6,6 3 20

22 Arbeitsblatt Brüche in umwandeln (Niveau 2) 1 Wandle die Brüche in um. 2 a) = 3 5 b) = 4 c) 3 23 d) = 8 e) = 20 f) g) 7 = = = 8 h) = 15 i) 4000 = 2 Wandle die Brüche durch Division in um a) = 8 b) = 6 c) = 33 d) = 3 e) = 16 f) = 6 21

23 Arbeitsblatt Brüche in umwandeln (Niveau 2) 1 Wandle die Brüche in um. 2 a) = 3 5 b) = 4 c) 3 23 d) = 8 e) = 20 f) g) 7 = = = 8 h) = 15 i) 4000 = 2 Wandle die Brüche durch Division in um a) = 8 b) = 6 c) = 33 d) = 3 e) = 16 f) = 6 22

24 Arbeitsblatt Brüche, und Prozentsätze (Niveau 2) 1 Ergänze jeweils die passende Prozent- bzw. Dezimalzahl. 10 % 25 % 75 % 0,2 0,5 1 2 In einem Fernsehquiz treten drei Schülerinnen und Schüler gegeneinander an. Nils konnte 21 der 25 Fragen beantworten, Amelie wusste 88 % der Antworten und Lukas hat vier Fünftel der Fragen richtig beantwortet. Wer hat das Quiz gewonnen? 3 Ordne die Brüche und den Prozentsätzen zu. Setzt man die Buchstaben in die richtige Reihenfolge, ergeben sich Lösungswörter. 0,04 A B T L 0,75 Ä I G 9 25 R 0,25 S C H E 4 % 25 % 75 % 23

25 Lösungsblatt Brüche, und Prozentsätze (Niveau 1) 1 Verbinde die Prozentsätze mit den passenden durch eine Linie. 2 In einem Quiz treten drei Schülerinnen und Schüler gegeneinander an. Erik konnte 18 der 20 Fragen beantworten, Fenja wusste 80 % der Antworten und Hannah hat drei Viertel der Fragen richtig beantwortet. Wer hat das Quiz gewonnen? 18 Erik: = 90 % (18 richtige Antworten) Fenja: 80 % = (16 richtige Antworten) Hannah: = =75 % (15 richtige Antworten) 4 20 Erik hat mit 18 richtigen Antworten das Quiz gewonnen. 3 Ordne die Brüche und den Prozentsätzen zu. Setzt man die Buchstaben in die richtige Reihenfolge, ergeben sich Lösungswörter. 0,1 I 5 B 0,05 A N S Ä U 10 E 1 R T L O 100 % B Ä R 10 % I N S E L 5 % A U T O 24

26 Arbeitsblatt Brüche, und Prozentsätze (Niveau 2) 1 Ergänze jeweils die passende Prozent- bzw. Dezimalzahl. 10 % 25 % 75 % 0,2 0,5 1 2 In einem Fernsehquiz treten drei Schülerinnen und Schüler gegeneinander an. Nils konnte 21 der 25 Fragen beantworten, Amelie wusste 88 % der Antworten und Lukas hat vier Fünftel der Fragen richtig beantwortet. Wer hat das Quiz gewonnen? 3 Ordne die Brüche und den Prozentsätzen zu. Setzt man die Buchstaben in die richtige Reihenfolge, ergeben sich Lösungswörter. 0,04 A B T L 0,75 Ä I G 9 25 R 0,25 S C H E 4 % 25 % 75 % 25

27 Lösungsblatt Brüche, und Prozentsätze (Niveau 2) 1 Ergänze jeweils die passende Prozent- bzw. Dezimalzahl. 10 % 20 % 25 % 50 % 75 % 100 % 0,1 0,2 0,25 0,5 0, In einem Fernsehquiz treten drei Schülerinnen und Schüler gegeneinander an. Nils konnte 21 der 25 Fragen beantworten, Amelie wusste 88 % der Antworten und Lukas hat vier Fünftel der Fragen richtig beantwortet. Wer hat das Quiz gewonnen? 21 Nils: = 84 % (21 richtige Antworten) Amelie: 88 % = (22 richtige Antworten) 25 Lukas: 5 4 = 80 % (20 richtige Antworten) Amelie hat mit 22 richtigen Antworten das Quiz gewonnen. 3 Ordne die Brüche und den Prozentsätzen zu. Setzt man die Buchstaben in die richtige Reihenfolge, ergeben sich Lösungswörter. 0,04 A B T L 0,75 Ä I G 9 25 R 0,25 S C H E 4 % ALGE 25 % TISCH 75 % BÄR 26

28 Arbeitsblatt vergleichen und ordnen (Niveau 1) 1 Setze die richtigen Zeichen ein: <, > oder =. a) 1 0,1 b) 0,9 0,2 c) 0,50 0,5 d) 3 3,00 e) 0,008 0,800 f) 0,4 0,6 g) 2,2 2,25 h) 0,72 0,27 i) 0,004 0,04 2 Setze die richtigen Zeichen ein: <, > oder =. a) ,5 b) 0,6 10 c) 1 4 0,1 7 d) 50 0,5 e) 2, f) 100 1,59 61 g) 6,9 10 h) Markiere alle Zahlen rot, die größer als 0,5 sind ,501 0,59 0,005 0,09 0, ,2 i) 0,555 0,49 0, ,4 4 Vergleiche die. Markiere jeweils die Stelle rot, an der du entscheidest, welche Zahl größer ist. a) 0,08 0,01 b) 0,49 0,79 c) 1,1 5,1 d) 3,515 3,525 e) 0,022 0,031 f) 5,31 0,51 5 Setze geeignete natürliche Zahlen ein. a) 0,2 = 10 < 0,4 < 10 = 1 2 = 0, b) 0,3 = 10 < 0, < 2 = 0,5 < 10 = 0,9 27

29 Lösungsblatt vergleichen und ordnen (Niveau 1) 1 Setze die richtigen Zeichen ein: <, > oder =. a) 1 > 0,1 b) 0,9 > 0,2 c) 0,50 = 0,5 d) 3 = 3,00 e) 0,008 < 0,800 f) 0,4 < 0,6 g) 2,2 < 2,25 h) 0,72 > 0,27 i) 0,004 < 0,04 2 Setze die richtigen Zeichen ein: <, > oder =. a) = 0,5 b) 0,6 > 10 c) 1 4 > 0,1 7 d) 50 < 0,5 e) 2,8 > f) 100 = 1,59 61 g) 6,9 > 10 h) Markiere alle Zahlen rot, die größer als 0,5 sind ,501 0,59 0,005 0,09 0, < 1,2 i) 0,555 > 10 0,49 0, ,4 4 Vergleiche die. Markiere jeweils die Stelle rot, an der du entscheidest, welche Zahl größer ist. a) 0,08 > 0,01 b) 0,49 < 0,79 c) 1,1 < 5,1 d) 3,515 < 3,525 e) 0,022 < 0,031 f) 5,31 > 0,51 5 Setze geeignete natürliche Zahlen ein. a) 0,2 = 10 < 0,4 < 10 = 1 2 = 0, b) 0,3 = 10 < 0, < 2 = 0,5 < 10 = 0,9 28

30 Arbeitsblatt vergleichen und ordnen (Niveau 2) 1 Setze die richtigen Zeichen ein: <, > oder =. a) 0,1 0,01 b) 0,8 0,80 c) 0,123 0,231 d) 0,340 0,3400 e) 0,54 0,45 f) 1,204 1,203 g) 1,17 1,107 h) 9,6209 9,621 i) 1,32 1,321 2 Setze die richtigen Zeichen ein: <, > oder =. a) 1 6 d) ,9 b) 0, ,64 e) 6, c) 1 4 f) ,24 1, g) 1,35 20 h) Markiere alle Zahlen rot, die größer als 0,55 sind ,501 0,5051 0,055 0,550 0, ,11 i) 0,41 0,4999 0, , Vergleiche die. Markiere jeweils die Stelle rot, an der du entscheidest, welche Zahl größer ist. a) 0,750 0,705 b) 0,39 0,41 c) 0,1235 0,1234 d) 12, ,4058 e) 0,0022 0,0002 f) 2,531 2,351 5 Setze geeignete natürliche Zahlen ein. a) 0,2 = 5 < 0,3 < = < 0, 50 b) 0,2 0 > 0,20 = 100 > 0,1 > 0,1 > 0, 29

31 Lösungsblatt vergleichen und ordnen (Niveau 2) 1 Setze die richtigen Zeichen ein: <, > oder =. a) 0,1 > 0,01 b) 0,8 = 0,80 c) 0,123 < 0,231 d) 0,340 = 0,3400 e) 0,54 > 0,45 f) 1,204 > 1,203 g) 1,17 > 1,107 h) 9,6209 < 9,621 i) 1,32 < 1,321 2 Setze die richtigen Zeichen ein: <, > oder =. a) 1 6 d) g) 1,35 < 20 < 0,9 b) 0,220 = < 0,64 e) 6,2 < h) Markiere alle Zahlen rot, die größer als 0,55 sind ,501 0,5051 0,055 0,550 0, c) 1 4 f) > 0,24 = 1,432 4 < 1,11 i) 0,41 > 10 0,4999 0, , Vergleiche die. Markiere jeweils die Stelle rot, an der du entscheidest, welche Zahl größer ist. a) 0,750 > 0,705 b) 0,39 < 0,41 c) 0,1235 > 0,1234 d) 12,4508 < 21,4058 e) 0,0022 > 0,0002 f) 2,531 > 2,351 5 Setze geeignete natürliche Zahlen ein. Lösungen sind zum Teil beispielhaft. a) 0,2 = 5 < 0,3 < = < 0, 50 b) 0,2 0 > 0,20 = 100 > 0,1 > 0,1 > 0, 30

32 Arbeitsblatt im Kopf addieren (Niveau 1) 1 Addiere im Kopf. a) 2 + 0,5 = b) 3 + 1,4 = c) 5,7 + 2 = d) 0,3 + 0,4 = e) 0,2 + 0,8 = f) 1,3 + 5,1 = g) 2,6 + 0,7 = h) 1,4 + 3,9 = 2 Ergänze zu richtig gelösten Aufgaben. a) 3 + = 10 b) + 0,5 = 1 c) 4,6 + = 5 d) + 9,2 = 10 e) 22 + = 25,8 f) + 0,5 = 2,2 3 Ergänze die fehlenden Zahlen, so dass sich regelmäßige Zahlenreihen ergeben. a) 0,2 0,4 0,6 1,4 b) 1,5 3 4,5 10,5 c) 2,4 2,8 3,2 4,8 4 Gib den Überschlag bei den folgenden Rechnungen an. a) 999,99 + 5,003 b) 2,49 + 1,103 Überschlag: Überschlag: c) d) 0, ,612 Überschlag: Überschlag: e) 34, ,86 f) 2000, ,05 Überschlag: Überschlag: 31

33 Lösungsblatt im Kopf addieren (Niveau 1) 1 Addiere im Kopf. a) 2 + 0,5 = 2,5 b) 3 + 1,4 = 4,4 c) 5,7 + 2 = 7,7 d) 0,3 + 0,4 = 0,7 e) 0,2 + 0,8 = 1 f) 1,3 + 5,1 = 6,4 g) 2,6 + 0,7 = 3,3 h) 1,4 + 3,9 = 5,3 2 Ergänze zu richtig gelösten Aufgaben. a) = 10 b) 0,5 + 0,5 = 1 c) 4,6 + 0,4 = 5 d) 0,8 + 9,2 = 10 e) ,8 = 25,8 f) 1,7 + 0,5 = 2,2 3 Ergänze die fehlenden Zahlen, so dass sich regelmäßige Zahlenreihen ergeben. a) 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 b) 1,5 3 4,5 6 7,5 9 10,5 12 c) 2,4 2,8 3,2 3,6 4 4,4 4,8 5,2 4 Gib den Überschlag bei den folgenden Rechnungen an. a) 999,99 + 5,003 b) 2,49 + 1,103 Überschlag: = 1005 Überschlag: 2,5 + 1,1 = 3,6 (gerundet auf Einer) (gerundet auf Zehntel) c) d) 0, ,612 Überschlag: = Überschlag: 0,1 + 0,6 = 0, (gerundet auf Tausender) (gerundet auf Zehntel) e) 34, ,86 f) 2000, ,05 Überschlag: = 48 Überschlag: = 2128 (gerundet auf Einer) (gerundet auf Einer) 32

34 Arbeitsblatt im Kopf addieren (Niveau 2) 1 Addiere im Kopf. a) 2,5 + 1,2 = b) 0,5 + 8,5 = c) 3,6 + 0,3 = d) 3,6 + 0,4 = e) 0,15 + 0,20 = f) 10,7 + 7,1 = g) 14,8 + 12,2 = h) 14,8 + 12,5 = 2 Ergänze zu richtig gelösten Aufgaben. a) 2,5 + = 5 b) + 4,6 = 9 c) 30,5 + = 37,6 d) + 8,2 = 10 e) 21,3 + = 22,1 f) + 8,2 = 10,8 3 Ergänze die fehlenden Zahlen, so dass sich regelmäßige Zahlenreihen ergeben. a) 1,2 2,4 3,6 8,4 b) 0,3 0,7 1,1 2,7 c) 1,2 1,3 1,5 4 Gib den Überschlag bei den folgenden Rechnungen an. a) 465, ,806 b) 45, ,05 Überschlag: Überschlag: c) 6704, ,075 d) 3,75 + 0,97 Überschlag: Überschlag: e) 34, ,07 + 5,002 f) 6471, ,5 Überschlag: Überschlag: 33

35 Lösungsblatt im Kopf addieren (Niveau 2) 1 Addiere im Kopf. a) 2,5 + 1,2 = 3,7 b) 0,5 + 8,5 = 9 c) 3,6 + 0,3 = 3,9 d) 3,6 + 0,4 = 4 e) 0,15 + 0,20 = 0,35 f) 10,7 + 7,1 = 17,8 g) 14,8 + 12,2 = 27 h) 14,8 + 12,5 = 27,3 2 Ergänze zu richtig gelösten Aufgaben. a) 2,5 + 2,5 = 5 b) 4,4 + 4,6 = 9 c) 30,5 + 7,1 = 37,6 d) 1,8 + 8,2 = 10 e) 21,3 + 0,8 = 22,1 f) 2,6 + 8,2 = 10,8 3 Ergänze die fehlenden Zahlen, so dass sich regelmäßige Zahlenreihen ergeben. a) 1,2 2,4 3,6 4,8 6 7,2 8,4 9,6 b) 0,3 0,7 1,1 1,5 1,9 2,3 2,7 3,1 c) 1,2 1,3 1,5 1,8 2,2 2,7 3,3 4,0 4 Gib den Überschlag bei den folgenden Rechnungen an. a) 465, ,806 b) 45, ,05 Überschlag: = 481 Überschlag: = 408 (gerundet auf Einer) (gerundet auf Einer) c) 6704, ,075 d) 3,75 + 0,97 Überschlag: = 6730 Überschlag: 3,8 + 1 = 4,8 (gerundet auf Zehner) (gerundet auf Zehntel) e) 34, ,07 + 5,002 f) 6471, ,5 Überschlag: 34,1 + 12,1 + 5 = 51,2 Überschlag: = 6560 (gerundet auf Zehntel) (gerundet auf Zehner) 34

36 Arbeitsblatt im Kopf subtrahieren (Niveau 1) 1 Subtrahiere im Kopf. a) 5,3 2 = b) 4 0,5 = c) 1,2 0,2 = d) 0,9 0,7 = e) 1,5 0,1 = f) 2,3 1,3 = g) 4,9 2,5 = h) 1,1 0,2 = 2 Ergänze zu richtig gelösten Aufgaben. a) 2,5 = 1,5 b) 0,5 = 1 c) 12,3 = 10,3 d) 0,6 = 3 e) 5,6 = 4 f) 0,1 = 0,9 3 Ergänze die fehlenden Zahlen, so dass sich regelmäßige Zahlenreihen ergeben. a) 26,9 24,9 22,9 14,9 b) 4,0 3,5 3,0 1,0 c) 2,4 2,2 2,0 1,2 4 Gib den Überschlag bei den folgenden Rechnungen an. a) 99,99 19,89 b) 8,1 5,9 Überschlag: Überschlag: c) 850,12 49,88 d) 1,097 0,1 Überschlag: Überschlag: e) 39,67 11,49 f) 36 0, Überschlag: Überschlag: 35

37 Lösungsblatt im Kopf subtrahieren (Niveau 1) 1 Subtrahiere im Kopf. a) 5,3 2 = 3,3 b) 4 0,5 = 3,5 c) 1,2 0,2 = 1 d) 0,9 0,7 = 0,2 e) 1,5 0,1 = 1,4 f) 2,3 1,3 = 1 g) 4,9 2,5 = 2,4 h) 1,1 0,2 = 0,9 2 Ergänze zu richtig gelösten Aufgaben. a) 2,5 1 = 1,5 b) 1,5 0,5 = 1 c) 12,3 2 = 10,3 d) 3,6 0,6 = 3 e) 5,6 1,6 = 4 f) 1 0,1 = 0,9 3 Ergänze die fehlenden Zahlen, so dass sich regelmäßige Zahlenreihen ergeben. a) 26,9 24,9 22,9 20,9 18,9 16,9 14,9 12,9 b) 4,0 3,5 3,0 2,5 2 1,5 1,0 0,5 c) 2,4 2,2 2,0 1,8 1,6 1,4 1,2 1,0 4 Gib den Überschlag bei den folgenden Rechnungen an. a) 99,99 19,89 b) 8,1 5,9 Überschlag: = 80 Überschlag: 8 6 = 2 (gerundet auf Einer bzw. Zehner) (gerundet auf Einer) c) 850,12 49,88 d) 1,097 0,1 Überschlag: = 800 Überschlag: 1,1 0,1 = 1 (gerundet auf Einer bzw. Zehner) (gerundet auf Zehntel) e) 39,67 11,49 f) 36 0, Überschlag: = 30 Überschlag: 36 0 = 36 (gerundet auf Zehner) (gerundet auf Einer) 36

38 Arbeitsblatt im Kopf subtrahieren (Niveau 2) 1 Subtrahiere im Kopf. a) 4,3 0,2 = b) 1,5 0,5 = c) 2,8 0,8 = d) 2,8 0,9 = e) 0,2 0,1 = f) 10,7 7,1 = g) 65,4 3,2 = h) 5,7 4,8 = 2 Ergänze zu richtig gelösten Aufgaben. a) 8,3 = 4 b) 3,7 = 7,0 c) 28,0 = 25,2 d) 8,2 = 10 e) 99,9 = 97,1 f) 0,2 = 0,4 3 Ergänze die fehlenden Zahlen, so dass sich regelmäßige Zahlenreihen ergeben. a) 18,0 17,2 16,4 13,2 b) 20,5 19,4 18,3 13,9 c) 1,2 1,15 1,1 4 Gib den Überschlag bei den folgenden Rechnungen an. a) 895,78 202,5 b) 255,9 24,8 Überschlag: Überschlag: c) 847,88 84,788 d) 2100,74 857,88 Überschlag: Überschlag: e) 278,88 199,99 49,99 f) 24,07 3,28 14,65 Überschlag: Überschlag: 37

39 Lösungsblatt im Kopf subtrahieren (Niveau 2) 1 Subtrahiere im Kopf. a) 4,3 0,2 = 4,1 b) 1,5 0,5 = 1 c) 2,8 0,8 = 2 d) 2,8 0,9 = 1,9 e) 0,2 0,1 = 0,1 f) 10,7 7,1 = 3,6 g) 65,4 3,2 = 62,2 h) 5,7 4,8 = 0,9 2 Ergänze zu richtig gelösten Aufgaben. a) 8,3 4,3 = 4 b) 10,7 3,7 = 7,0 c) 28,0 2,8 = 25,2 d) 18,2 8,2 = 10 e) 99,9 2,8 = 97,1 f) 0,6 0,2 = 0,4 3 Ergänze die fehlenden Zahlen, so dass sich regelmäßige Zahlenreihen ergeben. a) 18,0 17,2 16,4 15,6 14,8 14,0 13,2 12,4 b) 20,5 19,4 18,3 17,2 16, ,9 12,8 c) 1,2 1,15 1,1 1,05 1 0,95 0,9 0,85 4 Gib den Überschlag bei den folgenden Rechnungen an. a) 895,78 202,5 b) 255,9 24,8 Überschlag: = 693 Überschlag: = 231 (gerundet auf Einer) (gerundet auf Einer) c) 847,88 84,788 d) 2100,74 857,88 Überschlag: = 763 Überschlag: = 1240 (gerundet auf Einer) (gerundet auf Zehner) e) 278,88 199,99 49,99 f) 24,07 3,28 14,65 Überschlag: = 30 Überschlag: = 6 (gerundet auf Zehner) (gerundet auf Einer) 38

40 Arbeitsblatt Schriftliche Addition und Subtraktion von (Niveau 1) 1 Ergänze die fehlenden Ziffern. Überprüfe dein Ergebnis durch einen Überschlag. 2 Subtrahiere schriftlich. Addiere zur Kontrolle alle Ergebnisse. Der Wert der Summe ist eine Zahl, in der nur gleiche Ziffern vorkommen. a) 0,4674 0,2222 0,1111 b) 7,7777 6,2034 1,3231 c) 9,9989 1, d) 7,6559 4,1230 1, Löse die Aufgaben schriftlich. Überprüfe dein Ergebnis durch einen Überschlag. a) 82,57 10,14 52,32 b) 12, , ,40 c) 8, ,359 d) 6, ,23 + 0,051 39

41 Lösungsblatt Schriftliche Addition und Subtraktion von (Niveau 1) 1 Ergänze die fehlenden Ziffern. Überprüfe dein Ergebnis durch einen Überschlag. 2 Subtrahiere schriftlich. Addiere zur Kontrolle alle Ergebnisse. Der Wert der Summe ist eine Zahl, in der nur gleiche Ziffern vorkommen. a) 0,4674 0,2222 0,1111 b) 7,7777 6,2034 1,3231 c) 9,9989 1, d) 7,6559 4,1230 1, Löse die Aufgaben schriftlich. Überprüfe dein Ergebnis durch einen Überschlag. a) 82,57 10,14 52,32 b) 12, , ,40 c) 8, ,359 d) 6, ,23 + 0,051 40

42 Arbeitsblatt Schriftliche Addition und Subtraktion von (Niveau 2) 1 Ergänze die fehlenden Ziffern. Überprüfe dein Ergebnis durch einen Überschlag. 2 Subtrahiere schriftlich. Addiere zur Kontrolle alle Ergebnisse. Der Wert der Summe ist eine Zahl, in der nur gleiche Ziffern vorkommen. a) 4,36 0,784 2,6 0,8445 b) 5,4 2,7091 1,34 0,1133 c) 6,3804 4,11 1,6233 0,058 d) 9,706 1,37 0,5897 5, Löse die Aufgaben schriftlich. Überprüfe dein Ergebnis durch einen Überschlag. a) 6,267 0,102 2,1 0,123 b) 1, , ,11 + 1,3 c) 3,047 1,01 0,999 0,005 d) 0, ,37 + 1,5 + 7,39 41

43 Lösungsblatt Schriftliche Addition und Subtraktion von (Niveau 2) 1 Ergänze die fehlenden Ziffern. Überprüfe dein Ergebnis durch einen Überschlag. 2 Subtrahiere schriftlich. Addiere zur Kontrolle alle Ergebnisse. Der Wert der Summe ist eine Zahl, in der nur gleiche Ziffern vorkommen. a) 4,36 0,784 2,6 0,8445 b) 5,4 2,7091 1,34 0,1133 c) 6,3804 4,11 1,6233 0,058 d) 9,706 1,37 0,5897 5, Löse die Aufgaben schriftlich. Überprüfe dein Ergebnis durch einen Überschlag. a) 6,267 0,102 2,1 0,123 b) 1, , ,11 + 1,3 c) 3,047 1,01 0,999 0,005 d) 0, ,37 + 1,5 + 7,39 42

44 Einkaufen (Niveau 1) Arbeitsblatt Preise im Supermarkt Edamer (100 g): 0,59 Frischmilch (1 ): 0,59 Kartoffeln (2,5 kg): 0,65 Fischfilet (400 g): 1,78 Mischbrot (0,5 kg): 0,78 Schokolade (100 g): 0,99 1 Ruth soll einkaufen gehen. Ihr Vater hat ihr einen Einkaufszettel geschrieben. a) Überschlage, wie viel der Einkauf kosten wird. b) Wie viel Geld muss Ruths Vater ihr geben, wenn er ihr nur Scheine mitgeben will? c) Berechne exakt, wie viel der Einkauf kostet. d) Wie viel Geld gibt Ruth ihrem Vater zurück? 2 Karl hilft seiner Mutter bei ihrem Einkauf. 100 g Edamer 5 kg Kartoffeln 400 g Fischfilet 0,5 kg Mischbrot 100 g Schokolade a) Er bekommt einen möglichst kleinen Geldschein mit. Welchen? b) Wie viel kostet der Einkauf? c) Wie viel Rückgeld erhält Karl? 3 Stelle die Beträge mit möglichst wenigen Scheinen und Münzen zusammen. Betrag -Scheine -Münzen ct-münzen in , ,60 64, ct ct 43

45 Lösungsblatt Einkaufen (Niveau 1) Preise im Supermarkt Edamer (100 g): 0,59 Frischmilch (1 ): 0,59 Kartoffeln (2,5 kg): 0,65 Fischfilet (400 g): 1,78 Mischbrot (0,5 kg): 0,78 Schokolade (100 g): 0,99 1 Ruth soll einkaufen gehen. Ihr Vater hat ihr einen Einkaufszettel geschrieben. a) Überschlage, wie viel der Einkauf kosten wird. rund 9 b) Wie viel Geld muss Ruths Vater ihr geben, wenn er ihr nur Scheine mitgeben will? Er muss ihr einen 10 -Schein mitgeben. c) Berechne exakt, wie viel der Einkauf kostet. Der Einkauf kostet 8,09. d) Wie viel Geld gibt Ruth ihrem Vater zurück? Ruth gibt ihm 1,91 zurück. 2 Karl hilft seiner Mutter bei ihrem Einkauf. 100 g Edamer 5 kg Kartoffeln 400 g Fischfilet 0,5 kg Mischbrot 100 g Schokolade zu c) 2 0,99 = 1,98 3 0,59 = 1,77 1 0,78 = 0,78 2 1,78 = 3,56 a) Er bekommt einen möglichst kleinen Geldschein mit. Welchen? Summe: 8, Schein b) Wie viel kostet der Einkauf? 5,44 c) Wie viel Rückgeld erhält Karl? 4,56 3 Stelle die Beträge mit möglichst wenigen Scheinen und Münzen zusammen. Betrag -Scheine -Münzen ct-münzen in , , , ct ct

46 Einkaufen (Niveau 2) Arbeitsblatt Preise im Supermarkt Edamer (100 g): 0,59 Margarine (250 g): 0,75 Frischmilch (1 ): 0,59 Kartoffeln (2,5 kg): 0,65 Fischfilet (400 g): 1,78 Mischbrot (0,5 kg): 0,78 Schwarzbrot (500 g): 0,95 Schokolade (100 g): 0,99 1 Lukas soll einkaufen gehen. Sein Vater hat ihm einen Einkaufszettel geschrieben. a) Überschlage, wie viel der Einkauf kosten wird. b) Wie viel Geld muss Lukas Vater ihm geben, wenn er ihm nur Scheine mitgeben will? c) Berechne exakt, wie viel der Einkauf kostet. d) Wie viel Geld gibt Lukas seinem Vater zurück? 2 Sabine hilft ihren Großeltern bei ihrem Wocheneinkauf. 1,5 kg Schwarzbrot 750 g Mischbrot 400 g Edamer 750 g Margarine 7,5 kg Kartoffeln 800 g Fischfilet a) Sie geben ihr einen möglichst kleinen Geldschein mit. Welchen? b) Wie viel kostet der Einkauf? c) Wie viel Rückgeld erhält Sabine? 3 Stelle die Beträge mit möglichst wenigen Scheinen und Münzen zusammen. Betrag -Scheine -Münzen ct-münzen in ,35 32,36 199, ct 45

47 Lösungsblatt Einkaufen (Niveau 2) Preise im Supermarkt Edamer (100 g): 0,59 Margarine (250 g): 0,75 Frischmilch (1 ): 0,59 Kartoffeln (2,5 kg): 0,65 Fischfilet (400 g): 1,78 Mischbrot (0,5 kg): 0,78 Schwarzbrot (500 g): 0,95 Schokolade (100 g): 0,99 1 Lukas soll einkaufen gehen. Sein Vater hat ihm einen Einkaufszettel geschrieben. a) Überschlage, wie viel der Einkauf kosten wird. rund 13 b) Wie viel Geld muss Lukas Vater ihm geben, wenn er ihm nur Scheine mitgeben will? Er muss ihm einen 10 - und einen 5 -Schein, also 15, mitgeben. c) Berechne exakt, wie viel der Einkauf kostet. Der Einkauf kostet 12,21. d) Wie viel Geld gibt Lukas seinem Vater zurück? Lukas gibt ihm 2,79 zurück. 2 Sabine hilft ihren Großeltern bei ihrem Wocheneinkauf. 1,5 kg Schwarzbrot 750 g Mischbrot 400 g Edamer 750 g Margarine 7,5 kg Kartoffeln 800 g Fischfilet zu c) 2 0,75 = 1,50 4 0,78 = 3,12 3 0,95 = 2,85 3 0,59 = 1,77 3 0,99 = 2,97 Summe: 12,21 a) Sie geben ihr einen möglichst kleinen Geldschein mit. Welchen? 20 -Schein b) Wie viel kostet der Einkauf? 14,14 c) Wie viel Rückgeld erhält Sabine? 5,86 3 Stelle die Beträge mit möglichst wenigen Scheinen und Münzen zusammen. Betrag -Scheine -Münzen ct-münzen in , , , ct

48 Arbeitsblatt Einfache Multiplikation und Division von (Niveau 1) 1 Rechne im Kopf und fülle die Multiplikations- und Divisionstabellen aus. a) b) 0,1 0,01 0,001 0,0001 0, , c) : d) : 0,1 0,01 0,001 0, ,9 2 Berechne im Kopf. a) 5,6 10 = b) 5,6 : 10 = c) 5,6 0,1 = d) 5,6 : 0,1 = e) 0,9 100 = f) 0,9 : 100 = g) 0,9 0,01 = h) 0,9 : 0,01 = 3 Ergänze die Divisionstabellen. a) : b) : ,8 0,2 c) : d) : ,6 0,03 0,96 4 Löse die Aufgaben im Kopf. a) 2,6 : 2 = b) 3,6 : 3 = c) 1,2 : 12 = d) 0,8 : 4 = e) 0,09 : 3 = f) 0,004 : 2 = g) 1,21 : 11 = h) 14,4 : 12 = 47

49 Lösungsblatt Einfache Multiplikation und Division von (Niveau 1) 1 Rechne im Kopf und fülle die Multiplikations- und Divisionstabellen aus. a) b) 0,1 0,01 0,001 0,0001 0, ,5 0,05 0,06 0, ,6 c) : d) : 0,1 0,01 0,001 0, ,8 0,08 0, ,5 0,35 0, Berechne im Kopf. a) 5,6 10 = 56 b) 5,6 : 10 = 0,56 c) 5,6 0,1 = 0,56 d) 5,6 : 0,1 = 56 e) 0,9 100 = 90 f) 0,9 : 100 = 0,009 g) 0,9 0,01 = 0,009 h) 0,9 : 0,01 = 90 3 Ergänze die Divisionstabellen. a) : b) : ,8 2,4 1,2 0,8 0,6 0,2 0,10 0,05 0,04 0,02 c) : d) : ,5 1 0,6 0,2 9,6 4,8 3,2 2,4 1,2 0,03 0,015 0,01 0,006 0,002 0,96 0,48 0,32 0,24 0,12 4 Löse die Aufgaben im Kopf. a) 2,6 : 2 = 1,3 b) 3,6 : 3 = 1,2 c) 1,2 : 12 = 0,1 d) 0,8 : 4 = 0,2 e) 0,09 : 3 = 0,03 f) 0,004 : 2 = 0,002 g) 1,21 : 11 = 0,11 h) 14,4 : 12 = 1,2 48

50 Arbeitsblatt Einfache Multiplikation und Division von (Niveau 2) 1 Rechne im Kopf und fülle die Multiplikations- und Divisionstabellen aus. a) b) 0,1 0,01 0,001 0,0001 2, , c) : d) : 0,1 0,01 0,01 0, , ,8 2 Berechne im Kopf. a) 2, = b) 2,35 : 1000 = c) 0, = d) 0,00026 : 10 = e) 2,69 0,01 = f) 3,502 : 0,1 = g) 0,078 0,00001 = h) 0,02764 : 0,0001 = 3 Ergänze die Divisionstabellen. a) : b) : ,8 0,648 0,84 21,6 c) : d) : ,15 22,8 10,5 1,14 4 Löse die Aufgaben im Kopf. a) 0,32 : 8 = b) 0,045 : 5 = c) 7,2 : 12 = d) 1,26 : 9 = e) 32,4 : 18 = f) 0,0093 : 3 = g) 0,85 : 17 = h) 0,00092 : 4 = 49

51 Lösungsblatt Einfache Multiplikation und Division von (Niveau 2) 1 Rechne im Kopf und fülle die Multiplikations- und Divisionstabellen aus. a) b) 0,1 0,01 0,001 0,0001 2,45 24, ,1 3,61 0,361 0,1368 1,368 13,68 136, ,8 c) : d) : 0,1 0,01 0,01 0, ,7 09,17 0,917 0,0073 0,073 0,73 7, ,5 2,05 0,205 2, Berechne im Kopf. a) 2, = 236,8 b) 2,35 : 1000 = 0,00235 c) 0, = 35,4 d) 0,00026 : 10 = 0, e) 2,69 0,01 = 0,0269 f) 3,502 : 0,1 = 35,02 g) 0,078 0,00001 = 0, h) 0,02764 : 0,0001 = 276,4 3 Ergänze die Divisionstabellen. a) : b) : ,8 8,4 5,6 4,2 2,4 0,648 0,216 0,162 0,108 0,072 0,84 0,42 0,28 0,21 0,12 21,6 7,2 5,4 3,6 2,4 c) : d) : ,15 1,05 0,63 0,45 0,21 22,8 11,4 4,56 3,8 1,9 10,5 3,5 2,1 1,5 0,7 1,14 0,57 0,228 0,19 0,095 4 Löse die Aufgaben im Kopf. a) 0,32 : 8 = 0,04 b) 0,045 : 5 = 0,009 c) 7,2 : 12 = 0,6 d) 1,26 : 9 = 0,14 e) 32,4 : 18 = 1,8 f) 0,0093 : 3 = 0,0031 g) 0,85 : 17 = 0,05 h) 0,00092 : 4 = 0,

52 Arbeitsblatt Multiplikation von im Kopf (Niveau 1) 1 Wähle jeweils eine Zahl aus dem rechten Feld und eine aus dem linken Feld und multipliziere sie im Kopf. Notiere die Aufgaben und die zugehörigen Ergebnisse. 0, ,6 0,01 0,5 5 0,8 1,2 50 0, ,7 2 0,2 0,04 0, a) = b) = c) = d) = e) = f) = g) = h) = i) = j) = k) = l) = 2 Multipliziere zeilen- und spaltenweise im Kopf. 2 0,5 0, , ,1 0,2 0, ,02 0,7 0,5 0,2 0,1 0, ,8 0,3 2 51

53 Lösungsblatt Multiplikation von im Kopf (Niveau 1) 1 Wähle jeweils eine Zahl aus dem rechten Feld und eine aus dem linken Feld und multipliziere sie im Kopf. Notiere die Aufgaben und die zugehörigen Ergebnisse. 0, ,6 0,01 0,5 5 0,8 1,2 50 0, ,7 2 0,2 0,04 0, a) individuell = b) = c) = d) = e) = f) = g) = h) = i) = j) = k) = l) = 2 Multipliziere zeilen- und spaltenweise im Kopf. 2 0,5 1 0, ,1 6 0,6 10 0,1 1 0,2 0,5 0,1 0,2 0,3 6 0,5 0, ,02 2 0,7 0,5 0,35 0,2 0,1 0,02 0, ,2 5 0,8 4 0,3 2 0,6 12 0,2 3,5 0,4 0,06 0,2 52

54 Arbeitsblatt Multiplikation von im Kopf (Niveau 2) 1 Wähle jeweils eine Zahl aus dem rechten Feld und eine aus dem linken Feld und multipliziere sie im Kopf. Notiere die Aufgaben und die zugehörigen Ergebnisse. 0,25 3 0, ,04 0,4 0,12 0,2 30 2,5 45 4,5 0, ,03 1,2 0, a) = b) = c) = d) = e) = f) = g) = h) = i) = j) = k) = l) = 2 Multipliziere zeilen- und spaltenweise im Kopf. 2 0,4 0,8 5 1,5 4 0,2 1,5 10 0,12 0,2 0,4 2,1 0,6 0,9 1,6 1,2 1,2 7 1,3 1,3 0,8 1,1 1,3 53

55 Lösungsblatt Multiplikation von im Kopf (Niveau 2) 1 Wähle jeweils eine Zahl aus dem rechten Feld und eine aus dem linken Feld und multipliziere sie im Kopf. Notiere die Aufgaben und die zugehörigen Ergebnisse. 0,25 3 0, ,04 0,4 0,12 0,2 30 2,5 45 4,5 0, ,03 1,2 0, a) individuell = b) = c) = d) = e) = f) = g) = h) = i) = j) = k) = l) = 2 Multipliziere zeilen- und spaltenweise im Kopf. 2 0,4 0,8 0, , ,2 1,5 0,3 10 0,12 1,2 0,2 0,4 0,08 0,4 0,6 8 0,6 0,3 1,6 2,1 0,6 1,26 0,9 1,6 1,44 1,2 1,2 1,44 7 1,3 9,1 1,3 0,8 1,04 1,1 1,3 1,43 14,7 0,78 1,17 1,28 1,32 1,56 54

56 Arbeitsblatt Kreuzzahlrätsel zur Multiplikation von (Niveau 1) Trage die Ergebnisse der Aufgaben Stelle für Stelle in das Zahlenschema ein. Beachte: Das Komma hat auch ein Feld! wagerecht: 1 0,4 0,5 3 0, senkrecht: 1 2 0,3 2 2, wagerecht: 1 0, ,1 senkrecht: 1 0, , wagerecht: 1 6, ,1 4 25,2 0,2 senkrecht: 1 2, ,48 0, ,

57 Lösungsblatt Kreuzzahlrätsel zur Multiplikation von (Niveau 1) Trage die Ergebnisse der Aufgaben Stelle für Stelle in das Zahlenschema ein. Beachte: Das Komma hat auch ein Feld! 1 0, 2 2 wagerecht: 1 0,4 0,5 3 0,33 200, 1 senkrecht: 1 2 0,3 2 2, , 8,, 5, 4 wagerecht: 1 0, ,1 senkrecht: 1 0, , , 2 8 wagerecht: 1 6, ,1 4 25,2 0,2 7, 3, 1 2 senkrecht: 1 2, ,48 0, ,05 4 5,

58 Arbeitsblatt Kreuzzahlrätsel zur Multiplikation von (Niveau 2) Trage die Ergebnisse der Aufgaben Stelle für Stelle in das Zahlenschema ein. Beachte: Das Komma hat auch ein Feld! wagerecht: 1 1,52 3,6 5 1,6 1, ,04 8 0, ,2 0, ,25 410, senkrecht: 1 2,09 2,5 2 12,0 3,5 3 0, ,0 4 38,25 6,4 7 13,5 0,6 10 0,8 102,5 wagerecht: 1 0, , ,3 5 0, , ,2 6 5 senkrecht: , , ,

59 Lösungsblatt Kreuzzahlrätsel zur Multiplikation von (Niveau 2) Trage die Ergebnisse der Aufgaben Stelle für Stelle in das Zahlenschema ein. Beachte: Das Komma hat auch ein Feld! 1 5,, , 4 wagerecht: 1 1,52 3,6 5 1,6 1, ,04 8 0, ,2 0, ,25 410, , 8, , , 8 4 6, 3 6 senkrecht: 1 2,09 2,5 2 12,0 3,5 3 0, ,0 4 38,25 6,4 7 13,5 0,6 10 0,8 102,5 wagerecht: 1 0, , ,3 5 0, , ,2 6 5, 5, 1 8, 1, senkrecht: , , , , 4 58

60 Arbeitsblatt Dividieren im Kopf (Niveau 1) 1 Rechne im Kopf und fülle die Divisionstabellen aus. a) : ,1 0,01 b) : 2 0,2 0,02 0, ,7 0,6 c) : 5 0,5 0,05 0,005 d) : 4 0,4 0,04 0, ,1 0,12 e) : 0,3 0,03 0,003 9 f) : 0,6 0,06 0, ,09 0,24 2 Berechne die Aufgaben im Kopf. Wenn du in der Tabelle unten alle Felder ausmalst, in denen eine der 14 Lösungen steht, so erhältst du ein Lösungsmuster. Achtung: Die Lösungszahlen können in der Tabelle mehrfach vorkommen. a) 0,5 : 10 = b) 10 : 0,5 = c) 1,5 : 3 = d) 3 : 1,5 = e) 3 : 0,3 = f) 0,3 : 3 = g) 0,8 : 0,2 = h) 0,08 : 0,2 = i) 0,9 : 0,3 = j) 0,9 : 0,03 = k) 35 : 0,5 = l) 3,5 : 0,5 = m) 0,35 : 0,5 = n) 0,45 : 0,5 = 0,05 0, , , ,8 3 0,01 0,7 0,2 30 0,6 20 0,02 0,9 0, ,8 4 0, ,2 6 0,5 0,8 0,1 8 0,4 0, , ,2 2 0, ,9 59

61 Lösungsblatt Dividieren im Kopf (Niveau 1) 1 Rechne im Kopf und fülle die Divisionstabellen aus. a) : ,1 0,01 b) : 2 0,2 0,02 0, , ,7 0,07 0, ,6 0, c) : 5 0,5 0,05 0,005 d) : 4 0,4 0,04 0, ,1 0,02 0, ,12 0,03 0, e) : 0,3 0,03 0,003 9 f) : 0,6 0,06 0, ,09 0, ,01 0,24 0, ,02 2 Berechne die Aufgaben im Kopf. Wenn du in der Tabelle unten alle Felder ausmalst, in denen eine der 14 Lösungen steht, so erhältst du ein Lösungsmuster. Achtung: Die Lösungszahlen können in der Tabelle mehrfach vorkommen. a) 0,5 : 10 = 0,05 b) 10 : 0,5 = 20 c) 1,5 : 3 = 0,5 d) 3 : 1,5 = 2 e) 3 : 0,3 = 10 f) 0,3 : 3 = 0,1 g) 0,8 : 0,2 = 4 h) 0,08 : 0,2 = 0,4 i) 0,9 : 0,3 = 3 j) 0,9 : 0,03 = 30 k) 35 : 0,5 = 70 l) 3,5 : 0,5 = 7 m) 0,35 : 0,5 = 0,7 n) 0,45 : 0,5 = 0,9 0,05 0, , , ,8 3 0,01 0,7 0,2 30 0,6 20 0,02 0,9 0, ,8 4 0, ,2 6 0,5 0,8 0,1 8 0,4 0, , ,2 2 0, ,9 60

62 Arbeitsblatt Dividieren im Kopf (Niveau 2) 1 Rechne im Kopf und fülle die Divisionstabellen aus. a) : 0,5 0,05 0,005 2,5 b) : 0,3 0,03 0,003 1,3 2,5 0,039 0,25 3,9 c) : 0,4 0,04 0,004 8 d) : 0,7 0,07 0,007 2,1 1,6 0,063 0,16 6,3 e) : 0,12 0,012 0,0012 7,2 f) : 0,15 0,015 0,0015 3,5 14,4 0,0105 0,144 1,05 2 Berechne die Aufgaben im Kopf. Wenn du in der Tabelle unten alle Felder ausmalst, in denen eine der 14 Lösungen steht, so erhältst du ein Lösungsmuster. Achtung: Die Lösungszahlen können in der Tabelle mehrfach vorkommen. a) 0,12 : 4 = b) 0,08 : 0,2 = c) 0,2 : 0,05 = d) 4,9 : 0,07 = e) 0,39 : 0,3 = f) 0,56 : 0,8 = g) 0,51 : 1,7 = h) 7,7 : 0,7 = i) 0,081 : 0,9 = j) 0,96 : 1,6 = k) 1,44 : 1,2 = l) 1,04 : 1,3 = m) 0,095 : 0,19 = n) 0,12 : 2,4 = 0,8 0,01 0,6 0,9 0,09 0,024 0, ,3 11 0,4 2 1,2 1,7 0,5 1,4 0,3 0,01 1,4 0,3 0,77 1,3 70 0,5 0,01 0,4 2 0,5 0,77 0, ,09 0,1 0,3 11,5 0,05 0,1 11 1,7 11,5 0,7 0,1 0,05 1,7 0,8 1 0,03 0,7 0,6 0,024 0,001 1,2 0,9 61

63 Lösungsblatt Dividieren im Kopf (Niveau 2) 1 Rechne im Kopf und fülle die Divisionstabellen aus. a) : 0,5 0,05 0,005 2,5 b) : 0,3 0,03 0,003 1,3 2, ,039 0,13 1,3 13 0,03 0,25 0, ,1 3, c) : 0,4 0,04 0,004 8 d) : 0,7 0,07 0,007 2,1 1, ,2 0,063 0,09 0,9 9 0,03 0,16 0, ,02 6, e) : 0,12 0,012 0,0012 7,2 f) : 0,15 0,015 0,0015 3,5 14, ,0105 0,07 0,7 7 0,003 0,144 1, ,02 1, ,3 2 Berechne die Aufgaben im Kopf. Wenn du in der Tabelle unten alle Felder ausmalst, in denen eine der 14 Lösungen steht, so erhältst du ein Lösungsmuster. Achtung: Die Lösungszahlen können in der Tabelle mehrfach vorkommen. a) 0,12 : 4 = 0,03 b) 0,08 : 0,2 = 0,4 c) 0,2 : 0,05 = 4 d) 4,9 : 0,07 = 70 e) 0,39 : 0,3 = 1,3 f) 0,56 : 0,8 = 0,7 g) 0,51 : 1,7 = 0,3 h) 7,7 : 0,7 = 11 i) 0,081 : 0,9 = 0,09 j) 0,96 : 1,6 = 0,6 k) 1,44 : 1,2 = 1,2 l) 1,04 : 1,3 = 0,8 m) 0,095 : 0,19 = 0,5 n) 0,12 : 2,4 = 0,05 0,8 0,01 0,6 0,9 0,09 0,024 0, ,3 11 0,4 2 1,2 1,7 0,5 1,4 0,3 0,01 1,4 0,3 0,77 1,3 70 0,5 0,01 0,4 2 0,5 0,77 0, ,09 0,1 0,3 11,5 0,05 0,1 11 1,7 11,5 0,7 0,1 0,05 1,7 0,8 1 0,03 0,7 0,6 0,024 0,001 1,2 0,9 62

64 Arbeitsblatt Terme und Vorrangregeln (Niveau 1) 1 Rechne im Kopf. Beachte die Vorrangregeln. a) 8 0,6 : 2 = b) 10 0,5 3 = c) 1,4 + 0,6 2 = d) 4,8 (1 0,2) = e) 22,3 + 1 : 0,5 = f) (1,1 + 2,3) 2 = g) (15,4 3,4) 0,5 = h) 6,4 : 8 0,4 = Unter diesen Zahlen befinden sich die Lösungen: 0,4 2 2,1 2,6 4 5,3 6 6,8 7,7 19,7 24,3 2 Finde die fehlende Zahl. Überprüfe dein Ergebnis. a) 1,3 = 3,9 Probe: = b) 12,5 : = 2,5 Probe: = c) 16,8 = 15 Probe: = d) + 3,4 = 5,6 Probe: = e) 8,4 = 84 Probe: = 3 Ergänze Rechenzeichen, Klammern oder Zahlen, damit die Rechnung stimmt. Hinweis: Nicht immer müssen alle Kästchen ausgefüllt werden. a) 3 1,5 = 4,5 b) 1,4 0,3 = 1,7 c) 6,2 2 = 3,1 d) 23,6 10,2 = 13,4 e) 2 0,5 0,9 = 0,9 f) 1,4 : 2 0,9 : 3 = 1 g) 0,5 0,4 + 1,8 = 1,1 h) 6,8 5 : 0,1 = 18 i) (0,7 + 1,3) = 3 j) ( 0,2 3) 2 = 2 63

65 Lösungsblatt Terme und Vorrangregeln (Niveau 1) 1 Rechne im Kopf. Beachte die Vorrangregeln. a) 8 0,6 : 2 = 7,7 b) 10 0,5 3 = 2 c) 1,4 + 0,6 2 = 2,6 d) 4,8 (1 0,2) = 4 e) 22,3 + 1 : 0,5 = 24,3 f) (1,1 + 2,3) 2 = 6,8 g) (15,4 3,4) 0,5 = 6 h) 6,4 : 8 0,4 = 0,4 Unter diesen Zahlen befinden sich die Lösungen: 0,4 2 2,1 2,6 4 5,3 6 6,8 7,7 19,7 24,3 2 Finde die fehlende Zahl. Überprüfe dein Ergebnis. a) 1,3 = 3,9 Probe: 1,3 3 = 3,9 = 3 b) 12,5 : = 2,5 Probe: 12,5 : 5 = 2,5 = 5 c) 16,8 = 15 Probe: 16,8 1,8 = 15 = 1,8 d) + 3,4 = 5,6 Probe: 2,2 + 3,4 = 5,6 = 2,2 e) 8,4 = 84 Probe: 8,4 10 = 84 = 10 3 Ergänze Rechenzeichen, Klammern oder Zahlen, damit die Rechnung stimmt. Hinweis: Nicht immer müssen alle Kästchen ausgefüllt werden. a) 3 1,5 = 4,5 b) 1,4 + 0,3 = 1,7 c) 6,2 : 2 = 3,1 d) 23,6 10,2 = 13,4 e) 2 0,5 0,9 = 0,9 f) 1,4 : 2 + 0,9 : 3 = 1 g) 0,5 ( 0,4 + 1,8 ) = 1,1 h) ( 6,8 5 ) : 0,1 = 18 i) (0,7 + 1,3) 1,5 = 3 j) (1,6 0,2 3) 2 = 2 64

66 Arbeitsblatt Terme und Vorrangregeln (Niveau 2) 1 Rechne im Kopf. Beachte die Vorrangregeln. a) : 0,4 = b) 40 0,5 13,7 = c) 2,8 + 0,8 0,4 = d) 3,9 (2,8 0,9) = e) 22, ,2 : 0,1 = f) (10,7 + 7,1) 2 = g) (65,4 3,2) 0,5 = h) 5,6 : 0,08 68,5 = Unter diesen Zahlen befinden sich die Lösungen: 1,5 2 3,12 6, ,4 24,345 31,1 35,6 42, Finde die fehlende Zahl. Überprüfe dein Ergebnis. a) 7,4 = 169,46 Probe: = b) 21,44 : = 6,7 Probe: = c) 65,4 = 32,45 Probe: = d) + 15,67 = 23,3 Probe: = e) 2,5 = 24,5 Probe: = 3 Ergänze Rechenzeichen, Klammern oder Zahlen, damit die Rechnung stimmt. Hinweis: Nicht immer müssen alle Kästchen ausgefüllt werden. a) 5,2 6,6 = 34,32 b) 1,2 0,9 = 2,1 c) 0,228 0,012 = 19 d) 83,67 20,27 = 63,4 e) 0,5 0,6 0,7 = 0,21 f) 4,5 : 9 3,6 : 4 = 1,4 g) 0,9 0,8 + 0,58 : 0,65 = 2 h) (0,72 : 1,2 + 5,6 : 0,8) ( 0,4 3) = 1,52 65

67 Lösungsblatt Terme und Vorrangregeln (Niveau 2) 1 Rechne im Kopf. Beachte die Vorrangregeln. a) : 0,4 = 12 b) 40 0,5 13,7 = 6,3 c) 2,8 + 0,8 0,4 = 3,12 d) 3,9 (2,8 0,9) = 2 e) 22, ,2 : 0,1 = 24,345 f) (10,7 + 7,1) 2 = 35,6 g) (65,4 3,2) 0,5 = 31,1 h) 5,6 : 0,08 68,5 = 1,5 Unter diesen Zahlen befinden sich die Lösungen: 1,5 2 3,12 6, ,4 24,345 31,1 35,6 42, Finde die fehlende Zahl. Überprüfe dein Ergebnis. a) 7,4 = 169,46 Probe: 7,4 22,9 = 169,46 = 22,9 b) 21,44 : = 6,7 Probe: 21,44 : 3,2 = 6,7 = 3,2 c) 65,4 = 32,45 Probe: 65,4 32,95 = 32,45 = 32,95 d) + 15,67 = 23,3 Probe: 7, ,67 = 23,3 = 7,63 e) 2,5 = 24,5 Probe: 2,5 9,8 = 24,5 = 9,8 3 Ergänze Rechenzeichen, Klammern oder Zahlen, damit die Rechnung stimmt. Hinweis: Nicht immer müssen alle Kästchen ausgefüllt werden. a) 5,2 6,6 = 34,32 b) 1,2 + 0,9 = 2,1 c) 0,228 : 0,012 = 19 d) 83,67 20,27 = 63,4 e) 0,5 0,6 0,7 = 0,21 f) 4,5 : 9 + 3,6 : 4 = 1,4 g) ( 0,9 0,8 + 0,58 ) : 0,65 = 2 h) (0,72 : 1,2 + 5,6 : 0,8) (1,4 0,4 3) = 1,52 66

68 Arbeitsblatt am Zahlenstrahl ablesen und ergänzen (Niveau 1) 1 Lies die markierten Zahlen ab. Achte dabei auf die Einteilung des Zahlenstrahls. a) b) A = B = C = A = B = C = c) A = B = C = D = 2 Markiere auf dem Zahlenstrahl folgende Zahlen. a) 0,02 b) 0,06 c) 0,08 d) 0,12 e) 0,15 f) 0,18 g) 0,22 h) 0,23 i) 2,051 j) 2,053 k) 2,055 l) 2,056 m) 2,0585 n) 2,

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden.

Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 1 Grundwissen Rechenarten Addition und Subtraktion Addieren heißt zusammenzählen, plus rechnen oder die Summe bilden. 418 + 2 987 = 3 405 + 2 987 418 Umkehraufgabe 3 405 Summe Ergebnis der Summe 2 987

Mehr

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24

1 Grundwissen 6 2 Dezimalbrüche (Dezimalzahlen) 9 3 Brüche 11 4 Rationale Zahlen 16 5 Potenzen und Wurzeln 20 6 Größen und Schätzen 24 Inhalt A Grundrechenarten Grundwissen 6 Dezimalbrüche (Dezimalzahlen) 9 Brüche Rationale Zahlen 6 5 Potenzen und Wurzeln 0 6 Größen und Schätzen B Zuordnungen Proportionale Zuordnungen 8 Umgekehrt proportionale

Mehr

Vorbereitung auf den Hauptschulabschluss Mathematik

Vorbereitung auf den Hauptschulabschluss Mathematik Katrin Hiemer/Elisabeth Vogt Vorbereitung auf den Hauptschulabschluss Mathematik MANZ VERLAG Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen

Mehr

Stoffverteilungsplan Mathematik Klasse 5

Stoffverteilungsplan Mathematik Klasse 5 Stoffverteilungsplan Mathematik Klasse 5 Lehrwerk: Mathematik heute; Schroedel Zeitraum Themen/Inhalte Begriffe/Bemerkungen Lehrbuch/KA Leitidee/Kompetenzen Weitere Hinweise 6 Wochen Natürliche Zahlen

Mehr

Teil 2: So fit BIST du! Übungsaufgaben zu den Bildungsstandards Klasse

Teil 2: So fit BIST du! Übungsaufgaben zu den Bildungsstandards Klasse Teil 2: So fit BIST du! Übungsaufgaben zu den Bildungsstandards 2. 4. Klasse Liebe Lehrerin, lieber Lehrer! Nun gibt es die Zahlenreise-Übungs-CD-ROMs auch in schriftlicher Form! Die Übungs-CD-ROMs zur

Mehr

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen

Rationale Zahlen. Vergleichen und Ordnen rationaler Zahlen Rationale Zahlen Vergleichen und Ordnen rationaler Zahlen Von zwei rationalen Zahlen ist die die kleinere Zahl, die auf der Zahlengeraden weiter links liegt.. Setze das richtige Zeichen. a) -3 4 b) - -3

Mehr

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2

b) Notieren Sie hier die Brüche aus der Tabelle, die sich noch kürzen lassen und kürzen Sie diese soweit als möglich: 1 2 Addieren und Subtrahieren gleichnamiger Brüche Addition gleichnamiger Brüche: Nenner übernehmen; Zähler addieren: Subtraktion gleichnamiger Brüche: Nenner übernehmen; Zähler subtrahieren. Füllen Sie die

Mehr

Selbstüberprüfungsbogen Bruchrechnung

Selbstüberprüfungsbogen Bruchrechnung Selbstüberprüfungsbogen Bruchrechnung Modul: Bruchrechnung Name: SINUS.NRW 00 ) Vorstellung zu Brüchen r f Übungen a) Notiere die zugehörigen Brüche. b) Wie groß ist der Anteil der Fläche mit der? c) Wie

Mehr

Lösungen zum Selbstüberprüfungsbogen Bruchrechnung

Lösungen zum Selbstüberprüfungsbogen Bruchrechnung Lösungen zum Selbstüberprüfungsbogen Bruchrechnung Modul: Bruchrechnung Name: SINUS.NRW 00 ) Vorstellung zu Brüchen r f Übungen a) Notiere die zugehörigen Brüche. b) Wie groß ist der Anteil der Fläche

Mehr

MEMO Brüche 1 Zähler, Nenner, Stammbruch, einfache und gemischte Brüche

MEMO Brüche 1 Zähler, Nenner, Stammbruch, einfache und gemischte Brüche MEMO Brüche Zähler, Nenner, Stammbruch, einfache und gemischte Brüche )Brüche: Grundbegriffe a) Zähler und Nenner die obere Zahl heisst Zähler die untere Zahl heisst Nenner Der Nenner Der Zähler ist der

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik Gut.Besser.FiT Klasse Das musst du wissen! Mathematik Von Grundschullehrern EMPFOHLEN Entspricht den Lehrplänen Das musst du wissen! Mathematik Klasse von Andrea Essers Illustrationen von Guido Wandrey

Mehr

Mathematik 4 Primarstufe

Mathematik 4 Primarstufe Mathematik 4 Primarstufe Handlungs-/Themenaspekte Bezüge zum Lehrplan 21 Die Übersicht zeigt die Bezüge zwischen den Themen des Lehrmittels und den Kompetenzen des Lehrplans 21. Es ist jeweils diejenige

Mehr

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck.

Bruchzahlen. Zeichne Rechtecke von 3 cm Länge und 2 cm Breite. Dieses Rechteck soll 1 Ganzes (1 G) darstellen. von diesem Rechteck. Bruchzahlen Zeichne Rechtecke von cm Länge und cm Breite. Dieses Rechteck soll Ganzes ( G) darstellen. Hinweis: a.) Färbe ; ; ; ; ; ; 6 b.) Färbe ; ; ; ; ; ; 6 von diesem Rechteck. von diesem Rechteck.

Mehr

Bruchrechnung Wir teilen gerecht auf

Bruchrechnung Wir teilen gerecht auf Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. Bruchrechnung Wir teilen gerecht auf Minipizzen auf Personen. : (+) : + Wir teilen einen Teil Eine halbe Minipizza auf Personen. :? Wir teilen

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

Grundwissen 5. Klasse

Grundwissen 5. Klasse Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)

Mehr

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1 Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße

Mehr

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem

Negative Zahlen. Lösung: Ordne in einen Zahlenstrahl ein! 7;5; 3; 6. Das Dezimalsystem Negative Zahlen Negative Zahlen Ordne in einen Zahlenstrahl ein! 7;5; 3; 6 Das Dezimalsystem Zerlege in Stufen! Einer, Zehner, usw. a) 3.185.629 b) 24.045.376 c) 3.010.500.700 Das Dezimalsystem a) 3M 1HT

Mehr

Aufgabensammlung Bruchrechnen

Aufgabensammlung Bruchrechnen Aufgabensammlung Bruchrechnen Inhaltsverzeichnis Bruchrechnung. Kürzen und Erweitern.................................. 4. Addition von Brüchen................................... Multiplikation von Brüchen...............................

Mehr

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik

Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen. Mathematik Treffpunkte für die kantonale Vergleichsarbeit der 6. Klassen Mathematik Solothurn, 21. Mai 2012 1 Arithmetik 1.1 Natürliche Zahlen 1.1.1 Die Sch können natürliche Zahlen lesen und schreiben. S. 6/7 S.

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:...

II* III* IV* Niveau das kann ich das kann er/sie. Mein Bericht, Kommentar (Einsatz, Schwierigkeiten, Fortschritte, Zusammenarbeit) Name:... Datum:... Titel MB 7 LU Nr nhaltliche Allg. Buch Arbeitsheft AB V* Mit Kopf, Hand und Taschenrechner MB 7 LU 3 nhaltliche Allg. Buch Arbeitsheft AB einfache Rechnungen im Kopf lösen und den TR sinnvoll einsetzen

Mehr

a) 71,45 + 25,07 44,91 = d) 63,8 + 40,03 35,94 = c) 3,604 1,28 0,45 = f) 230,05 79,602 + 51,4 =

a) 71,45 + 25,07 44,91 = d) 63,8 + 40,03 35,94 = c) 3,604 1,28 0,45 = f) 230,05 79,602 + 51,4 = Name: 1) SUBTRAHIERE DIE KLEINERE ZAHL VON DER GRÖßEREN: a) 43,86 521,43 b) 15864,2 85,8 c) 0,8 0,643 2) RECHNE VORTEILHAFT! a) 1,45 + 25,0 44,1 d) 63,8 + 40,03 35,4 b) 0,85 + 1,0835 0,084 e),6 30,04 +

Mehr

Mathematik-Arbeitsblatt Klasse:

Mathematik-Arbeitsblatt Klasse: Mathematik-Arbeitsblatt Klasse: 23.10.2012 Aufgabe 1 (5A1.01-031-m) Martin, Michael und Max möchten für die Mama zu Weihnachten gemeinsam ein Buch als Geschenk kaufen. Es kostet 27. Jeder der drei hat

Mehr

Aufgaben zu Lambacher Schweizer 6 Hessen

Aufgaben zu Lambacher Schweizer 6 Hessen Aufgaben zu Kapitel I Erweitern und Kürzen Erweitere im Kopf. a) mit ; 6; b) å mit ; 6; 7 c) mit ; ; d) å mit ; ; e) mit ; ; 7 f) mit ; ; Erweitere auf den angegebenen Nenner. a) 0: ; ; ; 0 ; 0 ; 0 b)

Mehr

Lernziele Matbu. ch 8

Lernziele Matbu. ch 8 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene

Mehr

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben

5. bis 10. Klasse. Textaufgaben. Alle Themen Typische Aufgaben Mathematik 5. bis 10. Klasse 150 Textaufgaben Alle Themen Typische Aufgaben 5. bis 10. Klasse 1.3 Rechnen mit ganzen Zahlen 1 25 Erstelle zu den folgenden Zahlenrätseln zunächst einen Rechenausdruck und

Mehr

Realistische Antworten:

Realistische Antworten: Schätzen Fragen: Realistische Antworten: Wie lang ist das Schulzimmer? 8 12 m Wie viele Menschen leben auf der Welt? 4 10 Milliarden Wie schwer ist die Schulklasse? Pro Person 50 60 Kilogramm Wie viele

Mehr

Mein Mathebild Arbeiten in der mathewerkstatt

Mein Mathebild Arbeiten in der mathewerkstatt Seite MB 1 Mein Mathebild Arbeiten in der mathewerkstatt Seite im Materialblock: Wissensspeicher Seite MB 2 MB 2 Wissensspeicher Dreiecke und Vielecke Flächen 1 Wissensspeicher Dreiecke und Vielecke Wenn

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Planungsblatt Mathematik für die 1E

Planungsblatt Mathematik für die 1E Planungsblatt Mathematik für die 1E Datum: 17.03-21.03 Stoff Wichtig!!! Nach dieser Woche verstehst du: (a) Bruchzahlen immer wieder, immer wieder (b) Geschwindigkeitsaufgaben (c) Strecke, Strahl, Gerade,

Mehr

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an?

Gib die richtigen Fachbegriffe an. Welche Information gibt der Nenner eines Bruches an? 1 6/1 Gib die richtigen Fachbegriffe an. 2 6/1 Welche Information gibt der Nenner eines Bruches an? 3 6/1 Welcher Bruchteil ist markiert? 4 6/1 Welcher Bruchteil ist markiert? 5 6/1 Welcher Bruchteil ist

Mehr

Rechnen mit Potenzen und Termen

Rechnen mit Potenzen und Termen Sieglinde Fürst Rechnen mit Potenzen und Termen Themenbereich Algebra Inhalte Rechnen mit Potenzen - Rechenregeln Gleitkommadarstellung Auflösen von Klammern Multiplizieren von Termen Ziele Rechenregeln

Mehr

Lösungen Kapitel 1: Rechnen mit natürlichen Zahlen

Lösungen Kapitel 1: Rechnen mit natürlichen Zahlen Lösungen Kapitel 1: Rechnen mit natürlichen Zahlen Arbeitsblatt 01: Zahlen am Zahlenstrahl oder Aufgabe 3 oder Arbeitsblatt 02: Große Zahlen Millionen Tausender H Z E H Z E H Z E 8 0 6 2 0 1 1 7 Achtzig

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 1. Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 2. Teilbarkeit durch 5 und 10 3. Quersummen berechnen 4. Teilbarkeit durch 3, 6 und 9 5. Gemischte

Mehr

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation

Klasse 9. Zahlenraum Mengen Vergleiche. Addition. Subtraktion. Multiplikation Klasse 9 Maximalplan Kurs A Minimalplan Kurs B Zahlenbereich bis 10.000/100.000 (B) und 1.000.000 (A) - Grundrechenarten Bis 1.000.000 erarbeiten; Zahlenhaus, Stellentafel, Zahlenhaus, Stellentafel, Grundrechnen

Mehr

Lernplan für die Wiederholung im 8. Schuljahr. Rechne die Aufgaben im Heft. Kontrolliere deine Ergebnisse mit dem Kontrollbogen. Bewerte dein Können.

Lernplan für die Wiederholung im 8. Schuljahr. Rechne die Aufgaben im Heft. Kontrolliere deine Ergebnisse mit dem Kontrollbogen. Bewerte dein Können. Lernplan für die Wiederholung im 8. Schuljahr Name: Rechne die Aufgaben im Heft. Kontrolliere deine Ergebnisse mit dem Kontrollbogen. Bewerte dein Können. 1. a) 473, 68 + 275, 987 + 7 + 13,869 = b) 273

Mehr

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259

(13+ 46) 4= (51+ 19) 6= (13+ 22) 6= (53+ 3) 5= Summe der Ergebnisse: 3 530 Summe der Ergebnisse: 3 259 Klammerrechnung Lösungen 1. Löse die Aufgaben wie im Beispiel. (+ 38) = 90 = 360 (9+ 31) 3= 60 3= 180 (3+ 36) 6= 70 6= 0 (63+ 17) 3= 80 3= 0 (19+ 1) 6= 0 6= 0 (7+ 16) 9= 90 9= 810 (36+ ) 8= 80 8= 60 (8+

Mehr

Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. teilbar, wenn die letzte Ziffer der Zahl

Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. teilbar, wenn die letzte Ziffer der Zahl 6.. Schuljahr Natürliche Zahlen 1 Teilbarkeit und Primzahlen Die Teilbarkeitsregeln braucht man, um herauszufinden, ob man eine Division ohne Rest ausführen kann. Endzifferregel Eine Zahl ist durch 5 teilbar,

Mehr

Curriculum Mathematik. Bereich Schulabschluss

Curriculum Mathematik. Bereich Schulabschluss Curriculum Mathematik Bereich Schulabschluss Im Folgenden finden Sie eine Übersicht über alle Lerneinheiten im Fach Mathematik. Das Fach Mathematik ist in Lernstufen, Kapitel, Lerneinheiten und Übungen

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 6. Klasse Seite 1 Turmzimmer 1: Teilbarkeitsregeln 1. Teilbarkeit durch 2, 4 und 8 7. Ist die Zahl ein Teiler? 2. Teilbarkeit durch 5 und 10 8. Teiler in der Zahlentafel suchen 3. Quersummen berechnen 9. Ist die

Mehr

Grundwissen. 5. Jahrgangsstufe. Mathematik

Grundwissen. 5. Jahrgangsstufe. Mathematik Grundwissen 5. Jahrgangsstufe Mathematik Grundwissen Mathematik 5. Jahrgangsstufe Seite 1 1 Natürliche Zahlen 1.1 Große Zahlen und Zehnerpotenzen eine Million = 1 000 000 = 10 6 eine Milliarde = 1 000

Mehr

Addition und Subtraktion natürlicher Zahlen

Addition und Subtraktion natürlicher Zahlen 0 Minuten Addition und Subtraktion natürlicher Zahlen Kurztest : Addieren und Subtrahieren 1 Bei der linken Rechenmauer wird nach oben addiert, bei der rechten Rechenmauer nach oben subtrahiert. a) b)

Mehr

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik

Gut.Besser.FiT. Klasse. Von Grundschullehrern EMPFOHLEN. Entspricht den Lehrplänen. Das musst du wissen! Mathematik Gut.Besser.FiT Klasse Das musst du wissen! Mathematik Von Grundschullehrern EMPFOHLEN Entspricht den Lehrplänen Das musst du wissen! Mathematik Klasse von Andrea Essers Illustrationen von Guido Wandrey

Mehr

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen.

Essen und Trinken Teilen und Zusammenfügen. Schokoladentafeln haben unterschiedlich viele Stückchen. Essen und Trinken Teilen und Zusammenfügen Vertiefen Brüche im Alltag zu Aufgabe Schulbuch, Seite 06 Schokoladenstücke Schokoladentafeln haben unterschiedlich viele Stückchen. a) Till will von jeder Tafel

Mehr

Rechnen mit natürlichen Zahlen

Rechnen mit natürlichen Zahlen Addieren und Subtrahieren einer Zahl Fachausdrücke bei der Addition und Subtraktion: Addition (+) 52 + 27 = 79 1. Summand + 2. Summand = Summe Rechnen mit natürlichen Zahlen Subtraktion ( - ) Strichrechnungen

Mehr

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name:

Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Klasse 5 Mathematik-Klassenarbeit Nr. 1 6.11.08 / Karsten Name: Für unsaubere Darstellung gibt es Abzug Die angegebenen Punkte gelten unter Vorbehalt. Aufgabe 1 (6 Punkte): Hier ist eine Zahl mit Plättchen

Mehr

Kompetenzübersicht A Klasse 5

Kompetenzübersicht A Klasse 5 Kompetenzübersicht A Klasse 5 Natürliche Zahlen und Größen A1 Ich kann eine Umfrage durchführen und die Ergebnisse in einer Strichliste und einem Säulendiagramm darstellen. A2 Ich kann große Zahlen vorlesen

Mehr

Multiplikation und Division - Division

Multiplikation und Division - Division Multiplikation und Division - Division Qualifizierungseinheit Multiplikation und Division Lernziele: Wenn Sie diese Qualifizierungseinheit bearbeitet haben, können Sie ganze Zahlen multiplizieren und dividieren

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Rechnen mit Bruchzahlen

Rechnen mit Bruchzahlen Addition und Subtraktion von Brüchen Aufgabe: Rechnen mit Bruchzahlen In einem Gefäß befinden sich Liter Orangensaft. a.) Jemand trinkt b.) Jemand gießt c.) Jemand gießt Liter davon. Wie viel Saft befindet

Mehr

Flächeneinheiten und Flächeninhalt

Flächeneinheiten und Flächeninhalt Flächeneinheiten und Flächeninhalt Was ist eine Fläche? Aussagen, Zeichnungen, Erklärungen MERKE: Eine Fläche ist ein Gebiet, das von allen Seiten umschlossen wird. Beispiele für Flächen sind: Ein Garten,

Mehr

Sachkompetenz Zahlen. Zahlen lesen und schreiben. zählen, Zahlen ordnen. Zahlen erfassen. Zahlen als Operatoren verwenden

Sachkompetenz Zahlen. Zahlen lesen und schreiben. zählen, Zahlen ordnen. Zahlen erfassen. Zahlen als Operatoren verwenden Zahlen Zahlen lesen und schreiben Zahlen und Zahlwörter lesen und schreiben Zahlen und Zahlwörter bis 20 lesen und schreiben Zahlen bis 100 lesen und schreiben große Zahlen lesen und schreiben die Bedeutung

Mehr

Mit Dezimalzahlen multiplizieren

Mit Dezimalzahlen multiplizieren Vertiefen 1 Mit Dezimalzahlen multiplizieren zu Aufgabe 1 Schulbuch, Seite 134 1 Multiplizieren im Bild darstellen Zeichne zur Aufgaben 1,63 2,4 ein Bild und bestimme mit Hilfe des Bildes das Ergebnis

Mehr

Vorbereitung auf die 1. Schularbeit: MATHEMATIK KL.: M3/I. - S.1 L E R N Z I E L H I L F E N

Vorbereitung auf die 1. Schularbeit: MATHEMATIK KL.: M3/I. - S.1 L E R N Z I E L H I L F E N . Schularbeit: MTHEMTIK KL.: M/I. - S. Kommen in einer Rechnung mehrere Rechnungsarten bzw. Klammern vor, so muss folgende Reihenfolge eingehalten werden: ) Rechne zuerst den Wert einer Klammer aus! )

Mehr

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft

Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Berufsbildende Schule 11 der Region Hannover Hinweise zu Anforderungen des Faches Mathematik in Klasse 11 des Beruflichen Gymnasiums Wirtschaft Das folgende Material soll Ihnen helfen sich einen Überblick

Mehr

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann.

Umgekehrter Dreisatz Der umgekehrte Dreisatz ist ein Rechenverfahren, das man bei umgekehrt proportionalen Zuordnungen anwenden kann. Dreisatz Der Dreisatz ist ein Rechenverfahren, das man bei proportionalen Zuordnungen anwenden kann. 3 Tafeln Schokolade wiegen 5 g. Wie viel Gramm wiegen 5 Tafeln? 1. Satz: 3 Tafeln wiegen 5 g.. Satz:

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse 1. Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 2. Nachbarzahlen 3. Zahlenrätsel 1/2 4. Zahlenrätsel 2/2 5. Zahlen ordnen

Mehr

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse:

Grundwissen Mathematik 6. Dieser Grundwissenskatalog gehört: Name: Klasse: Grundwissen Mathematik 6 Dieser Grundwissenskatalog gehört: Name: Klasse: Inhaltsverzeichnis Zahlen 1. Brüche 1.1 Bruchteile 1.2 Brüche als Werte von Quotienten 1.3 Bruchzahlen 1.4 Anordnung der Bruchzahlen

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen () 6. Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Meine. Lernziele. für das. 4. Schuljahr

Meine. Lernziele. für das. 4. Schuljahr Meine Lernziele für das 4. Schuljahr Was ich alles kann! Name, Klasse & Datum: Mathematik Ich kann die Zahlen bis 1 000 000 vergleichen und runden. Ich rechne schnell und sicher im Kopf. Ich kann schriftlich

Mehr

Voransicht. Grundrechen Führerschein: Aufwärmtraining

Voransicht. Grundrechen Führerschein: Aufwärmtraining Grundrechen Führerschein: Aufwärmtraining Mit dieser Seite kannst du dich auf den Grundrechen Führerschein vorbereiten. 1 Additionspuzzle. Zerschneide das Bild rechts, rechne die Aufgabe links in deinem

Mehr

Teil 2: So fit BIST du! Übungsaufgaben zu den Bildungsstandards Klasse

Teil 2: So fit BIST du! Übungsaufgaben zu den Bildungsstandards Klasse Teil 2: So fit BIST du! Übungsaufgaben zu den Bildungsstandards 2. 4. Klasse Liebe Lehrerin, lieber Lehrer! Nun gibt es die Zahlenreise-Übungs-CD-ROMs auch in schriftlicher Form! Die Übungs-CD-ROMs zur

Mehr

Übertrittsprüfung 2011

Übertrittsprüfung 2011 Departement Bildung, Kultur und Sport Abteilung Volksschule Übertrittsprüfung 2011 Aufgaben Prüfung an die 1. Klasse Sekundarschule / 1. Klasse Bezirksschule Prüfung Name und Vorname der Schülerin / des

Mehr

Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen.

Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen. E2 Rechnungen verstehen plus minus Verständnisaufbau Geld wechseln Geld wechseln kann als Visualisierung des Zehnerübergangs dienen. Die Zwischengrössen (CHF 2.-, 5.-, 20.-, 50.-) weglassen. Ich bezahle

Mehr

Fragen und Aufgaben zum Grundwissen Mathematik

Fragen und Aufgaben zum Grundwissen Mathematik Natürliche Zahlen Kapitel I ZÄHLEN UND ORDNEN GROßE ZAHLEN UND ZEHNERPOTENZEN Acht Schwimmer bestreiten einen Wettkampf. Miriam gewinnt die Bronzemedaille. Franz wird Vorletzter. Welche Platzierung haben

Mehr

Bielefelder Mathe-Check SINUS.NRW. Jahrgangsstufe 5. Name: Klasse: Datum:

Bielefelder Mathe-Check SINUS.NRW. Jahrgangsstufe 5. Name: Klasse: Datum: Bielefelder Mathe-Check SINUS.NRW Jahrgangsstufe 5 Name: Klasse: Datum: 2 Anleitung In diesem Testheft findest du Aufgaben aus dem Bereich Mathematik. Im Test gibt es zwei verschiedene Aufgabenarten: (A1)

Mehr

1. Definition von Dezimalzahlen

1. Definition von Dezimalzahlen . Definition von Dezimalzahlen Definition: Dezimalzahlen sind Zahlen mit einem Komma, wobei die Ziffern nach dem Komma die Zehntel, Hundertstel, Tausendstel, usw. entsprechend dem -er Zahlensystem anzeigen.

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1

Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 Lerninhalte ALFONS Lernwelt Mathematik 2. Klasse Seite 1 1. Zählen, Mengen erfassen und Zahlen schreiben 1. Mengen erfassen 1 2. Mengen erfassen 2 3. Zähle die Kästchen 4. Zähle die Gegenstände 5. Zähle

Mehr

Langenscheidt Training plus, Mathe 6. Klasse

Langenscheidt Training plus, Mathe 6. Klasse Langenscheidt Training plus - Mathe Langenscheidt Training plus, Mathe 6. Klasse Bearbeitet von Uwe Fricke 1. Auflage 13. Taschenbuch. ca. 128 S. Paperback ISBN 978 3 68 60073 9 Format (B x L): 17,1 x

Mehr

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; }

sfg Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } M 5.1 Natürliche Zahlen und Zahlenstrahl Die Zahlen 1, 2, 3, 4, nennt man natürliche Zahlen: N = {1; 2; 3; 4; } Nimmt man auch die 0 hinzu, schreibt man: N 0 = {0; 1; 2; 3; 4; } Zahlenstrahl 0 1 2 3 4

Mehr

(53+ 3) 5 = = Summe der Ergebnisse: 3.530 Summe der Ergebnisse: 3.259

(53+ 3) 5 = = Summe der Ergebnisse: 3.530 Summe der Ergebnisse: 3.259 Klammerrechnung 1. Löse die Aufgaben wie im Beispiel. (+ 38) = 90 = 360 (9+ 31) 3 = = (3+ 36) 6 = = (63+ 17) 3 = = (19+ 1) 6 = = (7+ 16) 9 = = (36+ ) 8 = = (8+ 7) 8 = = (3+ 8) 3 = = (13+ 6) = = (8+ 76)

Mehr

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen

2. Gleichwertige Darstellung von Zahlen als Bruchzahlen, Dezimalbrüche oder Prozentzahlen Grundwissen Klasse 6 I. Bruchzahlen 1. Sicheres Umgehen mit Bruchzahlen - Brüche als Anteil verstehen - Brüche am Zahlenstrahl darstellen - Brüche erweitern / kürzen können (Mathehelfer1: S.16/17) Aufgabe

Mehr

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse

Lerninhalte ALFONS Lernwelt Mathematik 5. Klasse Seite 1 Turmzimmer 1: Nachbarzahlen, Zahlenrätsel und römische Zahlen 1. Versteckte Zahlen finden 7. Schreibe mit arabischen Ziffern! 1 2. Nachbarzahlen 8. Schreibe mit arabischen Ziffern! 2 3. Zahlenrätsel

Mehr

Vergleichsarbeit Mathematik. Gesamtschulen, Jahrgang 8, Kurs I. Schuljahr 2005/2006

Vergleichsarbeit Mathematik. Gesamtschulen, Jahrgang 8, Kurs I. Schuljahr 2005/2006 , Jahrgang 8, Kurs I 9. März 006 Unterlagen für die Lehrerinnen und Lehrer Diese Unterlagen enthalten: I II III Allgemeine Hinweise zur Arbeit Aufgabenblätter in den Versionen A und B Lösungsskizzen, Punkteverteilung

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 9 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

Lernmodul Bruchrechnen. Brüche vollständig kürzen (ggt) Brüche gleichnahmig machen (kgv) Brüche addieren. Brüche subtrahieren. Brüche multiplizieren

Lernmodul Bruchrechnen. Brüche vollständig kürzen (ggt) Brüche gleichnahmig machen (kgv) Brüche addieren. Brüche subtrahieren. Brüche multiplizieren Lernmodul Bruchrechnen Brüche vollständig kürzen (ggt) Brüche gleichnahmig machen (kgv) Brüche addieren Brüche subtrahieren Brüche multiplizieren Brüche dividieren Lernmodul Dezimalrechnung Dezimalzahlen

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Grundrechnungsarten mit Dezimalzahlen

Grundrechnungsarten mit Dezimalzahlen Grundrechnungsarten mit Dezimalzahlen Vorrangregeln Die Rechnungsarten zweiter Stufe haben Vorrang vor den Rechnungsarten erster Stufe. Man sagt: "Punktrechnung geht vor Strichrechnung" Treten in einer

Mehr

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm². Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne

Mehr

Grundwissen. 6. Jahrgangsstufe. Mathematik

Grundwissen. 6. Jahrgangsstufe. Mathematik Grundwissen 6. Jahrgangsstufe Mathematik 1 Brüche Grundwissen Mathematik 6. Jahrgangsstufe Seite 1 1.1 Bruchteil 1.2 Erweitern und Kürzen Erweitern: Zähler und Nenner mit der selben Zahl multiplizieren

Mehr

Download. Selbstkontrollaufgaben Mathematik Klasse 5. Grundrechtenarten vermischt. Kerstin-Andrea Schmidt. Downloadauszug aus dem Originaltitel:

Download. Selbstkontrollaufgaben Mathematik Klasse 5. Grundrechtenarten vermischt. Kerstin-Andrea Schmidt. Downloadauszug aus dem Originaltitel: Download Kerstin-Andrea Schmidt Selbstkontrollaufgaben Mathematik Klasse Grundrechtenarten vermischt Kerstin-Andrea Schmidt Selbstkontrollaufgaben Mathe. Klasse Sekundarstufe I Lehrplanrelevante Arbeitsblätter

Mehr

Zehntausenderschritte ZR 100 000 1

Zehntausenderschritte ZR 100 000 1 Zehntausenderschritte ZR 100 000 1 Ordne folgende Zahlen der Größe nach! Beginne bei der kleinsten Zahl! a) 30 000, 50 000, 20 000, 40 000, 60 000 b) 40 000, 60 000, 50 000, 20 000, 30 000 c) 90 000, 100

Mehr

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...}

1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} 1 Grundwissen Mathematik 5.Klasse Gymnasium SOB 1.Weiterentwicklung der Zahlvorstellung 1.1Die natürlichen Zahlen Mengenschreibweise: N = {1,2,3,...} N 0 = {0,1,2,3,...} Darstellung am Zahlenstrahl: Darstellung

Mehr

Diagnostisches Interview zur Bruchrechnung

Diagnostisches Interview zur Bruchrechnung Diagnostisches Interview zur Bruchrechnung (1) Tortendiagramm Zeigen Sie der Schülerin/dem Schüler das Tortendiagramm. a) Wie groß ist der Teil B des Kreises? b) Wie groß ist der Teil D des Kreises? (2)

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Mit Zehnerzahlen malrechnen oder durch Zehnerzahlen teilen. Den Wert einer Zahl 10 mal so gross machen.

Mit Zehnerzahlen malrechnen oder durch Zehnerzahlen teilen. Den Wert einer Zahl 10 mal so gross machen. F2 Rechnungen verstehen mal durch Verständnisaufbau Mit Zehnerzahlen malrechnen oder durch Zehnerzahlen teilen Den Wert einer Zahl 10 mal so gross machen. Beispiel: Ein Stapel wiegt 1.2kg, 10 solche Stapel

Mehr

Tausenderschritte ZR 10 000 1

Tausenderschritte ZR 10 000 1 Tausenderschritte ZR 10 000 1 Ordne folgende Zahlen der Größe nach! Beginne bei der kleinsten Zahl! a) 3 000, 5 000, 2 000, 4 000, 6 000 b) 4 000, 6 000, 5 000, 2 000, 3 000 c) 9 000, 10 000, 3 000, 5

Mehr

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre

Algebra in den Jahrgangsstufen 5 bis 8. Lerninhalte Natürliche Zahlen. Lernziele Natürliche Zahlen. Didaktik der Algebra und Gleichungslehre Didaktik der Algebra und Gleichungslehre Algebra in den Jahrgangsstufen 5 bis 8 Dr. Christian Groß Lehrstuhl Didaktik der Mathematik Universität Augsburg Sommersemester 2008 Vollrath: Algebra in der Sekundarstufe

Mehr

Währungseinheiten. Mathematische Textaufgaben, Klasse 3 Bestell-Nr. 350-10 Mildenberger Verlag

Währungseinheiten. Mathematische Textaufgaben, Klasse 3 Bestell-Nr. 350-10 Mildenberger Verlag Währungseinheiten Anzahl der Centmünzen Es gibt sechs verschiedene Centmünzen. Dies sind Münzen zu 1 Cent, Münzen zu 2 Cent, Münzen zu 5 Cent, Münzen zu 10 Cent, Münzen zu 20 Cent und Münzen zu 50 Cent.

Mehr

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche?

Quadrat. Rechteck. Rechteck. 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! 3) Erkennst du die Fläche? So fit BIST du 1 1) Was ist hier falsch? 2) Welche Fläche entsteht? Zeichne zur Hilfe, wenn du möchtest! Quadrat 3) Erkennst du die Fläche? Rechteck 4) Versuch es gleich noch einmal: Rechteck 102 So fit

Mehr

Download. Mathematik Üben Klasse 5 Multiplikation und Division. Differenzierte Materialien für das ganze Schuljahr.

Download. Mathematik Üben Klasse 5 Multiplikation und Division. Differenzierte Materialien für das ganze Schuljahr. Download Martin Gehstein Mathematik Üben Klasse 5 Multiplikation und Division Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 5 Multiplikation

Mehr

Wenn Du Deinen Rechner zum ersten Mal einschaltest, verlangt er von Dir einige Angaben. Wähle als Sprache Deutsch.

Wenn Du Deinen Rechner zum ersten Mal einschaltest, verlangt er von Dir einige Angaben. Wähle als Sprache Deutsch. INHALT 1 Dein TI nspire CX CAS kann fast alles... 1 2 Erste Schritte... 1 2.1 Systemeinstellungen vornehmen... 1 2.2 Der Startbildschirm... 2 2.3 Berechnungen... 2 3 Menü b... 3 4 Symbolisches Rechnen...

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

In Tabellen hoch- und runterrechnen

In Tabellen hoch- und runterrechnen Vertiefen 1 In Tabellen hoch- und runterrechnen zu Aufgabe 1 Schulbuch, Seite 240 1 Übersicht durch Tabellen Pia, Till und Merve haben unterschiedliche Tabellen angelegt, um drei Hostels in Barcelona zu

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Problemlösen. Modellieren

Problemlösen. Modellieren Die Menge Bruchzahlen (Fortsetzung) Primfaktorzerlegungen zur Ermittlung von ggt und kgv Darstellen von Bruchteilen in Sachzusammenhängen und am Zahlenstrahl Eigenschaften von Bruchzahlen, Kürzen, Erweitern

Mehr