Grundwissen Mathematik 7I/1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundwissen Mathematik 7I/1"

Transkript

1 Grundwissen athematik 7I/ ultiplikation und Division in QI Rechenregeln a c a c a c a d : b d b d b d b c Vorzeichenregeln : ++ : + : + + : otenzgesetze. otenzgesetz n m n m a a a + 7 eispiel: + Ü: a) b) 5 0,5 0,5 0,5 c) ( ) ( ). otenzgesetz n m n m (a ) a eispiel: ( ) Ü: a) 5 5 (,5 ) b) [(k ) ] c) 7. otenzgesetz n n n a b (a b) eispiel: ( ) 6 Ü: a) 5 b) y z c) 7 7 (,5) ( ). otenzgesetz n a m a a n m eispiel: Ü: a) 7 7 :7 b) (,) :(,) c) 5 5. otenzgesetz n n a a n b b eispiel: 6 6 Ü: a) : b) 5 5 ( 8) : c) 9 Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule

2 Gleichungen Grundwissen athematik 7I/ Lösen von (Un)gleichungen durch Äquivalenzumformungen Die Lösungsmenge einer Gleichung ändert sich nicht, wenn man auf beiden Seiten die gleiche ahl addiert oder subtrahiert, beide Seiten mit der gleichen von Null verschiedenen ahl multipliziert oder durch sie dividiert. eispiele: GI QI :(),5 IL {, 5} IL { 8} Ungleichungen Die Lösungsmenge einer Gleichung ändert sich nicht, wenn man auf beiden Seiten die gleiche ahl addiert oder subtrahiert, beide Seiten mit der gleichen positiven ahl multipliziert oder durch sie dividiert, beide Seiten mit der gleichen negativen ahl multipliziert oder durch sie dividiert und das Ungleichheitszeichen umkehrt (Inversionsgesetz). eispiele: GI QI. < :() > 7 Inversion! IL { > 7}. 6 > 7 :6 >,5 IL { >,5}. + 5> 5 > 8 ( ) < Inversion! IL { < } Ü: Löse durch Äquivalenzumformungen die folgenden Gleichungen und Ungleichungen mit GI QI : a) b) 67< c) + < 8 d) > e) (77 0) + 96 f) + < 6 g) > Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule

3 Indirekte roportionalität Grundwissen athematik 7I/ Entspricht bei einer uordnung von Größen das n-fache der einen Größe dem n-ten Teil der anderen Größe, so heißt diese uordnung indirekte roportionalität. eispiel: Der Flächeninhalt eines Rechtecks beträgt cm². Wenn GI IN IN, ist dies für acht Rechtecke verschiedener Länge cm und reite y cm möglich y 8 6 : : :8 Eigenschaften: lle ahlenpaare ( y) einer indirekten roportionalität sind produktgleich. Das rodukt y hat immer den gleichen Wert. eispiel: y Sprechweise: und y sind zueinander indirekt proportional Schreibweise: y Der Graph einer indirekten roportionalität ist ein + + Hyperbelast. ( GI QI 0 QI 0) eispiel: y O Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule

4 insrechnung Grundwissen athematik 7I/ Die insrechnung ist eine nwendung der rozentrechnung. Unter insen (kurz: ins) versteht man den Geldbetrag, den man nach einer bestimmten eit für geliehenes Geld bezahlen muss oder für verliehenes Geld bekommt. Es entsprechen sich: rozentwert (W) rozentsatz (p) Grundwert (GW) Jahreszins ( J ) inssatz (p) Kapital (K) Die so berechneten insen J beziehen sich auf ein Jahr (Jahreszins). Wird ein anderer eitraum betrachtet, so muss der Jahreszins auf diesen eitraum umgerechnet werden. Ein Geschäftsjahr hat 65 Tage. ins für Jahr (Jahreszins) J K p ins für Tag t 00 K p ins für n Jahre n K p n ins für T Tage T 00 K p T eispiel: erechne die insen für 9 instage, wenn ein Kapital 5000,00 zu 8% verliehen wird. T T 960 Der ins für 9 Tage beträgt 960,00. Übungen:.0 uf einem Sparbuch, das mit,75% verzinst wird, sind 90,00.. erechne die insen nach einem Jahr.. erechne den insertrag für das zweite Jahr, wenn die insen des ersten Jahres dem Kapital zugerechnet werden. Herr aurer gibt 0000,00 zu 6,5% auf die ank und legt alljährlich die gewonnen insen wieder zu seinem Kapital. Damit erhöht sich sein Kapital Jahr für Jahr um den insertrag. erechne sein Endkapital nach 5 Jahren. Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule

5 Die arallelverschiebung Grundwissen athematik 7I/5 v Eigenschaften: I ' ei allen arallelverschiebungen sind die Verbindungsstrecken von Urpunkt und ildpunkt ' parallel, gleich lang und gleich gerichtet. Sie bilden eine feilklasse. Jede feilklasse heißt Vektor. Durch jede arallelverschiebung ist umkehrbar eindeutig ein Vektor bestimmt. lle arallelverschiebungen haben keinen Fipunkt. lle arallelverschiebungen sind längen- und winkeltreu ( Kongruenzabbildung ). lle arallelverschiebungen sind geraden- und kreistreu. D ' ' feilklasse Vektor v ' D'... v (Fußpunkt) ' (Spitze) Jeder Vektor v lässt sich im Koordinatensystem durch seine Koordinaten eindeutig festlegen. Die Koordinaten des feils ' und damit des Vektors v werden durch die Koordinaten des Fußpunktes ( y) und die Koordinaten der Spitze '(' y') festgelegt. an berechnet sie nach der Regel: ' ' y' y Spitze minus Fuß z.. ( ) und '( ) ( ) ' 6 ' eispiel: 6 v I ''' mit ( ), ( ) und ( ) y ' ' O ' + +6 Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule

6 Gesetze zur Vektorrechnung Grundwissen athematik 7I/5 Kommutativgesetz und ssoziativgesetz bei der ddition von Vektoren Kommutativgesetz a b b a ssoziativgesetz (a b) c a (b c) erechnung von Summenvektoren a b a b llgemein a ; b a b a y by ay by eispiel a ; a + b a b ay + by + ( ) b a b a b a b + Ortspfeil Ortspfeile sind feile, die vom Ursprung des Koordinatensystems zu einem unkt im Koordinatensystem führen. Die Koordinaten des Ortspfeils sind dieselben wie die Koordinaten des unktes. z..: ( ) O y O O ( ) erechnung der Koordinaten von ildpunkten llg.: O ' O v ' v y' y vy z..: ( ) v + O ' O ' + 6 O ' '(6 ) ' + v y' y+ vy y ( ) '(+ v y+ v ) '(6 ) + + y O 5 erechnung der Koordinaten des ittelpunktes der Strecke [] llg.: ( y ), ( y ), ( y ) + y + y ( y ) z..: ( ), ( ) + + (0,5,5) Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule y O

7 Die Drehung Grundwissen athematik 7I/6 ; ϕ Eigenschaften: I ' Jede Drehung besitzt einen unkt als Drehzentrum und einen Winkel ϕ als Drehwinkel. Die Verbindungsstrecken [] von Urpunkt und Drehzentrum und ['] vom zugehörigen ildpunkt ' und Drehzentrum sind gleich lang und schließen den Winkel ' mit dem aß ϕ ein. lle Drehungen haben nur das entrum als Fipunkt. lle Drehungen sind längen- und winkeltreu ( Kongruenzabbildung ). lle Drehungen sind geraden- und kreistreu. positive Drehrichtung negative Drehrichtung ' ' ' ' ' ϕ 5 ϕ -5 ϕ ; ϕ 5 I ' ; ϕ 5 I ' ; ϕ I '' ' Eine Drehung um 80 nennt man auch eine unktspiegelung am entrum. ' ; ϕ 80 I ''' ' ' ϕ erke: Eine Figur heißt punktsymmetrisch, wenn sie durch Drehung an einem unkt um 80 auf sich selbst abgebildet werden kann. D D D D arallelogramm Rechteck Quadrat Raute Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule

8 Regeln für Winkel Grundwissen athematik 7I/7 Neben- und Scheitelwinkel β Scheitelwinkel sind gleich groß: * * und β β β g Nebenwinkel ergänzen sich zu 80 : +β 80 Winkel an arallelen ( g ). Stufenwinkel (F-Winkel) g β g β g β g β β β β β. Wechselwinkel (-Winkel) g β g β g β g β β β β β Innenwinkelsummen. im Dreieck. im Viereck In jedem Dreieck beträgt die Summe der Winkelmaße der drei Innenwinkel 80 : +β+γ 80 Ü: Gib die fehlenden Winkelmaße an und begründe. In jedem Viereck beträgt die Summe der Winkelmaße der vier Innenwinkel 60 : +β+γ+δ 60 δ g δ γ δ g 70 Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule

9 Der Kreis Grundwissen athematik 7I/8 Kreis k Die Verbindungsstrecke zweier Kreispunkte E und F heißt Sehne s. Die Sehne s teilt die Kreislinie in zwei Kreisbögen EF und FE. Das von Kreissehne und Kreisbogen begrenzte Flächenstück ist ein Kreissegment. Ein von zwei Radien und einem Kreisbogen begrenztes Flächenstück ist ein Kreissektor. Die beiden Radien schließen den ittelpunktswinkel mit dem aß ε ein. E Radius r Durchmesser d Sehne s Segment Sektor ε F Lagebeziehung von Kreis k und Gerade assante p: p k Tangente t: t k {} Tangente t assante p entrale z: z k {; } mit z Sekante s: s k {E;F} entrale z erührradius Sekante s E F erechnungen am Kreis Für den Kreisumfang u gilt: Für den Inhalt der Kreisfläche gilt: u r π r π r r Für die Kreiszahl π wird vorläufig der Wert π, oder π benutzt. 7 Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule

10 Geometrische Ortslinien Grundwissen athematik 7I/9 Kreis Der Kreis ist der geometrische Ort aller unkte, die von einem unkt die gleiche r Entfernung haben. k(; r) { r} k ittelsenkrechte Die ittelsenkrechte ist der geometrische Ort aller unke, die von zwei unkten die gleiche Entfernung haben. m { } [] m a a Winkelhalbierende Die Winkelhalbierende ist der geometrische Ort aller unkte, die von beiden Schenkeln eines Winkels den gleichen bstand haben. w S ittelparallele Die ittelparallele zweier paralleler Geraden ist der geometrische Ort aller unkte, die von den beiden Geraden den gleichen bstand haben. a a g m h 5 arallelenpaar Das arallelenpaar zu einer Geraden ist der geometrische Ort aller unkte, die von einer Geraden den gleichen bstand a haben. a a g p p Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule

11 Winkel am Kreis Grundwissen athematik 7I/0 Randwinkelsatz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Randwinkel über der Sehne []. lle Randwinkel über einer Sehne eines Kreises besitzen das gleiche aß und sind halb so groß wie der dazugehörige ittelpunktswinkel. Thaleskreis (Sonderfall des Randwinkelsatzes) Verbindet man die unkte n des Halbkreises über einer ittelsehne mit den Endpunkten und, so haben alle Winkel n bzw. n das aß 90. Umgekehrt gilt: Hat der Winkel bzw. das aß 90, liegt sein Scheitel auf dem Halbkreis über der ittelsehne [] 80 Tangentenkonstruktion Fall: Tangente im erührpunkt, der auf der Kreislinie k liegt. Fall : Tangenten von einem unkt aus an die Kreislinie k. eichne die Strecke [] oder die entrale durch und. eichne die Strecke []. eichne die Senkrechte zur Strecke [] oder zur entrale durch und. T T eichne einen Kreis (Thaleskreis), dessen ittelpunkt der ittelpunkt der Strecke [] ist. Die Schnittpunkte der beiden Kreise bilden die erührpunkte und der beiden Tangenten. Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule

12 7/ : a) : a) : a) : a) 5: a) 7 5 b) 5,5 b) Lösungen 8 0,5 c) 6 k c) 5 b) ( y z) c) 7 b) (,) 6 c) 9 b) 5 ( ) c) Grundwissen athematik 7I/L 0 ( ) 7 5 7/ a) IL {, 6} b) IL { > 0} c) IL { < 5, 5} d) IL { <, 5} e) IL {, 6} f) g) IL { < 0} IL { < } 7/.: Jahr 5,5.: Jahr 6,57 : Jahr5 K 700,87 7/7 δ 80 δ 68 (Nebenwinkel) δ 68 (Stufenwinkel) δ δ δ 68 (Scheitelwinkel) δ 70 (Wechselwinkel) γ γ (Innenwinkelsumme im Dreieck) Staatsinstitut für Schulqualität und ildungsforschung bteilung Realschule

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

positive Zahlen (z.b. 216 / 1,2 / 3 4 5 ) negative Zahlen (z.b. 216 / 1,2 / 3 4 5 )

positive Zahlen (z.b. 216 / 1,2 / 3 4 5 ) negative Zahlen (z.b. 216 / 1,2 / 3 4 5 ) 3.1. Zahlengerade (1.1.) Seite 9 Mit dem Zahlenstrahl können wir die positiven Zahlen darstellen. Die Zahlengerade ermöglicht uns, auch die negativen Zahlen darzustellen. Auf dieser Zahlengeraden gibt

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN

INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN INFOMAPPE ZUM EINSTUFUNGSTEST MATHEMATIK AN DER FOS/BOS MEMMINGEN Liebe Schülerinnen und Schüler, wie schnell man einen bereits einmal gekonnten Stoff wieder vergisst, haben Sie sicherlich bereits schon

Mehr

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):

Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach): Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

Übungsaufgaben Klasse 7

Übungsaufgaben Klasse 7 Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.

Mehr

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden : Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen. Geometrie I. Zeichnen und Konstruieren ================================================================== 1.1 Der Unterschied zwischen Zeichnen und Konstruieren Bei der Konstruktion einer geometrischen

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) KK/Werkjahr mit Mindeststandards [Druckversion] Leitdeen/Richtziele Stundentafeln Sprache Geometrisches Zeichnen Mensch und Umwelt Gestalten und Musik Sport Individuum und Gemeinschaft Niveaus E P Links

Mehr

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE

MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Europäische Schulen Büro des Generalsekretärs Abteilung für pädagogische Entwicklung Ref.:2010-D-581-de-2 Orig.: EN MATHEMATIKLEHRPLAN 4. SCHULJAHR SEKUNDARSTUFE Kurs 4 Stunden/Woche VOM GEMISCHTER PÄDAGOGISCHER

Mehr

7. Klasse TOP 10 Mathematik 07 Gesamtes Grundwissen mit Übungen G

7. Klasse TOP 10 Mathematik 07 Gesamtes Grundwissen mit Übungen G www.strobl-f.de/grund7g.pdf 7. Klasse TOP 0 Mathematik 07 Gesamtes Grundwissen mit Übungen G Grundwissen Mathematik 7. Klasse: Die 0 wichtigsten Themen auf jeweils einer Seite! Zum Wiederholen kann man

Mehr

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen

Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Integration von Schülerinnen und Schülern mit einer Sehschädigung an Regelschulen Didaktikpool Falttechniken zum Einsatz im Mathematikunterricht mit sehgeschädigten Kindern Emmy Csocsán / Christina Blackert

Mehr

T Nach- bzw. Wiederholungsprüfung:

T Nach- bzw. Wiederholungsprüfung: Schriftliche Abschlussprüfung an Fachoberschulen/ Prüfung zum Erwerb der Fachhochschulreife in beruflichen Bildungsgängen im Schuljahr 00/0 Hauptprüfung: Nach- bzw. Wiederholungsprüfung: 0.0.0 Schularten:

Mehr

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten)

JAHRESPRÜFUNG MATHEMATIK. 1. Klassen Kantonschule Reussbühl Luzern. 27. Mai 2014 Zeit: 13:10 14:40 (90 Minuten) KLASSE: NAME: VORNAME: Mögliche Punktzahl: 51 48 Pte. = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK 1. Klassen Kantonschule Reussbühl Luzern 7. Mai 014 Zeit: 1:10 14:40 (90 Minuten) Allgemeines

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 2. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 7 Saison 1962/1963 Aufgaben und Lösungen 2. Mathematik Olympiade Saison 1962/1963 Aufgaben und Lösungen 1 OJM 2. Mathematik-Olympiade Aufgaben Hinweis: Der Lösungsweg mit Begründungen und Nebenrechnungen soll deutlich erkennbar in logisch und

Mehr

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra)

WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) WERRATALSCHULE Gesamtschule mit gymnasialer Oberstufe Heringen (Werra) SCHULCURRICULUM IM FACH MATHEMATIK BILDUNGSGANG HAUPTSCHULE Fachcurriculum Klasse 7H Mathematik Schwerpunkte Kompetenzen Inhalte Mathematische

Mehr

Mathematik üben mit Erfolg

Mathematik üben mit Erfolg Steffen Beuthan /Günter Nordmeier Mathematik üben mit Erfolg 7. Schuljahr Realschule MANZ VERLAG Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen

Mehr

Übersicht. 1. Zuordnungen. Arbeitsblätter... 15 32 Lösungen...255 257. 2. Prozent- und Zinsrechnung. Arbeitsblätter... 33 54 Lösungen...

Übersicht. 1. Zuordnungen. Arbeitsblätter... 15 32 Lösungen...255 257. 2. Prozent- und Zinsrechnung. Arbeitsblätter... 33 54 Lösungen... Übersicht 1. Zuordnungen Arbeitsblätter... 15 32 Lösungen...255 257 2. Prozent- und Zinsrechnung Arbeitsblätter... 33 54 Lösungen...258 260 3. Geometrie: Figuren - Kongruenz Arbeitsblätter... 55 118 Lösungen...261

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Lernziele Matbu. ch 8

Lernziele Matbu. ch 8 Lernziele Matbu. ch 8 Beachte auch den Refernzrahmen des Stellwerk8 www. stellwerk- check. ch LU Priorität Grobziel (aus Mathbu.ch 8) Lernziele Begriffe 2 1 Mit gebrochenen Zahlen operieren: Gebrochene

Mehr

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte)

Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) Niveau Leitdeen/Richtziele Stundentafeln Bedeutung des Teilbildungsbereichs ( Grobziele und Inhalte / Treffpunkte) [Druckversion] Sprache Anwendungen der Geometrisches Zeichnen Mensch und Umwelt Gestalten

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Bildung der Reihe: Jede Zahl ist das Doppelte der vorangegangenen.

Bildung der Reihe: Jede Zahl ist das Doppelte der vorangegangenen. 46. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 5 Lösungen c 2006 ufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. lle Rechte vorbehalten. 460511 Lösung Teil a) ildung

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns!

Über Kommentare und Ergänzungen zu diesen Lösungsbeispielen freuen wir uns! ufgaben und Lösungen 1. Runde 016 Über Kommentare und Ergänzungen zu diesen n freuen wir uns!» KORREKTURKOMMISSION KRL FEGERT» UNDESWETTEWER MTHEMTIK Kortrijker Straße 1, 53177 onn Postfach 0 0 01, 5313

Mehr

Realschule Bayern C.C. BUCHNER

Realschule Bayern C.C. BUCHNER Realschule Bayern Herausgegeben von Michael Kleine und Patricia Weiler Bearbeitet von Andreas Gilg, Michael Kleine, Evelyn Mühlbauer, Andreas Schüßler, Andreas Strobel, Katja Trost, Patricia Weiler, Simon

Mehr

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Amina Duganhodzic Proseminar: Mathematisches Problemlösen Unter der Leitung von Privat Dozentin Dr. Natalia Grinberg 26. Juni

Mehr

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen!

2. Propädeutische Geometrie Klasse 5/6. Für den Geometrieunterricht ausnützen! 2. Propädeutische Geometrie Klasse 5/6 2.1 Zur Entwicklung der Schüler Kinder im Alter von 10-12 Jahren sind wissbegierig neugierig leicht zu motivieren anhänglich (Lehrperson ist Autorität) zum Spielen

Mehr

MatheBlatt (Version 2)

MatheBlatt (Version 2) MatheBlatt (Version 2) Bilder und Formvorlagen für Mathe-Arbeitsblätter / Inhaltsverzeichnis Copyright Hans Zybura Software, 2008. Alle Rechte vorbehalten. Formatvorlagen aus Word-Zeichnen Elementen und

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Formelsammlung zur Kreisgleichung

Formelsammlung zur Kreisgleichung zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,

Mehr

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben

Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Weitere Aufgaben Mathematik (BLF, Abitur) Hinweise und Beispiele zu hilfsmittelfreien Aufgaben Aufgabe C Gegeben ist eine Funktion f durch f ( ) = + 3. Gesucht sind lineare Funktionen, deren Graphen zum

Mehr

Rechnen mit Brüchen (1) 6

Rechnen mit Brüchen (1) 6 Rechnen mit Brüchen () 6. Erweitern und Kürzen Der Wert eines Bruches ändert sich nicht, wenn entweder Zähler und Nenner mit derselben natürlichen Zahl multipliziert werden: a a m ( a, b, m ) ERWEITERN,

Mehr

Mathematik-Verlag. Mathematik-Verlag, www.matheverlag.com Kopieren und Ausdrucken verboten!

Mathematik-Verlag. Mathematik-Verlag, www.matheverlag.com Kopieren und Ausdrucken verboten! Mathematik-Verlag Algebra: Quadratische Gleichungen 1. Wie lautet die p, q Formel zur Lösung der quadratischen Gleichung x 2 + px + q = 0? 2. Berechne mit der p, q Formel die Lösungen der Gleichungen:

Mehr

Lösungen zur Prüfung 2009: Pflichtbereich

Lösungen zur Prüfung 2009: Pflichtbereich 009 Pflichtbereich Lösungen zur Prüfung 009: Pflichtbereich ufgabe P1: erechnung des lächeninhalts G : ür den lächeninhalt des Dreiecks G gilt (siehe igur 1): G = Man muss also zuerst die Länge G und die

Mehr

Gymnasium. Testform B

Gymnasium. Testform B Mathematiktest für Schülerinnen und Schüler der 8 Klassenstufe Teil 1 Gymnasium Testform B Zentrum für empirische pädagogische Forschung und Fachbereich Psychologie an der Universität Koblenz-Landau im

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Thema: Winkel in der Geometrie:

Thema: Winkel in der Geometrie: Thema: Winkel in der Geometrie: Zuerst ist es wichtig zu wissen, welche Winkel es gibt: - Nullwinkel: 0 - spitzer Winkel: 1-89 (Bild 1) - rechter Winkel: genau 90 (Bild 2) - stumpfer Winkel: 91-179 (Bild

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Test zur Geometrischen Kreativität (GCT-DE)

Test zur Geometrischen Kreativität (GCT-DE) Pädagogische Hochschule Schwäbisch Gmünd Institut für Mathematik und Informatik Abteilung Informatik Test zur Geometrischen Kreativität (GCT-DE) Erstellt von Mohamed El-Sayed Ahmed El-Demerdash Master

Mehr

6. KLASSE MATHEMATIK GRUNDWISSEN

6. KLASSE MATHEMATIK GRUNDWISSEN 6. KLASSE MATHEMATIK GRUNDWISSEN Thema BRÜCHE Bruchteil - Man teilt das Ganze durch den Nenner und multipliziert das Ergebnis mit dem Zähler von 24 kg = (24 kg : 4) 2 = 6 kg 2 = 12 kg h = von 1 h = (1

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Lösungsmuster und Bewertung 0 Minuten bschlussprüfung 00 an den Realschulen in Bayern Mathematik II ufgaben - Nachtermin RUMGEOMETRIE. EB B EB 8,9cm ES EB + BS ES 9,00cm α cm sin α 8,9 α ]0 ;80 [ 9,00cm

Mehr

Euklides: Dedomena. Was gegeben ist.

Euklides: Dedomena. Was gegeben ist. Euklides: Dedomena. (Die "Data" des Euklid) Was gegeben ist. Verzeichnis der Lehrsätze Dedomena Ins Deutsche übertragen von Dr. phil. Rudolf Haller mit Benützung von Euclidis Opera Omnia, ediderunt I.

Mehr

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek)

Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Seite 1 Aufnahmeprüfung 2009 Mathematik (2. Sek) Gymnasium Unterstrass Zürich Aufnahmeprüfung 2009 Kurzgymnasium (Anschluss 2. Sekundarklasse) Mathematik Name: Die Prüfung

Mehr

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten?

Geometrische Maße oder,... wie kann man quantitative Aussagen über geometrische Objekte erhalten? In der euklidischen Geometrie der Mittelstufe ging es zumeist um geometrische Konstruktionen und um qualitative Aussagen über geometrische Objekte in Bezug zueinander. Möchte man, insbesondere im dreidimensionalen

Mehr

Saarland Ministerium für Bildung, Kultur und Wissenschaft

Saarland Ministerium für Bildung, Kultur und Wissenschaft Abschlussprüfung 2004 2003/2004 2001 Saarland Ministerium für Bildung, Kultur und Wissenschaft Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52,

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

(4) Der Hauptpreis befindet sich im ersten oder im zweiten Umschlag.

(4) Der Hauptpreis befindet sich im ersten oder im zweiten Umschlag. 49. Mathematik-Olympiade Regionalrunde Olympiadeklasse 6 c 2013 nausschuss des Mathematik-Olympiaden e.v. Barbara ist Kandidatin in einer mathematischen Quizshow und hat bis jetzt alle n richtig gelöst.

Mehr

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer)

BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Bildungsdirektion des Kantons Zürich Mittelschul- und Bildungsamt BMS Aufnahmeprüfung Jahr 2014 Basierend auf Lehrmittel: Mathematik (Schelldorfer) Fach Mathematik Teil 1 Serie A Dauer 45 Minuten Hilfsmittel

Mehr

IGS Robert-Schuman-Schule Frankenthal

IGS Robert-Schuman-Schule Frankenthal Thema: Gleichungen und Ungleichungen Zeitraum: September - November Terme Rechengesetze Umkehren von Rechenoperationen Systematisches Probieren Terme auswerten und interpretieren Terme aufstellen und für

Mehr

ax 2 + bx + c = 0, (4.1)

ax 2 + bx + c = 0, (4.1) Kapitel 4 Komplexe Zahlen Wenn wir uns auf die reellen Zahlen beschränken, ist die Operation des Wurzelziehens (also die Umkehrung der Potenzierung) nicht immer möglich. Zum Beispiel können wir nicht die

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Grundregeln der Perspektive und ihre elementargeometrische Herleitung

Grundregeln der Perspektive und ihre elementargeometrische Herleitung Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 013 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Löse die Aufgaben auf diesen Blättern. Der Lösungsweg

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10 Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen

Mehr

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen

Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten. Größen und Messen Konstruieren Winkel zeichnen Zeitraum prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Lambacher Schweizer 5 Seiten Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Symbolschreib- symbolische und

Mehr

delta 7 Hessen neu und delta 8 Hessen neu

delta 7 Hessen neu und delta 8 Hessen neu delta 7 Hessen neu und delta 8 Hessen neu Synopse für Klasse 7/8 : Inhaltsfelder, Kompetenzerwerb Lernzeitbezogene Kompetenzerwartungen und Inhaltsfelder am Ende der Jahrgangsstufe 8 (aus: Hessisches Kultusministerium,

Mehr

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN MATHEMATIK-WETTBEWERB 2013/2014 DES LANDES HESSEN 2. RUNDE AUFGABENGRUPPE A 06.03.2014 Hinweis: Von jeder Schülerin/jedem Schüler werden vier Aufgaben gewertet. Werden mehr als vier Aufgaben bearbeitet,

Mehr

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten

Abiturprüfung 2000 MATHEMATIK. als Grundkursfach. Arbeitszeit: 180 Minuten Abiturprüfung 000 MATHEMATIK als Grundkursfach Arbeitszeit: 180 Minuten Der Fachausschuss wählt je eine Aufgabe aus den Gebieten GM1, GM und GM zur Bearbeitung aus. - - GM1. INFINITESIMALRECHNUNG I. 10

Mehr

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?)

Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) Bewegliche Geometrie mit dem Computer Was beobachtest Du? (Warum ist das so?) 12.10.2009, Oliver Seif nach einer Vorlage von H.Hischer/A. Lambert 1 Das Werkzeug Computer (dynamische Geometriesoftware,

Mehr

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II

Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Arbeitsblätter zum Thema Papierfalten und Algebra für den Unterricht Hochbegabter in der Sekundarstufe II Robert Geretschläger Graz, Österreich, 2009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Abschlussprüfung an den Realschulen in Bayern

Abschlussprüfung an den Realschulen in Bayern bschlussprüfung an den Realschulen in Bayern 009 Mathematik II Haupttermin ufgaben - Lösungsmuster und Bewertung EBENE GEOMETRIE. sin PMC sin MCP PC MP PMC ]0 ;90 [ L K sin5 (90,0 50,0)cm sin PMC PMC,

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Themenkreise der Klasse 5

Themenkreise der Klasse 5 Mathematik Lernzielkatalog bzw. Inhalte in der MITTELSTUFE Am Ende der Mittelstufe sollten die Schüler - alle schriftlichen Rechenverfahren beherrschen. - Maßeinheiten umformen und mit ihnen rechnen können.

Mehr

MATHEMATIK-WETTBEWERB 1995/96 DES LANDES HESSEN

MATHEMATIK-WETTBEWERB 1995/96 DES LANDES HESSEN MTMTIK-TTR 1995/96 DS DS SS P I C T DR RPP 1. ib die jeweilige ösungsmenge in aufzählender orm an ; = Z. a) (x 10) 2 (10 + x) 4 = 0 b) (x + 10) 2 (2x + 10) = 81(2x + 10) c) (x + 8)(x 8) 4 < 0 d) (x + 8)(x

Mehr

Realschulabschluss Schuljahr 2008/2009. Mathematik

Realschulabschluss Schuljahr 2008/2009. Mathematik Prüfungstag: Mittwoch, 20. Mai 2009 Prüfungsbeginn: 8.00 Uhr Realschulabschluss Schuljahr 2008/2009 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer Die Arbeitszeit beträgt 150 Minuten.

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig

Mehr

Wie erstellt man dynamische Elemente mit JSXGraph?

Wie erstellt man dynamische Elemente mit JSXGraph? Wie erstellt man dynamische Elemente mit JSXGraph? 1. Kurzinformation zu JSXGraph Was ist JSXGraph? Eine freie dynamische Mathematiksoftware, die vollständig in Javascript programmiert ist. Daher benötigt

Mehr

1. Bestimmen Sie b so, dass die Punkte A(1 2 b), B(2 b 4), C(5 6 7) auf einer Geraden liegen.

1. Bestimmen Sie b so, dass die Punkte A(1 2 b), B(2 b 4), C(5 6 7) auf einer Geraden liegen. Aufgaben Vektorrechnung 1. Bestimmen Sie b so, dass die Punkte A(1 b), B( b 4), C(5 6 7) auf einer Geraden liegen.. Gegeben sind die Gerade g: x = 7 4 + λ 4 und der Punkt M( 4 ). a) Wie lautet die Gleichung

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe . Mathematikschulaufgabe. Sortiere die folgenden Zahlen der Größe nach, beginne mit der kleinsten Zahl: 4 0 ;,499; ; 0,8; ( ) ;,; ; 0. Berechne: a) ( 7) + ( ) b) 8 ( ) + ( 7) +, c) ( 7) 8+ ( 6+ ) :( )

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

Eingangstest Mathematik Musterlösungen

Eingangstest Mathematik Musterlösungen Fakultät für Technik Eingangstest Mathematik Musterlösungen 00 Fakultät für Technik DHBW Mannheim . Arithmetik.. (4 Punkte) Vereinfachen Sie folgende Ausdrücke durch Ausklammern, Ausmultiplizieren und

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Prüfugsdauer: 50 Miute Abschlussprüfug 03 a de Realschule i Bayer Mathematik II Name: Vorame: Klasse: Platzziffer: Pukte: Aufgabe A Haupttermi A 0 Die ebestehede kizze zeigt de Axialschitt eier massive

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport

Mathematik. Prüfung am Ende der Jahrgangsstufe 10. Allgemeine Arbeitshinweise. Ministerium für Bildung, Jugend und Sport Ministerium für Bildung, Jugend und Sport Prüfung am Ende der Jahrgangsstufe 10 Schriftliche Prüfung Schuljahr: 014/015 Schulform: Allgemeine Arbeitshinweise Die Prüfungszeit beträgt 135 Minuten. Jede

Mehr

- 2 - AP WS 10M. 1 Finanzmathematik Punkte

- 2 - AP WS 10M. 1 Finanzmathematik Punkte - 2 - AP WS 10M 1 Finanzmathematik Punkte Frau Werner hat vor einigen Jahren bei einer Versicherungsgesellschaft einen Vertrag für eine Lebensversicherung abgeschlossen. Am Ende der Laufzeit dieser Versicherung

Mehr

Erfolg im Mathe-Abi 2012

Erfolg im Mathe-Abi 2012 Gruber I Neumann Erfolg im Mathe-Abi 2012 Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Windkraftanlage... 5 2 Heizkosten... 6 3

Mehr

Arbeiten mit dem Geometrieprogramm GeoGebra

Arbeiten mit dem Geometrieprogramm GeoGebra Fachdidaktik Modul 1, WS 2012/13 Didaktik der Geometrie III: Konstruieren Planarbeit Arbeiten mit dem Geometrieprogramm GeoGebra I. Erstes Erkunden der Programmoberfläche: Grund- und Standardkonstruktionen

Mehr

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 MATHEMATIK

QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 2010 MATHEMATIK QUALIFIZIERENDER HAUPTSCHULABSCHLUSS 010 BESONDERE LEISTUNGSFESTSTELLUNG AM 0.06.01 O Teil A: 8.0 Uhr bis 9.00 Uhr (Teil B: 9.10 Uhr bis 10.0 Uhr) MATHEMATIK Teil A Bei Teil A der besonderen Leistungsfeststellung

Mehr

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar?

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar? MATHEMATISCHER FITNESSTEST - LÖSUNGEN DR. ROGER ROBYR Die Aufgaben sollten alle ohne Unterlagen und ohne programmierbare oder graphikfähige Rechner gelöst werden können. Lösung. ) Gegeben sind die Mengen

Mehr