BMS. berufsmaturitätsschule Formelsammlung Physik

Größe: px
Ab Seite anzeigen:

Download "BMS. berufsmaturitätsschule Formelsammlung Physik"

Transkript

1 beufsatuitätsschule oelsalung Physik BMS Inhaltsvezeichnis ehleechnung Rechnen in de Physik 3 Wäelehe 4 Hydostatik 5 Kineatik 6 Dehbewegungen 6 Käfte 7 Statik 9 Dynaik 1 Abeit, Enegie und Leistung 11 Stoffwete 1!" #"!$" %& $'!() *+, *"!- "(. / #&() Kollektoen 4 it ostschutz P1 Pupe Solakeislauf Wawasse 1 7 Lite/Tag Speiche 1 Lite bestehend, it Gaskessel beheizt. Pupe fü die Uschichtung, wenn de Solaspeiche wäe ist. Gaskessel, Heizung und Wawasse, 55 kw Kobispeiche Sola 3 4 Lite it zwei Wäetauschen

2 oelsalung Geltende Ziffen Zahl Geltende Z. Zahl Geltende Z ehleechnung Einzelessung Absolute ehle elative ehle Regeln de ehleechnung Algebaische Sue: Multiplikation und Division: wahe Gösse = Messwet ± abs. ehle Bsp: b = ( 75. ±.8) abs. ehle elativeehle = Messwet Bsp: b = 75. ± 1.1% Addition de absoluten ehle Addition de elativen ehle Suen und Podukte üssen getennt behandelt weden! Hinweis: aktoen und Büche wie π, 1/ sind exakt, also ohne ehle Beispiel: 1 / 75. ±.8 = 37.5 ±.4 = 37.5 ± 1.1 ( ) ( ) % austegel: Eine Aufgabe wid exakt geechnet und a Schluss auf dei geltende Ziffen geundet. Mehee Messungen Mittelwet und Standadabweichung Wahe Wet = Mittelwet ± Standadabweichung Beechnen eine passenden Kuve Regession ode Ausgleichsgeade Liegen x und y-daten vo, wid de Zusaenhang it eine Regession (lineae unktion = Ausgleichsgeade) beechnet. Beispiel Messung ideales Gas it sechs Messweten Dastellung i Länge-Tepeatu-Diaga Ausgleichsgeade it unktionsgleichung 1C Gasausdehnung y =.31x Länge [] Micosoft Excel unktion einfügen; Menü Statistik Beispiel 1 Daten: =MITTELWERT(B5:B14) Standadabweichung =STABW(B5:B14) Diaga (x-y-punkt) zeichnen Menü Diaga, Tendlinie hinzufügen Typ: linea ode polynoisch, die Reihenfolge steht fü die höchste Potenz de Potenzfunktion Optionen: TI N Spie Haustaste hoe c 3: List & Speadsheet Daten in eine Spalte eingeben. Menü 4. Statistics 1: Stat Calculations, 1: One-Vaiable Stat. Mittelwet: x, Standadabweichung: σ 3: Linea Regession Daten in zwei Spalten X1 List: a[ ] (1. Spalte) Y1 List: b[ ] (. Spalte) equency List: 1 (jede Wet 1 Mal) x

3 BMS Physik oelsalung Gleichung i Diaga dastellen Physikalische Gössen ( Richtung) Gösse = Zahlenwet Einheit Zahlenwet, Einheit, Richtung Vekto g g = 9.81 /s (Betag) = / 9.81 = 9.81 ( / -1) Einheiten kobinieen: 1 s 1 s Zehnepotenzen, SI Vosätze = 1 s N = 1 kg akto Vosatz Zeichen akto Vosatz Zeichen 1-18 Atto a 1 1 Deka d 1-15 eto f 1 Hekto h 1-1 Pico p 1 3 Kilo k 1-9 Nano n 1 6 Mega M 1-6 Miko µ 1 9 Giga G 1-3 Milli 1 1 Tea T 1 - Zenti c 1 15 Peta P 1-1 Dezi d 1 18 Exa E g s kg 1N = 1 s s Tigonoetie Nu i echtwinkligen Deieck GK sin(α ) = HY cos(α ) = AK HY GK tan(α ) = AK Beliebiges Deieck a b c Sinussatz = = = sinα sinβ sinγ Cosinussatz c = a + b abcos( γ ) Ukeisadius HY α AK GK Vektoen in de Physik Vekto katesisch: v = ( v / v ) = ( v cos( α) / v sin( α) ) x Koodinaten: v x = v cos(α ) = v sin(α ) Winkel α y v y ie von de positiven x-achse weg v = v Vektoaddition v = v 1 + v Sue Beispiel eff eigen + v Mediu gaphisch duch veschieben und anhängen echneisch katesischen Koodinaten (siehe oben) v y Vekto α Sue v x TI N Spie Katesisch [ ] x v y Vektoen eckigen Klaen, Koa als Tennzeichen v, Polafo [ Betag Winkel ], Uechnung: [ v, ] x v y Pola

4 oelsalung Betag v = v = + v x v y Winkel = ac tan( / ) Länge des Vektos α v y v x Bsp 1 /s, 15 ( ) ( 8.66 / 5.) /s Wäelehe Die Tepeatu Die absolute Tepeatu T wid in Kelvin angegeben T = ϑ + 73K Beispiel flüssige Stickstoff: 77 K = -196 C ϑ in C Ewäung und Ausdehnung feste Köpe: Länge feste Köpe: Voluen lüssigkeiten: Voluen l = l α T α lineae Ausdehnungskoeffizient V V 3α T γ 3α α = γ = K 1 = 1 [ ] [ ] K V = V γ T Voluenausdehnungskoeffizient γ Mischpozesse Tepeatudiffeenzen Q = Q Wäeaufnahe und Wäeabgabe sind gleich auf ab T1 = ϑ1 ϑisch bzw. = ϑisch ϑ T sind veschieden Spezifische Wäe Wäeenge 1 fest fest-flüssig 3 flüssig 4 flüssig-gasföig Q [ Q ] = J, kj, MJ J Q = c fest T spez. Wäekapazität c [ c ] = kg K J Q = L f spez. Schelzwäe L f [ L] = kg J Q = c flüssig T spez. Wäekapazität c [ c ] = kg K J Q = Lv spez. Vedapfungswäe L v [ L] = kg Leistung P = Q / t [ P] = J/s = W siehe S. 11 Beispiel Wasse Schelztepeatu: C Vedapfungstepeatu: 1 C spezifische Wäekapazität 1 c Eis =.1 kj/(kg K) 3 c Wasse = 4.18 kj/(kg K) L f = kj/kg spez. Schelzwäe 4 L v = 56 kj/kg spez. Vedapfungswäe Tep [ C] Aggegatszustand Wasse Q [kj]

5 BMS Physik oelsalung Ideale Gase Dichte (ho) Dichte uechnen: Nobedingungen ρ = ρ V 3 kg kg 1 1 = kg g 1 = l l c 3 Tipp: V = 1. bei Nobedingungen einsetzen [ ] = kg 5 p = Pa = 1.13 ba T = 73K Gasgleichung p1 V1 p V = T1 T fü konstante Gasengen! absolute Tepeatu T nu in Kelvin! absolute Duck p p abs = pel. + pluft Luftduck: p Luft 1ba Duckuechnung 1 ba =1 5 Pa 1ba =1 Pa =1hPa Tipp: Veändeliche Gasengen jeweils in Nobedingungen uechnen. Aeo- und Hydostatik Begiff Definition, oel Einheit Hinweise Gewichtskaft kg Masse in kg G = g [ ] = N = Kaft in N. s Duck N Duck ist eine skalae Gösse! p = [ p ] = Pa = Kaft und Begenzungsfläche sind A geichtete Gössen. Pascal Pa Dichte kg kg ρ = [ ρ ] = SI-Einheit! ρ 3 Wasse = 1' 3 V Schweeduck p S = ρ g h N Gilt fü inkopessible lüssigkeiten [ p ] = Pa = unabhängig von de o! Auftiebskaft A = ρl. g V Dichte de Sinken: l. A < G lüssigkeit ode lüssigkeit, Schweben: A = G auch Gas Voluen de vedängten Schwien: Text siehe unten lüssigkeit. A = G nu ein Teil des Köpes taucht ein. oulieung nach Achiedes: Die Auftiebskaft ist gleich goss wie die Gewichtskaft des vedängten Medius. A Ein schwiende Köpe taucht genau so weit ein, dass Auftiebs- und Gewichtskaft gleich goss sind.

6 oelsalung Kineatik Mittlee Geschwindigkeit Stecke Beschleunigung s v = [ v ] = /s t Uechnung: 1 /s = 3.6 k/h s = v t nu it de ittleen Geschwindigkeit! v a = [ a ] = /s t Gleichföige, geadlinige Bewegung s-t-diaga Beispiel ohne Beschleunigung Geade 1: s 1 ( t) = v 1 t Steigung positiv + /s Geade : s ( t) = s + v t Steigung negativ -3 /s Schnittpunkt: zu selben Zeit a selben Ot keuzen 5 s [] t [s] übeholen Bewegung it konstante Beschleunigung s-t-diaga Paabel: s( t) = s a t + v t +. 5 i Scheitelpunkt gilt: v = Geschwindigkeit als Steigung i s-t-diaga Mittlee Geschwindigkeit: Sekante Moentangeschwindigkeit: Tangente v-t-diaga Moentangeschwindigkeit: v( t) = v + a t Beschleunigung: Steigung i v-t-diaga Zuückgelegte Stecke = läche unte de Kuve Mittlee Geschwindigkeit: v 1 + v v = (Diag.) 5 s [] t [s] v [/s] t [s] Ot und Geschwindigkeit v = v + a s ohne Zeit s = ( s ) s

7 BMS Physik oelsalung eie all und senkechte Wuf Konstante Beschleunigung a = g, allbeschleunigung g = 9.81 /s Vozeichenkonvention: nach oben = positiv, nach unten = negativ! Geschwindigkeit v( t) v g t (Geade) Höhe Steigzeit = = h + v t. 5 g (Paabel) h( t) t t Steig = v / g Steighöhe h Steig v /( g) = ax. Höhe: v = De hoizontale Wuf Übelageung: Hoizontale Bewegung it v x = konstant und feie all. Geschwindigkeit Ot Bewegung hoizontal v x = v x = v t eie all vetikal Moentangeschwindigkeit ( ) v y = g t y =.5 g t v = v x / v y siehe Skizze echts v x = v v y De schiefe Wuf ohne Luftwidestand Übelageung: hoizontale Bewegung und senkechte Wuf. α ist de Statwinkel zwischen v und de Hoizontalen Geschwindigkeit Ot Bewegung hoizontal v x ( t) = v cos( α) x( t) = v cos( α ) t Wuf vetikal Wufpaabel (x / y) v y ( t) = v sin( α ) g t y( t) = h + v sin( α ) t. g t g f ( x) = y = x tan( x 5 α ) ohne Zeit v cos( α) v v y = v sin(α) α v x = v cos(α) Dehbewegungen equenz (Dehzahl) Winkel i Bogenass Winkelgeschwindigkeit Bahngeschwindigkeit n 1 U U f = = Bsp: 6 = 1 = 1 Hz t T in s n = Anzahl Udehungen, t = Zeit, T = Ulaufzeit, 1 Peiode, Bogenlänge ϕ = diensionslos, Einheit ad, π ad =18 s = ϕ [ s] = Weg = Länge Keisbogen ϕ π 1 ω = = [ ω ] = s Winkel i Bogenass! (oega) t T ϕ v = = ω [ v ] = /s t Zentipetalbeschleunigung a z v = = ω [ ] = /s a z v = Bahngeschwindigkeit [ ] = /s v Die Beschleunigung a Z zeigt ins Keiszentu!

8 oelsalung Käfte Gewichtskaft G g = [ ] = N = kg /s ( ) Edbeschleunigung g = 9.81 /s Richtung / 1 edekaft (Hooke) = D s edekonstante D in N/, D = Steigung i -s-diaga Spannabeit als läche Reibungskaft µ (ü) diensionslose Reibungszahl = µ ie gegen die Bewegungsichtung Luftwidestand R gleit N = µ analog fü die Rolleibung R oll N R N µ Hafteibung als Maxialwet Die Noalkaft N steht echtwinklig zu Untelage (s. schiefe Ebene) LW =.5 ρ CW A v Dichte de Luft ρ, ca. 1. kg/ 3, Luftwidestandsbeiwet C W (diensionslos), ontfläche A in Geschwindigkeit v in /s N Gavitationskaft = G G = Gavitationskonstante kg Ede M = kg Edadius = 6'371 k Käfte addieen und zelegen Käfte können addiet weden, wenn sie i selben Punkt angeifen. Vektoaddition siehe Seite 3. Käfte zelegen Richtungen paallel veschieben, Paalleloga zeichnen Vektogleichung: = 1 + Schiefe Ebene Vogehen Koodinatensyste einfühen, die Vozeichen ichten sich nach de Koodinatensyste. Die Gewichtskaft in zwei Koponenten zelegen G = ( Gx ; Gy ) y = = g sin(α) x-richtung Gx Hang = g cos(α) y-richtung Gy y-richtung Noalkaft N = Gy x-richtung Reibungskaft Rx = µ N = ± µ g cos(α) Gx = Hang Das Vozeichen ichtet sich nach de Bewegungsichtung. Gy x

9 BMS Physik Statik Gundgesetz Statik (Systee ohne Beschleunigung) Die Sue alle Käfte ist gleich null. Aufgabentypen Käfte addieen: Beispiel Lagebelastung duch Seilkäfte oelsalung Die Sue alle Dehoente ist null. Bzw. links- und echtsdehende Dehoente heben sich auf. Käfte zelegen: Beispiel Last auf zwei Seilichtungen veteilen Dehoente: Wenn die Käfte an veschiedenen Punkten angeifen. De Schwepunkt Rollen laschenzug ü Dehoent- und Enegiebetachtungen wid die gesate Masse konzentiet i Schwepunkt eingesetzt. Eine Rolle lenkt Seilkäfte u. Die festen Rollen lenken die Käfte nu u. Entscheidend ist die Anzahl de losen Rollen: jede lose Rolle bewikt eine Halbieung de Kaft Dehoent M = ' = sin( ) = Hebellänge = wiksae Hebellänge echtwinklig zu Angiffslinie. Winkel α zwischen Hebel und Kaft Vozeichen: Dehoente i Uhzeigesinn noaleweise negativ α Auflagekäfte Eine Dehachse bei A (ode B) wählen. Längen l hoizontal d.h. echtwinklig zu den Käften bis zu A essen. Alle Dehoente fü die Achse A notieen, Gleichung de Dehoente: G 1 l1 + G l = B l3 Analog fü den Dehpunkt B. Kontolle: + = Gewichtskaft total A B G A G1 G B B Vogehen Lageplan, it Abessungen Käfteplan nu Winkel Mst. in Mete Mst. in Newton N

10 oelsalung Dynaik Vogehen: Tägheitsgesetz Bezugsyste Beispiel Besen Alle Käfte einzeichnen. Vektosue de Käfte beechnen. Die Sue heisst auch esultieende Kaft es. ü es = bleibt die Geschwindigkeit unveändet konstant. ü einen PW it konstante Geschwindigkeit ist die Antiebskaft gleich goss wie die Sue aus Rolleibung plus Luftwidestand. In eine unbeschleunigten Bezugssyste gibt es keine Tägheitskäfte! Jede Kaft wid von eine andeen Köpe veusacht. Die Gewichtskaft duch die Ede usw. Die Beskaft wikt de de Geschwindigkeit entgegen. Dank (Haft) Reibung ist Besen öglich! = a = Reibungsk aft = µ g es Bes v Gundgesetz de Dynaik: es a = es und a sind ie paallel! Die Vektosue alle Käfte egibt die esultieende Kaft. Aktion und Reaktion geifen an veschiedenen Köpen an und sind entgegengesetzt gleich goss. Egal ab eine ode beide Pesonen ziehen, es gilt: v A = B 7 Zwei Köpe-Syste Die Gesatasse ( 1 + ) uss beschleunigt weden! 6 Sue in Punkt A: g 1 g ist die Antiebskaft und esultieende Kaft. Beschleunigung des Gesatsystes: g ) = ( + ) a ( 1 1 Die Seilkaft Seil ist gösse als g und kleine als g Übelegung: Sonst esultiet keine beschleunigte Bewegung Die Seilkäfte links und echts sind gleich goss: Aktion und Reaktion! ü die Beechnung de Seilkaft wid nu eine Masse betachtet. Die Beschleunigung uss bekannt sein (Skizze echts). 89:; es G

11 BMS Physik oelsalung Abeit, Enegie und Leistung Abeit wok W = s cos(ϕ ) = o s Skalapodukt! Einheit: 1 N= 1 Joule Enegie E = P t Einheiten: 1 J =1 Ws, kwh 1 W 36 s 3.6 MJ 1 = = Die Enegieehaltung Enegie kann wede ezeugt noch venichtet weden. Wenn das Syste ufassend gewählt wid, bleibt die Sue de Enegie ehalten. Leistung powe Moentanleistung Wikungsgad W E J P = = Mittel Einheit: 1 W = 1 und 1 PS 736 W t t s P = v Einheit: N /s = W Nutzen Output η = = diensionslos, übliche Angabe in % Aufwand Input Abeit (Pozessgösse) Abeit fü die Beechnung eines Pozesses Enegiefo (Zustandsgösse) Enegie ist gespeichete Abeit. Hubabeit W = g h potentielle Enegie = g h Beschleunigungsabeit W = a s esultieende Kaft al Stecke kinetische Enegie E v kin = Reibungsabeit W = s = µ s Speicheung als innee Enegie U (Wäe) Cheische Enegie (z.b. Teibstoff) wid in echanische Antiebsenegie ugewandelt. Spannen eine ede: W = ede s / läche unte de Kuve, siehe S. 8 R N E pot Nutzen E ech = η Hu Heizwet H u, Wikungsgad und Masse D E elastisch = s Elastische Enegie ( ) Die Zeit kot in de Regel nicht vo und de detailliete Velauf zwischen zwei Zuständen baucht nicht bekannt zu sein. Anleitung zu Lösen von Aufgaben Alle Enegiefoen notieen. Suen gleich setzen und nach de gesuchten Gösse auflösen. Enegiefo Zustand 1 Zustand Potentielle Enegie g h 1 g h Kinetische Enegie v 1 v Elastische Enegie.5 D ( s ).5 D ( s ) Innee Enegie U Antiebsenegie W = R s Veluste Sue, Total Sue 1 = Sue 1

12 oelsalung Quelle undaentu Matheatik und Physik, Oell üssli

13 BMS Physik oelsalung

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

ERGEBNISSE TM I,II UND ETM I,II

ERGEBNISSE TM I,II UND ETM I,II ERGEBNISSE TM I,II UND ETM I,II Lehstuhl fü Technische Mechanik, TU Kaiseslauten WS /2, 8.02.22. Aufgabe: ( TM I, TM I-II, ETM I, ETM I-II) q 0 = 3F a F G a M 0 = 2Fa x a A y z B a a De skizziete Rahmen

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Die Hohman-Transferbahn

Die Hohman-Transferbahn Die Hohman-Tansfebahn Wie bingt man einen Satelliten von eine ednahen auf die geostationäe Umlaufbahn? Die Idee: De geingste Enegieaufwand egibt sich, wenn de Satellit den Wechsel de Umlaufbahnen auf eine

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

F63 Gitterenergie von festem Argon

F63 Gitterenergie von festem Argon 1 F63 Gitteenegie von festem Agon 1. Einleitung Die Sublimationsenthalpie von festem Agon kann aus de Dampfduckkuve bestimmt weden. Dazu vewendet man die Clausius-Clapeyon-Gleichung. Wenn außedem noch

Mehr

Materie in einem Kondensator

Materie in einem Kondensator Mateie in einem Kondensato In einen geladen Kondensato (Q konst.) wid a) eine Metallplatte b) isolieende Mateialien (Dielektika) eingebacht Metallplatte in einem Kondensato Die Metallplatte hat den gleichen

Mehr

1.3. Prüfungsaufgaben zur Statik

1.3. Prüfungsaufgaben zur Statik .3. Püfungsaufgaben zu Statik Aufgabe a: Käftezelegung (3) Eine 0 kg schwee Lape ist in de Mitte eines 6 beiten Duchganges an eine Seil aufgehängt, welches dot duchhängt. Wie goß sind die Seilkäfte? 0

Mehr

IV. Elektrizität und Magnetismus

IV. Elektrizität und Magnetismus IV. Elektizität und Magnetismus IV.3. Stöme und Magnetfelde Physik fü Medizine 1 Magnetfeld eines stomduchflossenen Leites Hans Chistian Oested 1777-1851 Beobachtung Oesteds: in de Nähe eines stomduchflossenen

Mehr

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern

( ) 3 = Grösse = Zahlenwert Einheit. Inhalte gemäss Rahmenlehrplan 2012 GESO. Geltende Ziffern GEWERBLICH-INDUSTRIELLE BERUFSSCHULE BERN BERUFSMATURITÄTSSCHULE BMS Gesundheit und Soziales GESO Formelsammlung Physik David Kamber, Ruben Mäder Stand 7.5.016 Inhalte gemäss Rahmenlehrplan 01 GESO Mechanik:

Mehr

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler

6. Vorlesung EP. EPI WS 2007/08 Dünnweber/Faessler 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung) c) Stöße 4. Stae Köpe a) Dehmoment Vesuche: Hüpfende Stahlkugel Veküztes Pendel Impulsausbeitung in Kugelkette elastische

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum

Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Enst-Moitz-Andt-Univesität Geifswald / Institut fü Physik Physikalisches Gundpaktikum Paktikum fü Physike Vesuch E7: Magnetische Hysteese Name: Vesuchsguppe: Datum: Mitabeite de Vesuchsguppe: lfd. Vesuchs-N:

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

6. Arbeit, Energie, Leistung

6. Arbeit, Energie, Leistung 30.0.03 6. beit, negie, Leitung a it beit? Heben: ewegung Halten: tatich g g it halten: gefühlte beit phikalich: keine beit Seil fetbinden: Haltepunkt veichtet keine beit. Mit Köpegewicht halten: keine

Mehr

Von Mannesmann. zu Mapress. Rohrnetzberechnung. Druckverlusttabellen. mapress EDELSTAHL. mapress C-STAHL. mapress KUPFER. mapress. pressfitting system

Von Mannesmann. zu Mapress. Rohrnetzberechnung. Druckverlusttabellen. mapress EDELSTAHL. mapress C-STAHL. mapress KUPFER. mapress. pressfitting system Von Mannesann zu Mapress ohrnetzberechnung Druckerlusttabellen apress EDELSTAHL apress C-STAHL apress KUPFE apress pressfitting syste Inhaltserzeichnis 1.0 Allgeeines 1.1 Einleitung... Seite 1 1.2 Urechnung

Mehr

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m.

Dynamik. Einführung. Größen und ihre Einheiten. Kraft. www.schullv.de. Basiswissen > Grundlagen > Dynamik [N] 1 N = 1 kg m. www.schullv.de Basiswissen > Gundlagen > Dynamik Dynamik Skipt PLUS Einfühung Die Dynamik bescheibt die Bewegung von Köpen unte dem Einfluss von Käften. De Begiff stammt von dem giechischen Wot dynamis

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche:

6.Vorlesung 6. Vorlesung EP b) Energie (Fortsetzung): Energie- und Impulserhaltung c) Stöße 4. Starre Körper a) Drehmoment b) Schwerpunkt Versuche: 6. Volesung EP I) Mechanik. Kinematik. Dynamik 3. a) Abeit b) Enegie (Fotsetzung): Enegie- und Impulsehaltung c) Stöße 4. Stae Köpe a) Dehmoment b) Schwepunkt 6.Volesung Vesuche: Hüpfende Stahlkugel Veküztes

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

2.4 Dynamik (Dynamics)

2.4 Dynamik (Dynamics) .4 Dynaik (Dynaics) Def.: In de Dynaik wid die Kaft als Usache de Bewegung betachtet, hie wid die Statik (.) it de Kineatik (.3) zusaengefüht. Inhalt: Bewegungsgleichungen, Enegiesatz, Abeit, Leistung,

Mehr

Einführung in die Physik I. Wärme 3

Einführung in die Physik I. Wärme 3 Einfühung in die Physik I Wäme 3 O. von de Lühe und U. Landgaf Duckabeit Mechanische Abeit ΔW kann von einem Gas geleistet weden, wenn es sein olumen um Δ gegen einen Duck p ändet. Dies hängt von de At

Mehr

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße

5. Vorlesung EP. f) Scheinkräfte 3. Arbeit, Leistung, Energie und Stöße 5. Volesung EP I) Mechanik 1. Kinematik.Dynamik a) Newtons Axiome (Begiffe Masse und Kaft) b) Fundamentale Käfte c) Schwekaft (Gavitation) d) Fedekaft e) Reibungskaft f) Scheinkäfte 3. Abeit, Leistung,

Mehr

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet Analytische Geometie Übungsaufgaben Gesamtes Stoffgebiet Pflichtteil (ohne Fomelsammlung und ohne GTR): P: a) Püfe, ob das Deieck ABC gleichschenklig ist: A(/7/), B(-//), C(//) b) Püfe, ob das Deieck ABC

Mehr

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten

ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Physikalische Größen und Einheiten ist Beobachten, Messen und Auswerten von Naturerscheinungen und Naturgesetzen Um physikalische Aussagen über das Verhältnis von Messgrößen zu erhalten, ist es notwendig die Größen exakt und nachvollziehbar

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

2 Kinetik der Erstarrung

2 Kinetik der Erstarrung Studieneinheit II Kinetik de Estaung. Keibildung. Keiwachstu. Gesatkinetik R. ölkl: Schelze Estaung Genzflächen Kinetik de Phasenuwandlungen Nach Übescheiten eines Uwandlungspunktes hätte das vollständig

Mehr

1.3. Statik. Kräfte bewirken Verformungen und Bewegungsänderungen. Die Wirkung einer Kraft wird bestimmt durch Angriffspunkt Richtung

1.3. Statik. Kräfte bewirken Verformungen und Bewegungsänderungen. Die Wirkung einer Kraft wird bestimmt durch Angriffspunkt Richtung 1.3. Statik 1.3.1. Käfte Zug- und Duckfede, Expande, Kaftmesse: Je göße die Kaft, desto göße die Vefomung mit Kaftmesse an OHP-Pojekto, Stuhl, ode Pesente ziehen Je göße die Kaft, desto göße die Beschleunigung.

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

1.Klasse ANGEWANDTE MATHEMATIK. Ing. Thomas Gratzl (EIT, EBP, EIP, EBP, EET) Lehrmittel: Rechenbuch Elektrotechnik Europaverlag

1.Klasse ANGEWANDTE MATHEMATIK. Ing. Thomas Gratzl (EIT, EBP, EIP, EBP, EET) Lehrmittel: Rechenbuch Elektrotechnik Europaverlag ANGEWANDTE MATHEMATIK (EIT, EBP, EIP, EBP, EET) Ing. Thomas Gratzl Lehrmittel: Rechenbuch Elektrotechnik Europaverlag Methodische Lösungswege zum Rechenbuch Elektrotechnik. GT - - Lehrstoffübersicht: Grundlagen

Mehr

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung -

Einführung in die Finanzmathematik - Grundlagen der Zins- und Rentenrechnung - Einfühung in die Finanzmathematik - Gundlagen de ins- und Rentenechnung - Gliedeung eil I: insechnung - Ökonomische Gundlagen Einfache Vezinsung - Jähliche, einfache Vezinsung - Untejähliche, einfache

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben

Prüfung zum Erwerb der Mittleren Reife in Mathematik, Mecklenburg-Vorpommern Prüfung 2011: Aufgaben Püfung zum Eweb de Mittleen Reife in Mathematik, Mecklenbug-Vopommen Püfung 2011: Aufgaben Abeitsblatt (Pflichtaufgabe 1) Dieses Abeitsblatt ist vollständig und ohne Zuhilfenahme von Tafelwek und Taschenechne

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Versuch M04 - Auswuchten rotierender Wellen

Versuch M04 - Auswuchten rotierender Wellen FACHHOCHSCHULE OSNABRÜCK Messtechnik Paktikum Vesuch M 04 Fakultät I&I Pof. D. R. Schmidt Labo fü Mechanik und Messtechnik 13.09.2006 Vesuch M04 - Auswuchten otieende Wellen 1 Zusammenfassung 2 1.1 Lenziele

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit

Die Schrödingergleichung für das Elektron im Wasserstoffatom lautet Op2 e2 Or. mit 4 Stak-Effekt Als Anwendung de Stöungstheoie behandeln wi ein Wassestoffatom in einem elektischen Feld. Fü den nichtentateten Gundzustand des Atoms füht dies zum quadatischen Stak-Effekt, fü die entateten

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte)

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte) Institut fü Technische und Num. Mechanik Technische Mechanik II/III Pof. D.-Ing. Pof. E.h. P. Ebehad WS 009/10 P 1 4. Mäz 010 Aufgabe 1 (9 Punkte) Bestimmen Sie zeichneisch die Momentanpole alle vie Köpe

Mehr

Hauptprüfung 2009 Aufgabe 4

Hauptprüfung 2009 Aufgabe 4 Haptpüfng 9 Afgabe 4 Gegeben ind die Geaden g: x nd h: x mit, 4. Beechnen Sie die Koodinaten de Schnittpnkte de Geaden g nd h. Beechnen Sie den Schnittwinkel δ de Geaden g nd h. Becheiben Sie die beondee

Mehr

19. Vorlesung EP III Elektrizität und Magnetismus. 19. Magnetische Felder (Magnetostatik)

19. Vorlesung EP III Elektrizität und Magnetismus. 19. Magnetische Felder (Magnetostatik) 19. Volesung EP III Elektizität und Magnetismus 19. Magnetische Felde (Magnetostatik) Vesuche: Feldlinienbilde (B-Feld um Einzeldaht, 2 Dähte, Spule) Kaftwikung von Stömen Dehspulinstument Fadenstahloh

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische

Mehr

6. Das Energiebändermodell für Elektronen

6. Das Energiebändermodell für Elektronen 6. Das Enegiebändemodell fü Eletonen Modell des feien Eletonengases ann nicht eläen: - Unteschied Metall - Isolato (Metall: ρ 10-11 Ωcm, Isolato: ρ 10 Ωcm), Halbleite? - positive Hall-Konstante - nichtsphäische

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER

KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER KAPITEL IV DREHBEWEGUNGEN STARRER KÖRPER . GRUNDBEGRIFFE. MODELL "STARRER KÖRPER" Bishe habe wi us mit de Mechaik de Puktmasse beschäftigt; dabei meie wi eigetlich u die Bewegug des Massemittelpuktes.

Mehr

Technische Mechanik III (Dynamik)

Technische Mechanik III (Dynamik) Institut fü Mechanische Vefahenstechnik und Mechanik Beeich Angewandte Mechanik Vopüfung Technische Mechanik III (Dynamik) Mittwoch, 9.08.007, 9:00 :00 Uh Beabeitungszeit: h Aufgabe ( Punkte) Übequeung

Mehr

Versuch M21 - Oberflächenspannung

Versuch M21 - Oberflächenspannung Enst-Moitz-Andt Univesität Geifswald Institut fü Physik Vesuch M1 - Obeflächensannung Name: Mitabeite: Guennumme: lfd. Numme: Datum: 1. Aufgabenstellung 1.1. Vesuchsziel Bestimmen Sie die Obeflächensannung

Mehr

Einheiten. 2. Richtlinie 80/181/EWG 1

Einheiten. 2. Richtlinie 80/181/EWG 1 Seite 1/5 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Richtlinie 80/181/EWG 1 3. Quellen 5 1. Allgemeines Die Ingenieurwissenschaften sind eine Untermenge der Naturwissenschaften. Die Tragwerksplanung lässt

Mehr

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering

KOMPONENTENTAUSCH. Elmar Zeller Dipl. Ing (FH), MBA Quality-Engineering KOMPONENTENTAUSCH Komponententausch Beim Komponententausch weden nacheinande einzelne Komponenten zweie Einheiten vetauscht und ih Einfluss auf das Qualitätsmekmal untesucht. Ziele und Anwendungsbeeiche:

Mehr

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen

3.1 Elektrostatische Felder symmetrischer Ladungsverteilungen 3 Elektostatik Das in de letzten Volesung vogestellte Helmholtz-Theoem stellt eine fomale Lösung de Maxwell- Gleichungen da. Im Folgenden weden wi altenative Methoden kennenlenen (bzw. wiedeholen), die

Mehr

Lehrstuhl für Fluiddynamik und Strömungstechnik

Lehrstuhl für Fluiddynamik und Strömungstechnik Lehstuhl fü Fluiddynamik und Stömungstechnik Pof. D.-Ing. W. Fank Lösungen zu dem Aufgabenblatt Aufgabe 1 Gegeben: p =,981 ba (Duck fü z = ), T = 83 K (Tempeatu fü z = ), α = 6 1-3 K m -1, m = 9 kg/ kmol

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Die intertemporale Budgetbeschränkung ergibt sich dann aus

Die intertemporale Budgetbeschränkung ergibt sich dann aus I. Die Theoie des Haushaltes Mikoökonomie I SS 003 6. Die Spaentsheidung a) Das Gundmodell: Lohneinkommen nu in Peiode De gleihe fomale Rahmen wie im Zwei-Güte-Modell elaubt es auh, die Spaentsheidung

Mehr

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie

Abiturprüfung 2015 Grundkurs Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Abitupüfung 2015 Gundkus Biologie (Hessen) A1: Ökologie und Stoffwechselphysiologie Veteidigungsstategien von Pflanzen BE 1 Benennen Sie die esten dei Tophieebenen innehalb eines Ökosystems und bescheiben

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

Dienstag Punktmechanik

Dienstag Punktmechanik Einneung 2.11.2004 Bücheflohmakt Dienstag 2.11.2004 4. Punktmechanik 12:30 4.1 Kinematik eines Massenpunktes vo Studentenseketaiat Koodinatensysteme Geschwindigkeit im Raum Beschleunigung im Raum Supepositionspinzip

Mehr

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld

FH Giessen-Friedberg StudiumPlus Dipl.-Ing. (FH) M. Beuler Grundlagen der Elektrotechnik Magnetisches Feld 3 Stationäes magnetisches Feld: Ein stationäes magnetisches Feld liegt dann vo, wenn eine adungsbewegung mit gleiche Intensität vohanden ist: I dq = = const. dt Das magnetische Feld ist ein Wibelfeld.

Mehr

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion

Stereo-Rekonstruktion. Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion. Geometrie der Stereo-Rekonstruktion Steeo-Rekonstuktion Geometie de Steeo-Rekonstuktion Steeo-Kalibieung Steeo-Rekonstuktion Steeo-Rekonstuktion Kameakalibieung kann dazu vewendet weden, um aus einem Bild Weltkoodinaten zu ekonstuieen, falls

Mehr

Einführung in die Physik

Einführung in die Physik Einfühung in die Physik fü Phaazeuten und Biologen (PPh) Mechanik, Elektizitätslehe, Optik Übung : Volesung: Tutoials: Montags 13:15 bis 14 Uh, Butenandt-HS Montags 14:15 bis 15:45, Liebig HS Montags 16:00

Mehr

34. Elektromagnetische Wellen

34. Elektromagnetische Wellen Elektizitätslehe Elektomagnetische Wellen 3. Elektomagnetische Wellen 3.. Die MXWELLschen Gleichungen Die MXWELLschen Gleichungen sind die Diffeentialgleichungen, die die gesamte Elektodynamik bestimmen.

Mehr

Grundlagen der Mechanik

Grundlagen der Mechanik Ausgabe 2007-09 Grundlagen der Mechanik (Formeln und Gesetze) Die Mechanik ist das Teilgebiet der Physik, in welchem physikalische Eigenschaften der Körper, Bewegungszustände der Körper und Kräfte beschrieben

Mehr

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik

17. Vorlesung EP. III. Elektrizität und Magnetismus. 17. Elektrostatik 17. Volesung EP III. Elektizität und Magnetismus 17. Elektostatik Vesuche: Reibungselektizität Alu-Luftballons (Coulombkaft) E-Feldlinienbilde Influenz Faaday-Beche Bandgeneato 17. Elektostatik 17. Volesung

Mehr

Das makroökonomische Grundmodell

Das makroökonomische Grundmodell Univesität Ulm 89069 Ulm Gemany Dipl.-WiWi Sabina Böck Institut fü Witschaftspolitik Fakultät fü Mathematik und Witschaftswissenschaften Ludwig-Ehad-Stiftungspofessu Wintesemeste 2008/2009 Übung 3 Das

Mehr

Vortrag von Sebastian Schreier

Vortrag von Sebastian Schreier Sloshing in LNG Tanks Fist Analyses Votag von Zum Thema Este Analysen zum Sloshingvehalten von LNG-Tanks auf Schiffen Im Rahmen de Volesungseihe 1 Gliedeung Einleitung Motivation Modellieung Modellvesuche

Mehr

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik

2,00 1,75. Kompressionsfaktor z 1,50 1,25 1,00 0,75 0,50 0,25. Druck in MPa. Druckabhängigkeit des Kompressionsfaktors. Chemische Verfahrenstechnik Kompressionsfaktor z,00 1,75 1,50 1,5 1,00 0,75 0,50 0,5 H CH 4 CO 0 0 0 40 60 80 Druck in MPa ideales Gas Nach dem idealen Gasgesetz gilt: pv nrt = pv m RT = 1 (z) Nennenswerte Abweichungen vom idealen

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen.

Wagen wird als Massepunkt aufgefasst, von der Reibung ist abzusehen. 7. Die Skizze tellt den Velauf de Siene eine Loopingban da. I Punkt at de Wagen die Gewindigkeit 6,1 /. I Punkt C oll e eine Zentifugalkaft vo 1,5faen Betag eine Gewitkaft augeetzt ein. De Punkt C befindet

Mehr

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert:

Wärmestrom. Wärmeleitung. 19.Nov.09. Ende. j u. Dieses wird zweckmäßiger pro Einheitsfläche definiert: Winteseeste 009 / 00 FK Wäeleitung I teodynaiscen Gleicgewict: Sind die beiden Seiten auf untesciedlice Tep., so fließt ein Wäesto. Diese ist popotional zu Tepeatudiffeenz TT -T, zu Quescnittsfläce A,

Mehr

Design und optimale Betriebsführung doppelt gespeister Asynchrongeneratoren für die regenerative Energieerzeugung

Design und optimale Betriebsführung doppelt gespeister Asynchrongeneratoren für die regenerative Energieerzeugung Design und optimale Betiebsfühung doppelt gespeiste Asynchongeneatoen fü die egeneative Enegieezeugung von de Fakultät fü Elektotechnik und Infomationstechnik de Technischen Univesität Chemnitz genehmigte

Mehr

4. Klausur Physik-Leistungskurs Klasse Dauer: 90 min Hilfsmittel. Tafelwerk, Taschenrechner

4. Klausur Physik-Leistungskurs Klasse Dauer: 90 min Hilfsmittel. Tafelwerk, Taschenrechner 4. Klausu Physik-Leistungskus Klasse 11 17. 6. 014 Daue: 90 in Hilfsittel. Tafelwek, Taschenechne 1. Duch eine kuze pule, die an eine Ozsilloskop angeschlossen ist, fällt ein Daueagnet. Welche de dei Kuven

Mehr

V10 : Elektronenspinresonanz

V10 : Elektronenspinresonanz V10 : Elektonenspinesonanz Vesuchsaufbau: Kontollaum des Tandemgebäudes Beteue SS 2008 - Robet Lahmann 09131/85-27147, Raum TG223 Robet.Lahmann@physik.uni-elangen.de - Rezo Shanidze (Vetetung) 09131/85-27091,

Mehr

Diplomarbeit DIPLOMINFORMATIKER

Diplomarbeit DIPLOMINFORMATIKER Untesuchung von Stöfaktoen bei de optischen Messung von Schaubenflächen Diplomabeit eingeeicht an de Fakultät Infomatik Institut fü Künstliche Intelligenz de Technischen Univesität Desden zu Elangung des

Mehr

Arbeitszeit 60 Minuten Seite 1 von 5 FH München, FB 03 Bordnetze WS03/04. Name: Musterlösung... Vorname:... St. Grp...

Arbeitszeit 60 Minuten Seite 1 von 5 FH München, FB 03 Bordnetze WS03/04. Name: Musterlösung... Vorname:... St. Grp... N Abeitszeit 60 Minuten Seite 1 von 5 FH München, FB 03 Bodnetze WS03/04 Nae: Mustelösung... Vonae:... St. Gp.... etifikat Fahzeugechatonik beabsichtigt: Aufgabenstelle: Pof. D. Weuth, Abeitszeit: 60 in,

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr