Spule, Induktivität und Gegeninduktivität

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Spule, Induktivität und Gegeninduktivität"

Transkript

1 .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn man enen Magneten n der Mtte telt, erhält man kene separaten Nordnd Südpole; stattdessen entstehen zwe nee Magnete, von denen jeder enen egenen Nord- nd Südpol zegt. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006

2 4 De Ablenkng von Kompassnadeln n der Nähe enes stromführenden Drahtes zegt das Vorhandensen nd de chtng des Magnetfeldes. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, Darstellng ener magnetschen Feldlne enes Stabmagneten De magnetschen Feldlnen enes Stabmagneten Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006

3 6 Dünne Esenspäne machen de magnetschen Feldlnen n der Umgebng enes Stabmagneten schtbar. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, Das Magnetfeld zwschen zwe breten Polen enes Magneten st nahez homogen, mt Asnahme der änder. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006

4 8 Magnetsche Feldlnen nfolge enes elektrschen Stromes n enem geraden Draht De echte-hand-egel als Merkregel für de chtng des Magnetfeldes: wenn der Damen n de chtng des konventonellen Stromes zegt, geben de Fnger, de den Draht mfassen, de chtng des Magnetfeldes an. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, Das Magnetfeld ener Sple Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006

5 0 Das Magnetfeld ener Sple Wndngen mt gerngem Abstand Wndngen mt großem Abstand Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, de Magnetflssdchte v de orentzkraft F ~ Q F Q F ~ v B F α ~ sn ( Felspäne, v ) F Q v B ( ) F ~ Q v sn α ( Felspäne, v ) de Magnetflßdchte

6 v [B] [F] [Q][v] F B Q Nm N [B] m m As Am s F Q v B ( ) 4 [B] T0 G (Gass) F Q v B ( ) (a) De Kraft af enen stromführenden Draht, der n en Magnetfeld B gebracht wrd; (b) de gleche Staton be entgegengesetzter Stromrchtng; (c) de echte-hand- egel für de Anordnng (b). Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006

7 4 F Q v B ( ) Ene Galvanometersple, af enen Esenkern gewckelt. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, F Q v B ( ) Elektronenstrahlröhre mt magnetschem Ablenksystem atsprecher Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006

8 6 - Magnetflß nd Magnetflßdchte N Φ S oder allgemen: [ Φ ] [ B][ A] Vs m m Vs Wb magnetscher Knotensatz 5 - de magnetsche Spannng V Φ + ΦdΦ Φ + dφ dw ~ mag d Φ dw V dφ mag de magnetsche Spannng

9 8 - de magnetsche Feldstärke l V dv H dl Φ Φ de magnetsche Feldstärke dl dv De magnetsche Feldstärke st en Vektor, der n der egel n de chtng der Flsslnen zegt. [ V ] [ H] A [ l] m 7 - das Drchfltngsgesetz 3 4 l magnetscher Maschensatz

10 0 - de B - H - Kennlne B magnetsch lneare Stoffe - damagnetsche Stoffe - paramagnetsche Stoffe H Permeabltät Permeabltät des Vakms (absolte Permeabltät) µ 4π Vs Am µ r < für damagnetsche Stoffe µ r > für paramagnetsche Stoffe 9 Magnetserngsmechansms Weßsche Bezrke Blochwände

11 B - H - Kennlne Hystereseschlefe - hart- nd wechmagnetsche Werkstoffe

12 4 - de Kommterngskennlne 3 - de Kommterngskennlne enger Werkstoffe ß

13 6 Fortlafende Hystereseschlefen während der Entmagnetserng. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, der magnetsche Wderstand V Φ Φ Φ Φ V V m

14 8 - de Bemessngsglechng des magnetschen Wderstands V m Φ m homogenen Feld glt V H l nd Φ B A damt wrd H l H l m B A µ H A 7 - Berechnng enfacher technscher Magnetkrese - Grndbegrffe magnetscher Knotensatz Φ 0 V vorzechen vorzechen mfaßt vorzechen Φ B da B A A magnetscher Maschensatz V m Φ V H dl H l l l m µ A B ΦB A V H l H

15 30 - typsche Magnetkresformen 9 - Ntz- nd Streflß

16 3 m Φ Strefaktor Φ G V Koppelfaktor Φ Φ + Φ σ Φ Φ Φ G Φ σ mσ + σ Φ ( σ ) Φ k Φ G G G G 3 m Φ Φ σ σ Φ G Φ G V Φ ( σ ) Φ k Φ G G mσ Φ σ mσ V Φ σ mσ V V ( σ ) V σ Φ Φ G σ Φ σ σ mσ m m m + σ mσ σ m σ σ m + σ m

17 34 - ngesättgte (lneare) Magnetkrese Φ Φ w w Φ Φ Φ + Φ 3 Φ Φ Θ 3 Θ Φ Θ w Φ + Φ m m3 3 m m3 m Θ w Φ Φ m m Das Faradaysche ndktonsgesetz Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006

18 36 Der verkettete Flß Φ Φ Φ 3 Ψ Φ Φ 35 Das Faradaysche ndktonsgesetz (t) Φ(t) Ψ Φ mfaßt vorzechen (t) (t) (t) µ µvz 0 verallgemenerter Maschensatz dψ vz + 0 K + d Ψ das Faradaysche ndktonsgesetz d Ψ

19 38 ndktonserschenngen: Unterschedng nach Art der Änderng des verketteten Flsses hendkton : Magnetfeld ändert sene Größe nd/oder sene chtng als Fnkton der Zet, ndktonsweg nd Magnetfeld befnden sch relatv zenander n he. Bewegngsndkton : Magnetfeld ändert sene Größe nd/oder sene chtng als Fnkton der Zet ncht, ndktonsweg nd Magnetfeld bewegen sch relatv zenander Das Bewegngsndktonsgesetz B dl dh v da v dψ dψ dφ B da da dh dl d Ψ B( dh dl ) d B dh ( dl ) d B v dl dl B v ( ) ( ) d B v dl v B dl ( ) ( )

20 40 ndktonserschenngen: Unterschedng nach Art der Änderng des verketteten Flsses hendkton : Magnetfeld ändert sene Größe nd/oder sene chtng als Fnkton der Zet, ndktonsweg nd Magnetfeld befnden sch relatv zenander n he. d Ψ K d Ψ + Bewegngsndkton : Magnetfeld ändert sene Größe nd/oder sene chtng als Fnkton der Zet ncht, ndktonsweg nd Magnetfeld bewegen sch relatv zenander. ( v B ) dl 39 - Berechnngsbespele. Netzdrossel l fe, A fe, µ fe Φ(t) K + d Ψ Ψ ( t) w Φ ( t) (t) (t) Φ ( t) w( t) m ( t) ɵ snω t w µ fe Afe ˆ K ω cos ωt l fe m l fe µ fe A fe w µ fe Afe Ψ ( t) ( t) l K fe w µ fe Afe d t l fe ( )

21 4. Unpolarmaschne ( v B ) dl ω a v B dr + B dr ( ) ( 0 ) grün v V a v B d r v B d r a ( ) ( ) v ω r B - ads der Achse a - Aßenrads der Schebe a ωr Bdr π nb c Φ n ftspalt a 4 Unterschedng nach Ort der Ursache (Entstehng des Magnetfeldes) nd der Wrkng (ndzerte Spannng): Selbstndkton : De ndzerte Spannng entsteht n der glechen Schlefe, n der der Strom fleßt, der das Magnetfeld verrsacht. Gegenndkton : De ndzerte Spannng entsteht ncht n der glechen Schlefe, n der der Strom fleßt, der das Magnetfeld verrsacht.

22 44 Anwendngen des ndktonsgesetzes Verenfachte schematsche Darstellng enes Generators Der Strom zm Erzegen des Magnetfelds m Elektromagneten (dem otor) wrd drch drchgehende Schlefrnge verbnden. Manchmal, we n Fahrraddynamos, wrd anstelle des Elektromagneten en Permanentmagnet verwendet. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, Tatsächlcher Afba enes Generators Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006

23 46 Wassergetrebene Generatoren am Fße des Bolder- Stadamms n Nevada. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, Erzegng von Wrbelströmen n enem sch drehenden ad. v B v Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006

24 48 eparatr enes Abspanntransformators af enem etngsmast. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, Be der Übertragng der elektrschen Energe von Kraftwerken z den Hashalten kommen n verschedenen Abschntten Transformatoren zm Ensatz. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006

25 50 Schematsche Darstellng enes Mkrofons, das mttels ndkton arbetet. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, ese- nd/oder Schrebkopf für Magnetbänder oder Dsketten Bem Afzechnen (oder Schreben ) wrd das elektrsche Engabesgnal an den Kopf gesendet, der we en Elektromagnet wrkt, wodrch das sch bewegende Band magnetsert wrd. Bem Abspelen (oder esen ) ndzert das veränderlche Magnetfeld des sch vorbebewegenden Bandes oder der Dskette en veränderlches Magnetfeld m Kopf. Herdrch wrd n der Sple ene Egenspannng ndzert, de das Asgabesgnal darstellt. Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006

26 5 - Selbstndkton nd ndktvtät B Φ Ψ Ψ ndktvtät 5 Schaltzechen für ndktvtäten lneare Sple nchtlneare Sple Strom - Spannngsglechng : + d Ψ d( ) +

27 54 Zstandsänderngen an ndktvtäten (t) c (t) + d das Schaltgesetz: t 53 Berechnng von ndktvtäten magnetscher Krese Φ Φ Φ 3 Ψ w Φ wφ w Θ w w w mers mers mers + ers m + m m3 + m m + m 3 m m3

28 56 - ndktvtät n Schaltngen ehenschaltng von ndktvtäten n n ges Parallelschaltng von ndktvtäten n n 55 - de n ndktvtäten gespecherte magnetsche Energe W p m el d allgemen : Ψ W m W m d d 0 0 W dψ ( ) d m ψ ψ Ψ

29 58 - An- nd Abschaltvorgänge n Schaltngen mt ndktvtäten t 0 Enschaltvorgang (0 < t < T): U q D 0 U d q + U q a U q + d + a d 57 U q t 0 D + d a d a t ln( ) ln K a d a K e t a d a + Ke t a

30 60 t 0 U q D + Ke t a 0 a ( 0 0) ( 0 + 0) 0 + Ke + K K e d e t a t a a a e t a q U t a e U e q t a 59 Asschaltvorgang (T < t ): U q t T D 0 0 d 0 + d as d d 0 + as as d as d ln ln K as t K e as t as Ke t as

31 6 U q t T D Ke t as a ( T 0) ( T + 0) ( e ) Ke T T as a as as K ( e ) e e e T T T 0 0 t T as d 0 e t T as as 0 e as t a T q a ( e ) t T T t T as a as q ( ) U e U e e 6 U q t T D e 0 t T as T t T a as U q ( e ) e Spezalfall: T > 5 a e 0 t T as t T as U q e

32 64 Krvendsksson e 0 U e t T as q U q 0V 00 Ω 00 Ω H T 50 ms t T as t n s 0 5 t 0 0 U q D t n s 63 Krvendsksson e 0 U e t T as q U q 0V 00 Ω 000 Ω H T 50 ms t T as t n s 0-0 t 0-40 U q D t n s

33 66 - Gegenndkton nd Gegenndktvtät Φ B Φ Φ Ψ Ψ M Gegenndktvtät Φ [ M] [ Ψ ] [ ] Vs A H 65 Schaltzechen für Gegenndktvtäten Strom - Spannngsglechng : + d Ψ j d( ) jk k d + ± d

34 68 - de Gegenndktvtätsbemessngsglechng φ φ Ψ w Φ wkφ w k Θ mers m m3 m wk w mers k w w mers ww ww w k k w mers mers k w w 67 w k w φ φ Ψ wk Φ w k w Φ Θ mers m m3 m wk w mers k w w mers ww ww w k k w mers mers k w w

35 w k w w k w m m3 m k k kk kk 69

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3

Hochschule für Technik und Informatik HTI Burgdorf. Elektrotechnik. 1. Elektrisches Feld... 3 ene achhochschule Hochschule fü Technk und Infomatk HTI ugdof Zusammenfassung lektotechnk uto: Nklaus uen Datum: 8. Septembe 004 Inhalt. lektsches eld... 3.. Gundlagen... 3... Lnenntegal... 3... lächenntegal...

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

"Diode, Transistor, Thyristor"

Diode, Transistor, Thyristor Elektrotechnsches Praktkm für aschnenbaer Ort: Denckestraße Ram-Nr.: 0051 (drekt über der ensa) Versch: "Dode, ransstor, hyrstor" echnsche Unverstät Hambrg-Harbrg Insttt für Hochfreqenztechnk Prof. Dr.-Ing.

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Lernsituation: Eine Leuchtstofflampe an Wechselspannung untersuchen. Arbeitsauftrag 1: Errechnen von Spannungswerten und Zeichnen einer Sinuslinie

Lernsituation: Eine Leuchtstofflampe an Wechselspannung untersuchen. Arbeitsauftrag 1: Errechnen von Spannungswerten und Zeichnen einer Sinuslinie 8 Elektroenergeversorgng nd cherhet von Betrebsmtteln gewährlesten ernstaton: Ene echtstofflampe an Wechselspannng nterschen Ihr Betreb soll n ener chle de veraltete Deckenbelechtng enger Unterrchtsräme

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Transistor als Schalter

Transistor als Schalter Elektrotechnsches Grundlagen-Labor II Transstor als Schalter Versuch Nr. 5 Erforderlche Geräte Anzahl Bezechnung, Daten GL-Nr. 1 Doppelnetzgerät 198 1 Oszllograph 178 1 Impulsgenerator 153 1 NF-Transstor

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5 1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Elektronik für den Maschinenbau

Elektronik für den Maschinenbau Höchstfreqenzelektronk Prof. Dr.-Ing. Andreas Thede Warbrger Str. 3398 Paderborn am P.4. Fon 5 5. 6-3 4 Fax 5 5. 6-4 6 E-Mal thede@pb.de Web grops.pb.de/hfe Vorlesng Elektronk für den Maschnenba A. Thede

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen.

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen. - 14.1 - Antrebstechnk Der technsche Stand der Antrebstechnk ener Volkswrtschaft läßt sch an hrem Exportantel am Gesamtexportvolumen aller Industreländer messen. Mt 27,7 % des gesamten Weltexportvolumens

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

MONTAGE EINER KRAFT-WÄRME-KOPPLUNGSANLAGE MIT VERBRENNUNGSMOTOR ZUR KOMBINIERTEN STROM- UND WÄRMEPRODUKTION

MONTAGE EINER KRAFT-WÄRME-KOPPLUNGSANLAGE MIT VERBRENNUNGSMOTOR ZUR KOMBINIERTEN STROM- UND WÄRMEPRODUKTION ENERGIE UND UMWELT MONTAGE EINER KRAFT-WÄRME-KOPPLUNGSANLAGE MIT VERBRENNUNGSMOTOR ZUR KOMBINIERTEN STROM- UND WÄRMEPRODUKTION Ttel Abstract und Zelsetzung Sachberech MONTAGE EINER KRAFT-WÄRME-KOPPLUNGSANLAGE

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Fakultät Elektrotechnik und Informationstechnik Institut für Grundlagen der Elektrotechnik und Elektronik Professur für Mess- und Prüftechnik

Fakultät Elektrotechnik und Informationstechnik Institut für Grundlagen der Elektrotechnik und Elektronik Professur für Mess- und Prüftechnik Fakultät Elektrotechnk und nformatonstechnk nsttut für Grundlagen der Elektrotechnk und Elektronk Professur für Mess- und Prüftechnk Prof. Dr.-ng. habl. Jürgen Czarske EEKTOTECHK Übungsaufgaben für den

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

14 Überlagerung einfacher Belastungsfälle

14 Überlagerung einfacher Belastungsfälle 85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? Informationen rund ums Handy

MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? Informationen rund ums Handy MOBILFUNK: WIE FUNKTIONIERT DAS EIGENTLICH? rmatonen rund ums Handy INHALT 2 3 4/5 6 7 8 9 10 11 12 Moblfunk: Fakten So werden Funksgnale übertragen So funktonert en Telefonat von Handy zu Handy So wrkt

Mehr

Grundlagen der Elektrotechnik II (GET II)

Grundlagen der Elektrotechnik II (GET II) Grundlgen der Elektrotechnk (GET ) Vorlesung m 8.07.005 Do. :5-3.45 Uhr;. 603 (Hörsl) Dr.-ng. ené Mrklen E-Ml: mrklen@un-kssel.de Tel.: 056 804 646; Fx: 056 804 6489 UL: http://www.tet.e-technk.un-kssel.de

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

4. Optische Resonatoren

4. Optische Resonatoren 4. Optsche Resonatoren 4.. Modenselekton Bs jetzt haben wr nur den enfachsten Resonatortyp, den Fabry-erot Laser besprochen. In Abb. 4.. snd nochal de wchtsten Eenschaften deses Lasertyps darestellt. a)

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Fähigkeitsuntersuchungen beim Lotpastendruck

Fähigkeitsuntersuchungen beim Lotpastendruck Fakultät Elektrotechnk und Informatonstechnk Insttut für Aufbau- und Verbndungstechnk der Elektronk Fähgketsuntersuchungen bem Lotpastendruck Dr.-Ing. H. Wohlrabe Ottobrunn, 2. Februar 2009 Qualtätsmerkmale

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

InfoTerminal Touch Gebrauchsanweisung

InfoTerminal Touch Gebrauchsanweisung Gebrauchsanwesung Bestell-Nr.: 2071 xx 1. Scherhetshnwese Enbau und Montage elektrscher Geräte dürfen nur durch Elektrofachkräfte erfolgen. Dabe snd de geltenden Unfallverhütungsvorschrften zu beachten.

Mehr

Ergänzende Bedingungen

Ergänzende Bedingungen Ergänzende Bedngungen der zu den Allgemenen Anschlussbedngungen n Nederspannung gemäß Nederspannungsanschlussverordnung (NAV) vom 1. Januar 2012 Inhaltsüberscht I. 1. BAUKOSTENZUSCHÜSSE (BKZ) GEMÄß 11

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing QUALITY-APPs Applkatonen für das Qaltätsmanagement Prozessmanagement De Schnttstellenmatrx Ator: Jürgen P. Bläsng Schnttstellen (Übergangsstellen, Verbndngsstellen) n betreblchen Prozessen ergeben sch

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Lagrangesche Mechanik

Lagrangesche Mechanik Kaptel Lagrangesche Mechank De Newtonsche Mechank hat enge Nachtele. 1) De Bewegungsglechungen snd ncht kovarant, d.h. se haben n verschedenen Koordnatensystemen verschedene Form. Z.B., zwedmensonale Bewegungsglechungen

Mehr

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren!

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren! Franz Schuck GmbH Enbau-/Betrebsanletung Stahl-PE-Übergang Typ PESS / Typ PESVS Orgnalbetrebsanletung Für künftge Verwendung aufbewahren! Enletung Dese Anletung st für das Beden-, Instandhaltungs- und

Mehr

Managed Care und Pflegearrangements

Managed Care und Pflegearrangements Managed Care und Pflegearrangements 1. Wrtschaftswssenschaftlches Forum Essen Jürgen Zerth/Anka Rechert IDC Fürth/Neuendettelsau I. Ökonome der Langzetpflege II. Untersuchungsgegenstand: Sachwalterrollen

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

Energiesäule mit drei Leereinheiten, Höhe 491 mm Energiesäule mit Lichtelement und drei Leereinheiten, Höhe 769 mm

Energiesäule mit drei Leereinheiten, Höhe 491 mm Energiesäule mit Lichtelement und drei Leereinheiten, Höhe 769 mm Montageanletung Energesäule mt dre Leerenheten, Höhe 491 mm 1345 26/27/28 Energesäule mt Lchtelement und dre Leerenheten, Höhe 769 mm 1349 26/27/28 Energesäule mt sechs Leerenheten, Höhe 769 mm, 1351 26/27/28

Mehr

Physik als Leistungskursfach

Physik als Leistungskursfach Kultusnsteru des Landes Sachsen-Anhalt Abturprüfung 1993 Physk als Lestungskursfach Arbetszet: 300 Mnuten Thea I Bewegungen Thea II Therodynak Thea ITI Felder Thea IV Energe und Kräfteblanzen 19 Thea I

Mehr

In einem Umspannwerk der

In einem Umspannwerk der dosser Transformatoren Lestungsschalterglechlauf st regelmäßg zu prüfen Schaden an enem 11--Transformator durch ene Glechlaufstörung des Lestungsschalters In starr geerdeten 11--Netzen wrd der zu erwartende

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1

Backup- und Restore-Systeme implementieren. Technische Berufsschule Zürich IT Seite 1 Modul 143 Backup- und Restore-Systeme mplementeren Technsche Berufsschule Zürch IT Sete 1 Warum Backup? (Enge Zahlen aus Untersuchungen) Wert von 100 MByte Daten bs CHF 1 500 000 Pro Vorfall entstehen

Mehr

Empfehlungs-Systeme. Recommender-Systeme. Buch-Recommender. Personalisierung. Kollaboratives Filtern & inhaltsbasierte Empfehlungen

Empfehlungs-Systeme. Recommender-Systeme. Buch-Recommender. Personalisierung. Kollaboratives Filtern & inhaltsbasierte Empfehlungen Epfehlngs-Systee Recoender-Systee Kollaboratves Fltern & nhaltsbaserte Epfehlngen Systee, Ntzern Dnge z epfehlen (z.b. Bücher, Fle, Ds, Webseten, Nesgrop Nachrchten, de af hren vorgen Präferenzen baseren.

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr

Personelle Einzelmaßnahmen - 99 BetrVG. Eingruppierung G 4 G 3 G 2 G 1 G 4. Bei Neueinstellungen oder Arbeitsplatzwechsel. Personelle Einzelmaßnahmen

Personelle Einzelmaßnahmen - 99 BetrVG. Eingruppierung G 4 G 3 G 2 G 1 G 4. Bei Neueinstellungen oder Arbeitsplatzwechsel. Personelle Einzelmaßnahmen - 99 BetrVG Enstellung Engrupperung Umgrupperung Versetzung 95 Abs. 3 BetrVG G 4 G 4 G 3 G 2 G 1 G 3 G 2 G 1 neue Arbetsverhältnsse Verlängerung befrsteter AV Umwandlung n unbefrstete AV Beschäftgung von

Mehr

Elektrotechnik Formelsammlung. 2002 Niklaus Burren

Elektrotechnik Formelsammlung. 2002 Niklaus Burren Elektrotechnk Formelsammlung 00 Nklaus Burren Formelsammlung Elektrotechnk Inhaltsverzechns. Grundlagen...6.. Elementarladung...6.. Elektronengeschwndgket...6.3. Impulsgeschwndgket...6.4. Stromstärke...6.5.

Mehr

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare Skalerung von Organsatonen und Innovatonen gestalten phl omondo Se stehen vor dem nächsten Wachstumsschrtt hrer Organsaton oder haben berets begonnen desen aktv zu gestalten? In desem Workshop-Semnar erarbeten

Mehr

Elektrische Antriebstechnik

Elektrische Antriebstechnik Wedauer Elektrsche Antrebstechnk Elektrsche Antrebstechnk Grundlagen Auslegung Anwendungen Lösungen von Jens Wedauer 3., überarbetete Auflage, 2013 Publcs Publshng Bblografsche Informaton Der Deutschen

Mehr

Dr. Leinweber & Partner Rechtsanwälte

Dr. Leinweber & Partner Rechtsanwälte Referent: Rechtsanwalt Johannes Rothmund Dr. Lenweber & Partner Rechtsanwälte Lndenstr. 4 36037 Fulda Telefon 0661 / 250 88-0 Fax 0661 / 250 88-55 j.rothmund@lenweber-partner.de Defnton: egenständge Bezechnung

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Messung 1 MESSUNG DER DREHZAHL UND DES TRÄGHEITSMOMENTES

Messung 1 MESSUNG DER DREHZAHL UND DES TRÄGHEITSMOMENTES 1 Enletung Messung 1 MESSUNG DER DREHZAHL UND DES TRÄGHEITSMOMENTES Zel der Messung: Das Träghetsmoment des Rotors enes Elektromotors und das daraus resulterende de Motorwelle bremsende drehzahlabhängge

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt

Mehr

3. Das Magnetfeld. Kraftwirkungen bewegter Ladungen I. Grundlagen der Elektrotechnik GET 1. Phänomenologie der Effekte -168- -169- v D

3. Das Magnetfeld. Kraftwirkungen bewegter Ladungen I. Grundlagen der Elektrotechnik GET 1. Phänomenologie der Effekte -168- -169- v D Grundlagen der Elektrotechnk GET 1-168- 3. Das Magnetfeld [uch Sete 143-257] De magnetsche Flussdchte De magnetsche Feldstärke Das Durchflutungsgesetz und espele Kräfte und Momente m Magnetfeld Magnetfeld

Mehr

Abschlussprüfung Sommer 2011

Abschlussprüfung Sommer 2011 Termn: Mttwoch, 4. Ma 2011 Abschlussprüfung Sommer 2011 Fach nfo rm at ker/fach nform atker n Anwend ungsentwckl ung 1196 Wrtschaftsund Sozalkunde 26 Aufgaben 60 Mnuten Prüfungszet 100 Punkte Bearbetungshnwese

Mehr

Auslegung eines Extrusionswerkzeugs

Auslegung eines Extrusionswerkzeugs Prof. Dr.-Ing Torsten Kes: S Laustz Skrt Auslegung enes Extrusonswerkzeugs Engangsbemerkung: Das Skrt versteht sch als Ergänzung zur Vorlesung und st ncht als Ersatz für de ersönlche Anwesenhet der Studerenden

Mehr

Validierung der Software LaborValidate Testbericht

Validierung der Software LaborValidate Testbericht Valderung der Software LaborValdate Tetbercht De Software LaborValdate dent dazu Labormethoden zu Valderen. Dazu mu nachgeween en, da de engeetzten Funktonen dokumentert und nachvollzehbar nd. De Dokumentaton

Mehr

VERGLEICH EINER EXPERIMENTELLEN UND SIMULATIONSBASIERTEN SENSITIVITÄTSANALYSE EINER ADAPTIVEN ÖLWANNE

VERGLEICH EINER EXPERIMENTELLEN UND SIMULATIONSBASIERTEN SENSITIVITÄTSANALYSE EINER ADAPTIVEN ÖLWANNE VERGLEICH EINER EXPERIMENTELLEN UND SIMULATIONSBASIERTEN SENSITIVITÄTSANALYSE EINER ADAPTIVEN ÖLWANNE Y. L*, S-O. Han*, T. Pfeffer** *) Fachgebet Systemzuverlässgket und Maschnenakustk, TU Darmstadt **)

Mehr

Messtechnik/Qualitätssicherung

Messtechnik/Qualitätssicherung Name, Vorname Matrkel-Nr. Studenzentrum Studengang Wrtschaftsngeneurwesen Fach Messtechnk/Qualtätsscherung Art der Lestung Prüfungslestung Klausur-Knz. WI-MQS-P 08053 Datum 3.05.008 Hnwes zur Rückgabe

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

1. Änderungstarifvertrag (TV Tariferhöhung2012 AWO Hamburg) vom 25. Mai 2012

1. Änderungstarifvertrag (TV Tariferhöhung2012 AWO Hamburg) vom 25. Mai 2012 1. Änderungstarfvertrag (TV Tarferhöhung2012 AWO Hamburg) vom 25. Ma 2012 zum Tarfvertrag für de Beschäftgten der Arbeterwohlfahrt Hamburg (V AWO Hamburg) vom 19. Februar 2009 zum Tarfvertrag zur Überletung

Mehr