Dominik Wagenknecht Accenture. Der No Frills Big Data Workshop -Teil3

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Dominik Wagenknecht Accenture. Der No Frills Big Data Workshop -Teil3"

Transkript

1 Dominik Wagenknecht Accenture Der No Frills Big Data Workshop -Teil3

2 Der no frills BigData Workshop JAX 2012, , Mainz Teil 3

3 Google ist ein Pionier von BigData und hat mit MapReduce und BigTable die relevantesten Artikel dazu veröffentlicht Google Bigtable: Die Definition von großen Daten Präsentiert auf der OSDI 2006 findet sich das Ziel schon im Abstract: Bigtable is a distributed storage system for managing structured data that is designed to scale to a very large size: petabytes of data across thousands of commodity servers. Warum? Pagerank! Eine Karte des gesamten Web speichern, bereit für die Analyse Gigantische Tabelle mit flexiblen Spalten (dünnbesetzt) Jede Zeile = eine Webseite / URL Spalten sind z.b. gesamter HTML-Code, Sprache, die Links, die Anzahl variiert stark abhängig von der Webseite Zugriff per Zeilen- und Spaltenschlüssel sowie Zeitstempel (Historie!), garbage collection für alte Daten (konfigurierbar) fortgesetzt 2

4 Die Veröffentlichung von BigTable führte zum Hadoop Projekt welches BigTable & MapReduce OpenSource implementiert Google Bigtable: Schema und Funktionsweise Bigtable s Datenmodell ist konzeptionell simpel: Spaltengruppierung in families Für jede Zeile kann jede column family beliebig viele Spalten enthalten Einzelne Zeile wird nie verteilt, und ist stets konsistent und wurde in Hadoop folgendermaßen umgesetzt: Hadoop Distributed File System: Organisiert in Blöcken und repliziert über mehrere Server plus zentrale Name Node für Metadaten HBase: Die BigTable Implementierung welche auf HDFS aufsetzt und ad-hoc Zugriffe mit RDBMS-ähnlichen Eigenschaften 3

5 Die HBase shell kann mit hbase shell gestartet werden, es handelt sich um eine JRuby Konsole plus HBase Kommandos Wichtige HBase Kommandos Kommando status list scan [table] Beschreibung Zeigt Systemstatus Alle Tabellen listen Tabellendaten ausgeben create [table], [cf1], Erstellt eine neue Tabelle, anschließend können die Column Families gelistet werden get [table], [key] (, [cf:col]) put [table], [key], [cf:col], [val] (,[ts]) Bitte legen sie sich nun eine Tabelle unter ihrer ID mit mindestens einer Column Family data an und versuchen sie sich in CRUD Liest eine Zeile, optional nur aus einer bestimmten Spalte (Notation column family : column) Schreibt Wert unter key in Tabelle, es können dann Spalten und Werte gelistet werden 4

6 HBase kommt mit Hadoop Supportklassen, die man beliebig kombinieren kann um seinen Job zu bauen HBase in MapReduce HBase stellt wiederverwendbare Referenzimplementierungen bereit durch die MapReduce erheblich vereinfacht wird. Hinzu kommt die Klasse TableMapReduceUtil für ein vereinfachtes Setup. org.apache.hadoop org.apache.hbase InputFormat TableInputFormat TableRecordReader Mapper TableMapper IdentityTableMapper Reducer TableReducer IdentityTableReducer OutputFormat TableOutputFormat TableRecordWriter Beispiele: 5

7 Wikimedia stellt XML Backups zur Verfügung; die Deutsche Wikipedia (ohne Historie) wurde in wiki importiert Wikipedia <mediawiki [...]> <page> <title>actinium</title> [...] <revision> <id> </id> <timestamp> t19:27:39z</timestamp> <contributor> <username>wikitanvirbot</username> <id> </id> </contributor> <minor /> <comment>r2.7.1) (Bot: Ergänze: [[be-x-old:]]</comment> <text xml:space="preserve"> {{Infobox_Chemisches_Element <!--- Periodensystem ---> [...] </text> </revision> <page> <title>ang Lee</title> [...] Row Key CF text CF revision Actinium : {{Infobox... author: WikitanvirBot comment: r2.7.1)... Ang Lee :... Ang Lee bei den internationalen... author: Drahreg01 comment: BKL 6

8 Es stehen mehrere funktionierende Beispielprogramme zur Verfügung um zu experimentieren Beispielprogramme Folgende Beispielprogramme stehen unter ~/jax2012 zur Verfügung: MRWordCount: Liest aus HDFS, schreibt nach HDFS (erstes Beispiel) MRLetterCount: Liest aus HBase, schreibt nach HDFS; listet hierbei die Anzahl an gefundenen Artikeln nach Anfangsbuchstabe MRHBaseWordCount: Liest aus HBase, schreibt nach HBase und zählt (bestimmte) Wörter Alle Beispiele sind mit Apache Maven vorbereitet und können daher mit mvn package gebaut werden in target/ befindet sich dann ein normales und ein fat JAR. Letzteres benötigen sie wenn sie zusätzliche Dependencies einbinden möchten diese werden dann innerhalb des JAR s im lib-verzeichnis eingebunden. 7

9 Live: Austesten des LetterCounts HBase HDFS Austesten des WordCounts HBase HBase Ihre Challenge...z.B.: Ranking auf Autoren (Bonus: Reihenfolge) Plus: Inverser Index auf Autoren (= meine Seiten) Ihre Ideen... 8

10 Das Web bietet eine schier endlose Zahl an Ressourcen, bitte unbedingt auf aktuelle API achten Weiterführende Ressourcen...bei bestimmten Problemen Weiterführende nützliche Links: MapReduce Patterns: Eine Sammlung von gängigen Problemstellungen mit MapReduce Lösungsstrategie Custom Data Types insb. nützlich wenn man eine Struktur zwischen Map <-> Combiner <-> Reduce beibehalten möchte HBase MapReduce Beispiele (inkl. Einfachen Ansätzen wie die Ergebnisdaten etwa in eine RDBMS weitergeführt werden können) Wer verstehen möchte wie Data-Locality im Zusammenspiel zwischen HBase und HDFS genau funktioniert storage.html 9

11 Der klassische Wordcount ist auf sehr vielen Seiten vorgeführt, wer tiefer gehen möchte landet letztlich bei den Definitive Guides Weiterführende Ressourcen...zum Weiterlernen Einführendes im Web Parallele Programmierung und MapReduce bei Google DE/edu/submissions/mapreduce/listing.html Yahoo Hadoop Introduction: HBase Book auf Apache: Auf Youtube finden sich diverse Videos zu HBase und Hadoop Bücher Hadoop: The definitive Guide von Tom White (unbedingt 3rd Edition nehmen, welche noch als Vorabversion rein digital verfügbar ist) HBase: The definitive Guide von Lars George, 1st Edition 10

12 Es gibt eine Vielzahl an Möglichkeiten um (Hadoop) MapReduce selbst zu verwenden, und es muss nicht immer Hadoop sein... Distributionen Eine Distribution (unter Linux) installieren Cloudera ( Einfachster Einstieg mit VM für Virtualbox / VMWare) Hortonworks Cluster (auch in der Cloud) selbst installieren: Apache Whirr (wurde hier verwendet) Puppet / Chef / Cloudera Tools Einen Cloud-Service bzw. Hersteller nutzen: Amazon Oder: IBM / Microsoft /... Oder das Prinzip in anderen Gewässern verwenden: Cassandra mit Datastax (echtes Hadoop), Google, Riak, CouchDB,... 11

13 Apache Whirr Setup (Auszug) [ ] whirr.instance-templates=1 zookeeper+hadoop-namenode+hadoop-jobtracker+hbase-master,20 hadoop-datanode+hadoop-tasktracker+hbase-regionserver whirr.provider=aws-ec2 whirr.hardware-id=m1.large # Whirr verwendet prinzipiell Ubuntu, hier wurde LTS gewählt: whirr.image-id=eu-west-1/ami-1b665f6f whirr.location-id=eu-west-1 # Get a compatible set of HBase + Hadoop; this is still CDH3u3 whirr.hadoop.install-function=install_cdh_hadoop [ ] whirr.zookeeper.configure-function=configure_cdh_zookeeper hbase-site.dfs.replication=3 hadoop-hdfs.dfs.permissions=false 12

14 Vielen Dank! Sie finden die Beispielprogramme auf GitHub: 13

The R(E)volution of Data Stores

The R(E)volution of Data Stores The R(E)volution of Data Stores Willkommen Schön, dass sie in diese Session kommen, ich bin Dominik Wagenknecht NoSQL Initiative Lead Technology Architect Accenture Wien Mobil: +43 676 8720 33921 dominik.wagenknecht@accenture.com

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1 Algorithmen Consistent Hashing Bloom Filter MapReduce Distributed Hash Tables Einführung 1 Consistent Hashing Problem: Wie finde ich den Speicherort für ein Objekt in einem verteilten System mit n Knoten?

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

BigTable. 11.12.2012 Else

BigTable. 11.12.2012 Else BigTable 11.12.2012 Else Einführung Distributed Storage System im Einsatz bei Google (2006) speichert strukturierte Daten petabyte-scale, > 1000 Nodes nicht relational, NoSQL setzt auf GFS auf 11.12.2012

Mehr

Teamprojekt & Projekt

Teamprojekt & Projekt 18. Oktober 2010 Teamprojekt & Projekt Veranstalter: Betreuer: Prof. Dr. Georg Lausen Thomas Hordnung, Alexander Schätzle, Martin Przjyaciel-Zablocki dbis Studienordnung Master: 16 ECTS 480 Semesterstunden

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Buildfrei skalieren für Big Data mit Z2

Buildfrei skalieren für Big Data mit Z2 Buildfrei skalieren für Big Data mit Z2 Henning Blohm ZFabrik Software KG 5.6.2013 1 Teil 1: Buildfrei entwickeln und skalieren Teil 2: Big Data, Cloud, und wie es zusammenpasst 2 1. Teil BUILDFREI ENTWICKELN

Mehr

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Big Data Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Agenda Was ist Big Data? Parallele Programmierung Map/Reduce Der Big Data Zoo 2 3Vs oder: Was ist Big Data? Deutsche Telekom:

Mehr

Neue Ansätze der Softwarequalitätssicherung

Neue Ansätze der Softwarequalitätssicherung Neue Ansätze der Softwarequalitätssicherung Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik

Mehr

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de Big Data in a Nutshell Dr. Olaf Flebbe of ät oflebbe.de Zu mir Bigdata Projekt, benutzt Apache Bigtop Linux seit Anfang vor Minix/ATARI Linuxtag 2001? Promoviert in Computational Physics in Tü Seit Jan

Mehr

Web Technologien NoSQL Datenbanken

Web Technologien NoSQL Datenbanken Web Technologien NoSQL Datenbanken Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00 10:00 a.m. Room HS 021, B4

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Dateisysteme und Datenverwaltung in der Cloud

Dateisysteme und Datenverwaltung in der Cloud Dateisysteme und Datenverwaltung in der Cloud Sebastian Fischer Master-Seminar Cloud Computing - WS 2013/14 Institut für Telematik, Universität zu Lübeck Dateisysteme und Datenverwaltung in der Cloud 1

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache. Apache Hadoop Distribute your data and your application Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache The Apache Software Foundation Community und

Mehr

Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim

Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim Tobias Neef Cloud-Computing Seminar Hochschule Mannheim WS0910 1/23 Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim Tobias Neef Fakultät für Informatik Hochschule Mannheim tobnee@gmail.com

Mehr

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012 Wide Column Stores Felix Bruckner Mannheim, 15.06.2012 Agenda Einführung Motivation Grundlagen NoSQL Grundlagen Wide Column Stores Anwendungsfälle Datenmodell Technik Wide Column Stores & Cloud Computing

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010 NoSQL Einblick in die Welt nicht-relationaler Datenbanken Christoph Föhrdes UnFUG, SS10 17.06.2010 About me Christoph Föhrdes AIB Semester 7 IRC: cfo #unfug@irc.ghb.fh-furtwangen.de netblox GbR (http://netblox.de)

Mehr

Near Realtime ETL mit Oracle Golden Gate und ODI. Lutz Bauer 09.12.2015

Near Realtime ETL mit Oracle Golden Gate und ODI. Lutz Bauer 09.12.2015 Near Realtime ETL mit Oracle Golden Gate und ODI Lutz Bauer 09.12.2015 Facts & Figures Technologie-orientiert Branchen-unabhängig Hauptsitz Ratingen 240 Beschäftigte Inhabergeführt 24 Mio. Euro Umsatz

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

Hadoop Eine Erweiterung für die Oracle DB?

Hadoop Eine Erweiterung für die Oracle DB? Hadoop Eine Erweiterung für die Oracle DB? Nürnberg, 18.11.2015, Matthias Fuchs Sensitive Über mich 10+ Jahre Erfahrung mit Oracle Oracle Certified Professional Exadata Certified Oracle Engineered Systems

Mehr

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer NoSQL Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Geleitwort 1 Vorwort 1 1 Einführung 1 1.1 Historie 1 1.2 Definition und

Mehr

Einführung in CouchDB

Einführung in CouchDB Einführung in CouchDB Zurücklehnen und entspannen! http://slog.io Thomas Schrader (@slogmen) 12/2010 Übersicht Bestandsaufnahme Ansatz Geschichte Technologien Features Skalierbarkeit Kurz & Gut Fazit Relationale

Mehr

on Azure mit HDInsight & Script Ac2ons

on Azure mit HDInsight & Script Ac2ons Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

HANA Solution Manager als Einstieg

HANA Solution Manager als Einstieg Markus Stockhausen HANA Solution Manager als Einstieg Collogia Solution Day Hamburg 28.04.2016 Agenda HANA Solution Manager als Einstieg 1 Überblick 2 Techniken 3 Sizing Collogia Unternehmensberatung AG,

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Florian Hopf www.florian-hopf.de @fhopf. elasticsearch.

Florian Hopf www.florian-hopf.de @fhopf. elasticsearch. Florian Hopf www.florian-hopf.de @fhopf elasticsearch. Agenda Suche Verteilung Elasticsearch und Java Aggregationen Zentralisiertes Logging Suche Suche Installation # download archive wget https://download.elastic.co/elasticsearch

Mehr

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg NoSQL Was Architekten beachten sollten Dr. Halil-Cem Gürsoy adesso AG Architekturtag @ SEACON 2012 Hamburg 06.06.2012 Agenda Ein Blick in die Welt der RDBMS Klassifizierung von NoSQL-Datenbanken Gemeinsamkeiten

Mehr

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar!

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar! Clouds Wolkig bis Heiter Erwartungen der Nutzer Er ist verwöhnt! Verfügbarkeit Viele Anwendungen Intuitive Interfaces Hohe Leistung Er ist nicht dankbar! Mehr! Mehr! Mehr! Moore 1 Erwartungen der Entwickler

Mehr

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner NoSQL Einstieg in die Web 2.0 Datenbanken 2., akutalisierte und erweiterte Auflage HANSER Geleitwort Vorwort Vorwort zur 2. Auflage

Mehr

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg Review Freelancer-Workshop: Fit für Big Data Mittwoch, 29.04.2015 in Hamburg Am Mittwoch, den 29.04.2015, hatten wir von productive-data in Zusammenarbeit mit unserem langjährigen Partner Informatica zu

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

MapReduce. www.kit.edu. Johann Volz. IPD Snelting, Lehrstuhl Programmierparadigmen

MapReduce. www.kit.edu. Johann Volz. IPD Snelting, Lehrstuhl Programmierparadigmen MapReduce Johann Volz IPD Snelting, Lehrstuhl Programmierparadigmen KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Wozu MapReduce?

Mehr

APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER

APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER INHALT Das Hadoop Framework Hadoop s Distributed File System (HDFS) MapReduce Apache Pig Was ist Apache Pig & Pig Latin Anwendungsumgebungen Unterschied

Mehr

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Brownbag am Freitag, den 26.07.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich zu machen. Und

Mehr

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? War nicht BigData das gleiche NoSQL? Data Lake = Keine Struktur? flickr/matthewthecoolguy Oder gar ein Hadump? flickr/autohistorian

Mehr

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Wir unternehmen IT. Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Karlsruhe, 30.09.2015 $id thgreiner Thorsten Greiner Teamleiter Software Development ConSol* Software GmbH, Düsseldorf

Mehr

Stratosphere. Next-Generation Big Data Analytics Made in Germany

Stratosphere. Next-Generation Big Data Analytics Made in Germany Stratosphere Next-Generation Big Data Analytics Made in Germany Robert Metzger Stratosphere Core Developer Technische Universität Berlin Ronald Fromm Head of Big Data Science Telekom Innovation Laboratories

Mehr

MapReduce-Konzept. Thomas Findling, Thomas König

MapReduce-Konzept. Thomas Findling, Thomas König MapReduce - Konzept 1 Inhalt 1. Motivation 2. Einführung MapReduce Google Rechenzentren Vergleich MapReduce und Relationale DBS 3. Hadoop Funktionsweise Input / Output Fehlerbehandlung 4. Praxis-Beispiel

Mehr

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011 High Performance Batches in der Cloud Folie 1 Alles geht in die Cloud Image: Chris Sharp / FreeDigitalPhotos.net Cloud und Batches passen zusammen Batches Cloud Pay-per-Use Nur zeitweise genutzt Hohe Rechenkapazitäten

Mehr

Überblick und Vergleich von NoSQL. Datenbanksystemen

Überblick und Vergleich von NoSQL. Datenbanksystemen Fakultät Informatik Hauptseminar Technische Informationssysteme Überblick und Vergleich von NoSQL Christian Oelsner Dresden, 20. Mai 2011 1 1. Einführung 2. Historisches & Definition 3. Kategorien von

Mehr

Data Mining und Machine Learning

Data Mining und Machine Learning Data Mining und Machine Learning Teil 7: Verteiltes Rechnen mit Map Reduce Dr. Harald König, FHDW Hannover 30. November 2015 Inhalt 1 Verteiltes Rechnen 2 Map Reduce 3 Anwendungen 4 Map Reduce: Weiterführende

Mehr

Dokumentenorientierte Datenbanken - MongoDB

Dokumentenorientierte Datenbanken - MongoDB Dokumentenorientierte Datenbanken - MongoDB Jan Hentschel Ultra Tendency UG Übersicht Dokumente sind unabhängige Einheiten Bessere Performance (zusammengehörige Daten werden gemeinsam gelesen) Objektmodell

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013 Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien Berlin, Mai 2013 The unbelievable Machine Company? 06.05.13 The unbelievable Machine Company

Mehr

NoSQL-Datenbanksysteme

NoSQL-Datenbanksysteme NoSQL-Datenbanksysteme Hochschule Harz 14.06.2013 Prof. Dr. Uta Störl Hochschule Darmstadt uta.stoerl@h-da.de NoSQL: DAS aktuelle Datenbank Buzzword Quelle: http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

Mehr

Cloud-Plattform: Appscale Hochschule Mannheim

Cloud-Plattform: Appscale Hochschule Mannheim Florian Weispfenning Cloud-Computing Seminar Hochschule Mannheim WS0910 1/28 Cloud-Plattform: Appscale Hochschule Mannheim Florian Weispfenning Fakultät für Informatik Hochschule Mannheim florian.weispfenning@stud.hs-mannheim.de

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

NovaBACKUP DataCenter 5.0. Screenshots

NovaBACKUP DataCenter 5.0. Screenshots Software-Architektur Software - Architektur Zentrale Management Konsole Zentrales Management Zentrale Datenbank - Was/Wann/Wo - Zeitpläne - Jobs Backup Client Backup Client Backup Client Backup Server

Mehr

Big Data Lösungen mit Apache Hadoop. Gunnar Schröder, T-Systems Multimedia Solutions GmbH

Big Data Lösungen mit Apache Hadoop. Gunnar Schröder, T-Systems Multimedia Solutions GmbH Big Data Lösungen mit Apache Hadoop Gunnar Schröder, T-Systems Multimedia Solutions GmbH Was ist Big Data? 2 Charakteristiken von Big Data Three Vs of Big Data VOLUME Terabytes Petabytes Exabytes Zettabytes

Mehr

EHCache und Terracotta. Jochen Wiedmann, Software AG

EHCache und Terracotta. Jochen Wiedmann, Software AG EH und Terracotta Jochen Wiedmann, Software AG Autor Perl-Contributor DBD::mySQL 2, DBI::Proxy, DBI::Shell, DBD::CSV, Net::Daemon, RPC::Pl(Client Server) (Autor) DBI (Developer) ASF-Member (Apache Software

Mehr

Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de

Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de NoSQL für Java-Entwickler Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de 23.06.2013 Agenda Datengröße Key-value Stores 1. Wide Column 2. Cassandra Document

Mehr

Perzentile mit Hadoop ermitteln

Perzentile mit Hadoop ermitteln Perzentile mit Hadoop ermitteln Ausgangspunkt Ziel dieses Projektes war, einen Hadoop Job zu entwickeln, der mit Hilfe gegebener Parameter Simulationen durchführt und aus den Ergebnissen die Perzentile

Mehr

Ontologiegestützte Suche in unstrukturierten Daten

Ontologiegestützte Suche in unstrukturierten Daten Ontologiegestützte Suche in unstrukturierten Daten Veranstalter: Prof. Dr. Lausen Betreuer: Kai Simon, Thomas Hornung (Team) Projekt Anforderungen Bachelor (6 ECTS) [entsprechen 180 Stunden] Softwareentwicklung

Mehr

MapReduce in der Praxis

MapReduce in der Praxis MapReduce in der Praxis Rolf Daniel Seminar Multicore Programmierung 09.12.2010 1 / 53 Agenda Einleitung 1 Einleitung 2 3 Disco Hadoop BOOM 4 2 / 53 1 Einleitung 2 3 Disco Hadoop BOOM 4 3 / 53 Motivation

Mehr

Hadoop in a Nutshell Einführung HDFS und MapReduce. Oracle/metafinanz Roadshow Februar 2014

Hadoop in a Nutshell Einführung HDFS und MapReduce. Oracle/metafinanz Roadshow Februar 2014 Hadoop in a Nutshell Einführung HDFS und MapReduce Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2.

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2. Cloud Computing Frank Hallas und Alexander Butiu Universität Erlangen Nürnberg, Lehrstuhl für Hardware/Software CoDesign Multicorearchitectures and Programming Seminar, Sommersemester 2013 1. Definition

Mehr

Big Data Kundendaten im 2015 Michael Gisiger Wortgefecht Training & Beratung

Big Data Kundendaten im 2015 Michael Gisiger Wortgefecht Training & Beratung Big Data Kundendaten im 2015 Social Media für Medienunternehmen Trendtagung am Agenda Kurze Vorstellung Big Data was ist das genau? Case: DW Nutzungsdaten und -analysen von Videos im Web 2 Vorstellung

Mehr

Cloud Data Management

Cloud Data Management 1 Cloud Data Management Dr. Martin Grund 2 Die Evolution des Web Web 1.0: Entstehung des World Wide Web 1989 (CERN) Tim Berners-Lee. 1991 weltweite Verbreitung Navigation zwischen statischen Seiten Keine

Mehr

Hadoop I/O. Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen. 14.02.2012 Prof. Dr. Christian Herta 1/29

Hadoop I/O. Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen. 14.02.2012 Prof. Dr. Christian Herta 1/29 Hadoop I/O Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen 14.02.2012 Prof. Dr. Christian Herta 1/29 Data I/O und Hadoop Allgemeine Techniken Data I/O Datenintegrität Kompression

Mehr

Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011

Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011 Eine Einführung in Apache CouchDB Java-Forum Stuttgart 2011 Johannes Schneider, cedarsoft GmbH js@cedarsoft.com http://blog.cedarsoft.com http://cedarsoft.com Vielen Dank CouchDB The VERY Basics Vorerfahrung?

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

Anleitung Command Line Client Demo Client

Anleitung Command Line Client Demo Client Stiftung Auffangeinrichtung BVG Fondation institution supplétive LPP Fondazione istituto collettore LPP Anleitung Command Line Client Demo Client Version 1.1 Inhalt 1. Allgemein... 3 1.1. Installieren

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Self Service BI mit Office 2013 Raúl B. Heiduk

Self Service BI mit Office 2013 Raúl B. Heiduk 1 Self Service BI mit Office 2013 Raúl B. Heiduk Partner: 2 Agenda Begrüssung Vorstellung Referent Inhalt F&A Weiterführende Kurse 3 Vorstellung Referent Name: Raúl B. Heiduk Ausbildung: Dipl. Ing. (FH),

Mehr

Hadoop & SQL Wie Hadoop um SQL erweitert werden kann. Oracle/metafinanz Roadshow 11./18. Februar

Hadoop & SQL Wie Hadoop um SQL erweitert werden kann. Oracle/metafinanz Roadshow 11./18. Februar Hadoop & SQL Wie Hadoop um SQL erweitert werden kann Oracle/metafinanz Roadshow 11./18. Februar Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de MapReduce MapReduce - Veranschaulichung der Phasen Prof. Dr.-Ing. S. Michel TU Kaiserslautern

Mehr

Seminar im Wintersemester 2008/2009. Complex and Distributed IT-Systems TU Berlin

Seminar im Wintersemester 2008/2009. Complex and Distributed IT-Systems TU Berlin Betrieb komplexer IT-Systeme Seminar im Wintersemester 2008/2009 Complex and Distributed IT-Systems TU Berlin Status Quo Rechenzentren erfüllen Vielzahl an Diensten Klassische Server-Dienste Mailserver,

Mehr

MySQL Queries on "Nmap Results"

MySQL Queries on Nmap Results MySQL Queries on "Nmap Results" SQL Abfragen auf Nmap Ergebnisse Ivan Bütler 31. August 2009 Wer den Portscanner "NMAP" häufig benutzt weiss, dass die Auswertung von grossen Scans mit vielen C- oder sogar

Mehr

Foreign Data Wrappers

Foreign Data Wrappers -Angebot Foreign Data Wrappers Postgres ITos GmbH, CH-9642 Ebnat-Kappel Swiss Postgres Conference 26. Juni 2014 Foreign Data Wrapper Postgres -Angebot Foreign Data Wrapper? Transparente Einbindung (art-)fremder

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt NoSQL & Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

NoSQL Databases and Big Data

NoSQL Databases and Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt NoSQL & Big Data Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

MapReduce mit Hadoop 08.11.12 1

MapReduce mit Hadoop 08.11.12 1 MapReduce mit Hadoop 08.11.12 1 Lernziele / Inhalt Wiederholung MapReduce Map in Hadoop Reduce in Hadoop Datenfluss Erste Schritte Alte vs. neue API Combiner Functions mehr als Java 08.11.12 2 Wiederholung

Mehr

Cloud Computing mit mathematischen Anwendungen

Cloud Computing mit mathematischen Anwendungen Cloud Computing mit mathematischen Anwendungen Vorlesung SoSe 2009 Dr. Marcel Kunze Karlsruhe Institute of Technology (KIT) Steinbuch Centre for Computing (SCC) KIT the cooperation of Forschungszentrum

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

L A TEX, Linux, Python

L A TEX, Linux, Python L A TEX, Linux, Python Daniel Borchmann, Tom Hanika, Maximilian Marx 17. Dezember 2014 cba Grundlagen von GNU/Linux Grundlagen von GNU/Linux Eine kurze Geschichte von GNU / Linux Eine kurze Geschichte

Mehr

Florian Hopf www.florian-hopf.de @fhopf. elasticsearch. Bern 07.10.2015

Florian Hopf www.florian-hopf.de @fhopf. elasticsearch. Bern 07.10.2015 Florian Hopf www.florian-hopf.de @fhopf elasticsearch. Bern 07.10.2015 Agenda Suche Verteilung Elasticsearch und Java Aggregationen Zentralisiertes Logging Suche Installation # download archive wget https://download.elastic.co/elasticsearch

Mehr

Seminar im Sommersemester 2009. Complex and Distributed IT-Systems TU Berlin

Seminar im Sommersemester 2009. Complex and Distributed IT-Systems TU Berlin Betrieb komplexer IT-Systeme Seminar im Sommersemester 2009 Complex and Distributed IT-Systems TU Berlin Status Quo Rechenzentren erfüllen Vielzahl an Diensten Klassische Server-Dienste Mailserver, Newsserver,

Mehr

Datenbanktechnologien für Big Data

Datenbanktechnologien für Big Data Datenbanktechnologien für Big Data Oktober 2013 Prof. Dr. Uta Störl Hochschule Darmstadt Big Data Technologien Motivation Big Data Technologien NoSQL-Datenbanksysteme Spaltenorientierte Datenbanksysteme

Mehr

NoSQL-Databases. Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de

NoSQL-Databases. Präsentation für Advanced Seminar Computer Engineering, Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de NoSQL-Databases Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de Klassische SQL-Datenbanken Anwendungsgebiet: Geschäftsanwendungen Behördenanwendungen

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center

PROFI UND NUTANIX. Portfolioerweiterung im Software Defined Data Center PROFI UND NUTANIX Portfolioerweiterung im Software Defined Data Center IDC geht davon aus, dass Software-basierter Speicher letztendlich eine wichtige Rolle in jedem Data Center spielen wird entweder als

Mehr

DduP - Towards a Deduplication Framework utilising Apache Spark

DduP - Towards a Deduplication Framework utilising Apache Spark - Towards a Deduplication Framework utilising Apache Spark utilising Apache Spark Universität Hamburg, Fachbereich Informatik Gliederung 1 Duplikaterkennung 2 Apache Spark 3 - Interactive Big Data Deduplication

Mehr

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,

Mehr

Teamprojekt & Projekt

Teamprojekt & Projekt 8. November 2010 Teamprojekt & Projekt Veranstalter: Betreuer: Prof. Dr. Georg Lausen Alexander Schätzle, Martin Przjyaciel-Zablocki, Thomas Hornung dbis Zeit und Ort: Montag 14-17 Uhr (c.t.) Raum: SR

Mehr

Bernd Fondermann brainlounge. Blaue oder rote Pille: SQL oder MapReduce?

Bernd Fondermann brainlounge. Blaue oder rote Pille: SQL oder MapReduce? Bernd Fondermann brainlounge Blaue oder rote Pille: SQL oder MapReduce? TODOs pills on all pages upd source code 1 Blaue oder rote Pille - SQL oder MapReduce? Bernd Fondermann, BigDataCon/JAX 2012 2 Rote

Mehr

Spark, Impala und Hadoop in der Kreditrisikoberechnung

Spark, Impala und Hadoop in der Kreditrisikoberechnung Spark, Impala und Hadoop in der Kreditrisikoberechnung Big Data In-Memory-Technologien für mittelgroße Datenmengen TDWI München, 22. Juni 2015 Joschka Kupilas, Data Scientist, Adastra GmbH 2 Inhalt Vorwort

Mehr

ein verteiltes und repliziertes Dateisystem XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576

ein verteiltes und repliziertes Dateisystem XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576 ein verteiltes und repliziertes Dateisystem is funded by the European Commission XtreemOS IPunder project contract IST-FP6-033576 1 Das XtreemOS Projekt Europäisches Forschungsprojekt gefördert von der

Mehr

Hadoop. Simon Prewo. Simon Prewo

Hadoop. Simon Prewo. Simon Prewo Hadoop Simon Prewo Simon Prewo 1 Warum Hadoop? SQL: DB2, Oracle Hadoop? Innerhalb der letzten zwei Jahre hat sich die Datenmenge ca. verzehnfacht Die Klassiker wie DB2, Oracle usw. sind anders konzeptioniert

Mehr