Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Im Wöhlerdiagramm wird die Lebensdauer (Lastwechsel oder Laufzeit) eines Bauteils in Abhängigkeit von der Belastung dargestellt."

Transkript

1 Webull & Wöhler 0 CRGRAPH Wöhlerdagramm Im Wöhlerdagramm wrd de Lebesdauer ( oder Laufzet) ees Bautels Abhägget vo der Belastug dargestellt. Kurzetfestget Beaspruchug Zetfestget auerfestget er Kurzzetfestgetsberech überschretet ee Belastugsgreze, be der es grudsätzlch zu eer Schädgug ommt. Im so geate Zetfestgetsberech besteht mt zuehmeder Belastug ee mmer gerger werdede zahl bs zum Bruch. eser Berech st m doppellogarthmschem Maßstab ee Gerade. Es glt folgeder Zusammehag ach Palmgre-Mer: mt zahl zahl ab der auerfestget besteht Bautelspaug Bautelspaug ab der auerfestget besteht Wöhlerexpoet (z.b. Stahl 0.., Guss 3..4, Alu ) Ab eer bestmmte Belastug begt der Berech der auerfestget ( der Regel ur für Stahlwerstoffe). Ab her st de Lebesdauer des Bauteles cht mehr vo der zahl abhägg. Im tatsächlchem Betreb gbt es uterschedlche Belastuge, de ma aus Messuge ermttelt ud Kolletve (Stufe) zusammefasst.

2 Webull & Wöhler 0 CRGRAPH Wöhlerdagramm für uterschedlche Belastuge Zu eem bestmmte Zetput erlebt das Bautel ee Azahl uterschedlcher Belastuge. ese öe eem repräsetatve Messzylus erfasst werde. aach mmt ma verefacht a, dass sch dese Zyle glechmäßg weter aufadere. das erlebt das Bautel das a das Bautel Belastug 000 /mm ² zum Zetput x ese zahle erhöhe sch über der Gebrauchsdauer atelsmäßg mmer weter, bs es letztlch zu eem Ausfall ommt. 000 /mm ² Belastug Ausfall bs zum Ausfall Ausfall

3 Webull & Wöhler 0 CRGRAPH e ertragbare zahl berechet sch ach der Elemetar-Mer-Regel (EM -> Weterführug der Stegug ): EM e Erfahrug hat gezegt, dass de waagrecht verlaufede auerfestget (Palmgre-Mer-Regel) de Lebesdauer als zu gut ud de Elemetar-Mer-Regel als zu ugüstg agbt. Habach schlägt deshalb vor, de bede Bereche zu halbere. abe wrd de Stegug mt *- agesetzt Belastug H m m + + EM Palmgre-Mer (auerfestget) Habach Elemetar-Mer (Zetfestget) ud es öe auch Belastuge uterhalb der auerfestget berücschtgt werde. er Idex m bezeht sch dabe auf de Kolletve bs zum auerfestgetsc, also uter. Aus Erfahruge hat sch gezegt, dass Schädguge uterhalb 0,5* ee Efluss habe. Wöhlerdagamm aus Webullauswertug ablete Für de Ausfallpute erhalb eer Kurve m Webulldagramm muss gelte, dass alle de gleche Belastuge uterlege. Im Wöhlerdagramm wrd dagege de Laufzet bzw. zahl Abhägget vo der Bautelbelastug dargestellt (Ordate). abe a ee Aussage über ee zu erwartede Lebesdauer für ee bestmmte Belastug gemacht werde. Ee Aussage darüber, we vel Prozet der Bautele be eer bestmmte Belastug ausfalle werde, a cht gemacht werde. urch Kombato aus Webullauswertug ud Wöhlerdagramm st des jedoch möglch.

4 Webull & Wöhler 0 CRGRAPH 99.9 % Ausfallhäufget ,0, Belastug Für jede Belastugsfall wrd für ee bestmmte Ausfallhäufget, z.b. 50% der Put m Webull-agramm ach ute das Wöhlerdagramm projzert. abe lässt sch durch Verbde deser Pute de Wöhlerle zehe. Für ee bestmmte Berech z.b. 5% ud 95% Ausfallwahrschelchet a auf de gleche Wese e Wahrschelchetsberech m Wöhlerdagramm erzeugt werde. Es zegt sch der Praxs, dass de Webull-Steguge be verschedee Belastuge uterschedlch sd, da dese auch eer zufällge Streuug uterlege. a de 5%- ud 95% Le dret vo der Stegug der Webull-Kurve abhägg sd, ergebe sch m Wöhlerdagramm etweder aufwetede oder zusammelaufede Bereche. Be höhere (Laufzete be gergere Belastuge) erwartet ma ee größere absolute Streuug der Testergebsse.

5 Webull & Wöhler 0 CRGRAPH 99.9 % Ausfallhäufget Belastug es ergbt sch aber cht ur durch ee aufwetede Berech, soder auch be eem parallel verlaufede, wege des logarthmsche Maßstabes. Aufgrud der gleche Testbedguge sollte de Steguge aber cht wesetlch uterschedlch se. Es wrd für de Ermttlug der 0%- ud 90% Le m Wöhlerdagramm deshalb ee mttlere Stegug b verwedet. abe laufe dese parallel zur 50% Le. e arstellug st atürlch ur für de sogeate Zetfestgetsberech möglch. e Berech der auerfestget, we er für Stahlbautele typsch st ud be dem de Wöhlerle ee Waagrechte übergeht, a cht ermttelt werde, da her ee Ausfälle mehr auftrete. a bestmmte Materale be höhere Laufzete bzw. mehr oder weger mmer ee Berech der auerfestget bestze, sollte ma be der Auswertug vo Materale, dere Verhalte cht beat st, möglchst vele Lastpute prüfe, um e Abce der Kurve zu eree. e Stegug a durch Umstelle ach aus der berets egeführte Formel

6 Webull & Wöhler 0 CRGRAPH bestmmt werde (sehe Kaptel Lebesdauer m Wöhlerdagramm). Astelle der auerfestget ( ) wrd der zwete Put m Wöhlerdagramm verwedet ud geerell durch de Kraft F ersetzt, so dass glt: l F l F Wöhler - Perlschurverfahre We alle Versuche be uterschedlche Beaspruchuge durchgeführt werde, a m Wahrschelchetsetz ee Gerade erstellt werde. as Vorgehe des Heruterlotes aus dem Wahrschelchetsetz mt 0%, 50% ud 90% st somt cht möglch. Für de Logormalvertelug a desem Fall das Wöhlerdagramm aus dem sogeate Perlschurverfahre bestmmt werde. Voraussetzug st, dass de Steguge m Wahrschelchetsetz be uterschedlche Beaspruchuge glech sd. es war auch für das vorhergehede Bespel otwedg, wobe her uterschedlch vorommede Steguge gemttelt wurde. as bedeutet, de logarthmsche Stadardabwechug st über dem Wöhlerberech als ostat azusetze. Für ee Beaspruchug glt: log ( log( t ) log( t 50% )) s Be uterschedlche Beaspruchuge gbt es jewels ee egee t50%-wert. Somt a geschrebe werde: s ( log( t ) log( t )) + ( log( t ) log( ))...) log 50%, + 50%, t e Wöhlergerade (mttlere Gerade m Bld) wrd aus der Ausglechsgerade mt der Methode der leste Fehlerquadrate berechet (Pute X- ud Y-Rchtug jewels logarthmert).

7 Webull & Wöhler 0 CRGRAPH Beaspruchug t 5% 5%- Le t 95% 95%- Le ese Gerade repräsetert de jewelge Meda- bzw. t50%-werte. e Wahrschelchetsbereche für z.b. 5% ud 95% ergebe sch aus der Umehrfuto der ormalvertelug (stadardserte Quatle u-wert), dem Meda ud der logarthmsche Stadardabwechug: t 5% 0 u x 50 0,05 s log ud t 95% 0 u x 50 0,95 s log ese Methode wrd der Regel agewedet, we ur wege Versuche gemacht werde öe ud ee Wöhlerurve erstellt werde soll (empfohlees Mmum 5 Versuche). abe müsse cht alle Versuche mt uterschedlche Beaspruchuge laufe. Es sollte jedoch cht weger als 3 Beaspruchugsveaus verwedet werde. Auf der ächste Sete wrd der Esteg Vsual-XSel gezegt.

8 Webull & Wöhler 0 CRGRAPH Awedug Vsual-XSel.0 /Webowload.htm ❶ ❷ Für de wetere Schrtte st de folgede Sprechblase zu folge. Vsual-XSel st e egetragees Warezeche

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste):

Aufgaben. 1. Gegeben seien folgende Daten einer statistischen Erhebung, bereits nach Größe sortiert (Rangliste): Aufgabe. Gegebe see folgede Date eer statstsche Erhebug, berets ach Größe sortert (Raglste): 0 3 4 4 5 6 7 7 8 8 8 9 9 0 0 0 0 0 3 3 3 3 4 4 5 5 5 5 5 6 6 6 7 7 8 30 Erstelle Se ee Tabelle, der de Merkmalsauspräguge

Mehr

(Markowitz-Portfoliotheorie)

(Markowitz-Portfoliotheorie) Thema : ortfolo-selekto ud m-s-rzp (Markowtz-ortfolotheore) Beurtelugskrtere be quadratscher Nutzefukto: Beroull-rzp + quadratsche Nutzefukto Thema Höhekompoete: Erwartugswert µ Rskokompoete: Stadardabwechug

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen

1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen. 1.1. Jährliche Rentenzahlungen 1.1.1. Vorschüssige Rentenzahlungen .. Jährlche Retezahluge... Vorschüssge Retezahluge Ausgagspukt: Über ee edlche Zetraum wrd aus eem Kaptal (Retebarwert v, ), das zseszslch agelegt st, jewels zu Beg ees Jahres ee bestmmte Reterate ř gezahlt

Mehr

Sitzplatzreservierungsproblem

Sitzplatzreservierungsproblem tzplatzreserverugsproblem Be vele Zugsysteme Europa müsse Passagere mt hrem Zugtcet ee tzplatzreserverug aufe. Da das Tcetsystem Kude ee ezele Platz zuwese muss, we dese e Tcet aufe, ohe zu wsse, welche

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung

Unter einer Rente versteht man eine regelmässige und konstante Zahlung 8 Aweduge aus der Fazmathematk Perodsche Zahluge: Rete ud Leasg Uter eer Rete versteht ma ee regelmässge ud kostate Zahlug Bespele: moatlche Krakekassepräme, moatlche Altersrete, perodsches Spare, verteljährlcher

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Formelsammlug rtschaftsmathemat / Statst Formelsammlug für de Lehrverastaltug rtschaftsmathemat / Statst zugelasse für de Klausure zur rtschaftsmathemat ud Statst de Studegäge der Techsche Betrebswrtschaft

Mehr

Leitfaden zu den Indexkennzahlen der Deutschen Börse

Leitfaden zu den Indexkennzahlen der Deutschen Börse Letfade zu de Idexkezahle der Deutsche Börse Verso.5 Deutsche Börse AG Verso.5 Letfade zu de Idexkezahle der Deutsche Börse Page Allgemee Iformato Um de hohe Qualtät der vo der Deutsche Börse AG berechete

Mehr

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion

AG Konstruktion KONSTRUKTION 2. Planetengetriebe (Umlaufgetriebe) Skript. TU Berlin, AG Konstruktion AG Kstrut KONTRUKTION Plaetegetrebe (Umlaufgetrebe) rpt TU Berl, AG Kstrut Plaetegetrebe Vrtele Plaetegetrebe: e Achsversatz z.t. sehr grße Über-/Utersetzuge möglch grße Tragraft guter Wrugsgrad Rhlff

Mehr

Messfehler, Fehlerberechnung und Fehlerabschätzung

Messfehler, Fehlerberechnung und Fehlerabschätzung Apparatves Praktkum Physkalsche Cheme der TU Brauschweg SS1, Dr. C. Maul, T.Dammeyer Messfehler, Fehlerberechug ud Fehlerabschätug 1. Systematsche Fehler Systematsche Fehler et ma solche Fehleratele, welche

Mehr

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...}

WIB 2 Mathematik und Statistik Formelsammlung. Z Menge der ganzen Zahlen {...,-3,-2,-1,0,1,2,3,...} 1 Allgeme Geometrsche Rehe: q t = 1 q1 t=0 1 q Mtterachtsformel: ax 2 bxc=0 x 1/ 2 = b±b2 4ac 2a Bomsche Formel: 1. ab 2 =a 2 2abb 2 2. a b 2 =a 2 2abb 2 3. ab a b=a 2 b 2 Wurzel: ugerade 1 Ergebs gerade

Mehr

Allgemeine Prinzipien

Allgemeine Prinzipien Allgemee Przpe Es estere sebe Grudehete der Physk; alle adere physkalsche Größe ka ma darauf zurückführe. Dese Grudehete sd: Läge [m] Masse [kg] Zet [s] Elektrsche Stromstärke [A] Temperatur [K], Stoffmege

Mehr

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n).

die Schadenhöhe ( = Risikoergebnis) des i-ten Versicherungsnehmers i 1,, n). Aufgabe Wr betrachte ee Reteverscherug der Retebezugszet mt jährlch vorschüssger Retezahlug solage der Verscherte lebt. a) Bezeche V bzw. V de rechugsmäßge Deckugsrückstellug am Afag bzw. am Ede des Verscherugsjahres.

Mehr

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien:

Regressionsverfahren haben viele praktische Anwendungen. Die meisten Anwendungen fallen in eine der folgenden beiden Kategorien: Regressoslse De Regressoslse st ee Slug vo sttstshe Alseverfhre. Zel e de häufgste egesetzte Alseverfhre st es Bezehuge zwshe eer hägge ud eer oder ehrere uhägge rle festzustelle. Se wrd sesodere verwedet

Mehr

Geometrisches Mittel und durchschnittliche Wachstumsraten

Geometrisches Mittel und durchschnittliche Wachstumsraten Dpl.-Kaufm. Wolfgag Schmtt Aus meer Skrpterehe: " Kee Agst vor... " Ausgewählte Theme der deskrptve Statstk Geometrsches Mttel ud durchschttlche Wachstumsrate Modellaufgabe Übuge Lösuge www.f-lere.de Geometrsches

Mehr

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient

= k. , mit k als Anzahl der Hypothesen A i und den Daten B. Bestimmtheitsmaß:!Determinationskoeffizient Ablehugsberech:!Sgfkazveau abhägge Gruppe: Gruppe vo Versuchspersoe, dee jede ezele Versuchsperso aus Gruppe A eer äquvalete Versuchsperso aus Gruppe B etsprcht (oder tatsächlch de gleche Versuchsperso

Mehr

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst

Marketing- und Innovationsmanagement Herbstsemester 2013 - Übungsaufgaben Lesender: Prof. Dr. Andreas Fürst Marketg- ud Iovatosmaagemet Herbstsemester 2013 - Übugsaufgabe Leseder: Prof. Dr. Adreas Fürst Isttut für Marketg ud Uterehmesführug Abtelug Marketg Uverstät Ber Ihaltsverzechs 1 Eletug Allgemee Grudlage

Mehr

F 6-2 π. Seitenumbruch

F 6-2 π. Seitenumbruch 6 trebsauslegug Für dese ckelprozess üsse de otore so ausgelegt werde, dass dese Fahrbetreb cht überlastet werde. Herfür üsse de ezele asseträghetsoete [7] der Bautele (otor, etrebe, ckler ud Ulekrolle)

Mehr

2. Arbeitsgemeinschaft (11.11.2002)

2. Arbeitsgemeinschaft (11.11.2002) Mat T. Kocbk G Fazeugs- & Ivesttostheoe Veastaltug m WS / Studet d. Wtschatswsseschat. betsgemeschat (..). Fshe-Sepaato Das Fshe-Sepaatostheoem sagt aus, daß ute bestmmte ahme heutge ud mogge Kosum substtueba

Mehr

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit

Beispielklausur BWL B Teil Marketing. 45 Minuten Bearbeitungszeit Bespelklausur BWLB TelMarketg 45MuteBearbetugszet BWLBBespelklausurTelMarketg Sete WchtgeHwese:. VOLLSTÄNDIGKEIT: PrüfeSeuverzüglch,obIhreKlausurvollstädgst(Aufgabe).. ABGABE: EsstdegesamteKlausurabzugebe.

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

14. Folgen und Reihen, Grenzwerte

14. Folgen und Reihen, Grenzwerte 4. Folge ud Rehe, Grezwerte 4. Folge ud Rehe, Grezwerte 4. Ee Folge defere Defere de Folge (a ) Õ mt a =+: Eplzte Defto *+ a() Doe 3, falls = Rekursve Defto Defere de Folge (b ) Õ, b = : b + sost whe(=,

Mehr

2. Mittelwerte (Lageparameter)

2. Mittelwerte (Lageparameter) 2. Mttelwerte (Lageparameter) Bespele aus dem täglche Lebe Pro Hemspel hatte Borussa Dortmud der letzte Saso durchschttlch 7.2 Zuschauer. De deutsche Akte sd m Durchschtt um 0 Zähler gefalle. I Ide wurde

Mehr

Zentrum für Sensorsysteme Projektbereich 5 "Anwendung von Sensoren in der Fertigungstechnik" Univ.-Prof. Dr.-Ing. Peter Scharf

Zentrum für Sensorsysteme Projektbereich 5 Anwendung von Sensoren in der Fertigungstechnik Univ.-Prof. Dr.-Ing. Peter Scharf UNIVERSITÄT SIEGEN Zetrum für Sesorssteme Projektberech 5 "Awedug vo Sesore der Fertgugstechk" Uv.-Prof. Dr.-Ig. Peter Scharf Utersuchug des Eflusses vo Algorthme auf de Messuscherhet be der D-Geometremessug

Mehr

Multiple Regression (1) - Einführung I -

Multiple Regression (1) - Einführung I - Multple Regreo Eführug I Mt eem Korrelatokoeffzete ud der efache leare Regreo köe ur varate Zuammehäge zwche zwe Varale uterucht werde. Beutzt ma tatt dee mehrere Varale zur Vorherage, egt ma ch auf da

Mehr

6. Zusammenhangsmaße (Kovarianz und Korrelation)

6. Zusammenhangsmaße (Kovarianz und Korrelation) 6. Zuammehagmaße Kovaraz ud Korrelato Problemtellug: Bher: Ee Varable pro Merkmalträger, Stchprobe x,, x Geucht: Maße für Durchchtt, Streuug, uw. Jetzt: Zwe metrche! Varable pro Merkmalträger, Stchprobe

Mehr

EINLEITUNG, FEHLERRECHNUNG

EINLEITUNG, FEHLERRECHNUNG Eletug FEHLERRECHNUNG ohe Dfferetalrechug 04.05.006 Blatt 1 EINLEITUNG, FEHLERRECHNUNG Aufgabe des physkalsche Praktkums st es, dem Studerede de Physk durch das Expermet äher zu brge, h mt der Methode

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Prüfuge abgegebe sowet erforderlch. Stad 1. Jul 2010. Äderuge vorbehalte. Formelsammlug Fazplaer

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fazplaer/ mt edg. Fachauswes Formelsammlug Autor: Iwa Brot Dese Formelsammlug wrd a de Ole- ud a de müdlche Prüfuge abgegebe sowet erforderlch. A der schrftlche Klausur (Ope-book-Prüfug)

Mehr

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen

Investmentfonds. Kennzahlenberechnung. Performance Risiko- und Ertragsanalyse, Risikokennzahlen Ivestmetfods Kezahleberechug erformace Rsko- ud Ertragsaalyse, Rskokezahle Gültg ab 01.01.2007 Ihalt 1 erformace 4 1.1 Berechug der erformace über de gesamte Beobachtugzetraum (absolut)... 4 1.2 Aualserug

Mehr

2. Zusammenhangsanalysen: Korrelation und Regression

2. Zusammenhangsanalysen: Korrelation und Regression 2. Zusammehagsaalse: Korrelato ud Regresso Dowloads zur Vorlesug 2. Zusammehagsaalse: Korrelato ud Regresso 2 Grudbegrffe zwedmesoale Stchprobe De Gewug vo mehrere Merkmale vo eer Beobachtugsehet führt

Mehr

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik

Formelsammlung für die Lehrveranstaltung Wirtschaftsmathematik / Statistik Fomelsammlug tschaftsmathemat / Statst Fomelsammlug fü de Lehveastaltug tschaftsmathemat / Statst zugelasse fü de Klausue zu tschaftsmathemat ud Statst de Studegäge de Techsche Betebswtschaft Veso vom

Mehr

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7

Strittige Auffassungen zu Anforderungsprofil und Betriebsart bei der Neufassung der IEC 61508-3 und -7 Strtte Auffassue zu Aforderusrofl ud Betrebsart be der Neufassu der IEC 6508-3 ud -7 Vortra a der TU Brauschwe m November 205 vo Wolfa Ehreberer, Hochschule Fulda 7..205 Ehreberer, IEC 6508, Strtte Auffassue...

Mehr

Entwicklung einer Dispatcherfunktion zur Überprüfung von Nominierungsmengen in der Betriebsführung von Erdgasspeichern

Entwicklung einer Dispatcherfunktion zur Überprüfung von Nominierungsmengen in der Betriebsführung von Erdgasspeichern AMMO Berchte aus Forschug ud Techologetrasfer Etwcklug eer Dsatcherfukto zur Überrüfug vo Nomerugsmege der Betrebsführug vo Erdgassecher Prof. Dr. sc. tech. Dr. rer. at. R. Ueckerdt Dr.Ig. H.W. Schmdt

Mehr

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1

Investitionsentscheidungen im Multi-Channel-Customer-Relationship Management 1 Ivesttosetscheduge m Mult-Chael-Customer-Relatoshp Maagemet Has Ulrch Buhl, Na Kreyer, Na Schroeder Lehrstuhl für Betrebswrtschaftslehre, Wrtschaftsformatk & Facal Egeerg Kerkompetezzetrum Iformatostechologe

Mehr

Diskussionspapiere der WHL Wissenschaftlichen Hochschule Lahr. http://www.whl-lahr.de/diskussionspapiere. Verfasser: Tristan Nguyen und Karsten Rohlf*

Diskussionspapiere der WHL Wissenschaftlichen Hochschule Lahr. http://www.whl-lahr.de/diskussionspapiere. Verfasser: Tristan Nguyen und Karsten Rohlf* skussospapere der WHL Wsseschaftlche Hochschule Lahr http://wwwwhl-lahrde/dskussospapere Verfasser: Trsta Nguye ud Karste Rohlf* Herausgeber: WHL Wsseschaftlche Hochschule Lahr Hohbergweg 15 17-77933 Lahr

Mehr

Physikalische Chemie T Fos

Physikalische Chemie T Fos Physkalsche Cheme T Fos ISCHPHSEN.... ZUSENSETZUNG VO ISCHPHSEN.... EXTENSIVE - UND INTENSIVE GRÖßEN... 4.. Partelles olvolume V m... 7.3 DS ROULTSCHE GESETZ... 0.4 KOLLIGTIVE EIGENSCHFTEN....4. De Sedeuktserhöhug...

Mehr

2 Regression, Korrelation und Kontingenz

2 Regression, Korrelation und Kontingenz Regresso, Korrelato ud Kotgez I desem Kaptel lerst du de Zusammehag zwsche verschedee Merkmale durch Grafke zu beschrebe, Maßzahle ür de Stärke des Zusammehags zu bereche ud dese zu terpretere, das Wsse

Mehr

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N

( ) := 1 N. μ 1 : Mittelwert. 2.2 Statistik und Polydispersität. Definition des k-ten Moments: Definition des k-ten zentralen Moments: 1 N . Charakterserug vo Polymere. moodsperse polydsperse cytochrom c Ege Bopolymere (Ezyme) habe ur ee ehetlche olekülgröße. moodsperse mometa st kee Polymersatosmethode verfügbar, de Polymere mt eer ehetlche

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung

Die Binomialverteilung als Wahrscheinlichkeitsverteilung für die Schadenversicherung De Bomalvertelg al Wahrchelchketvertelg für de Schadevercherg Für da Modell eer Schadevercherg e gegebe: = Schade ee Verchergehmer, we der Schadefall etrtt w = Wahrchelchket dafür, da der Schadefall etrtt

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS

BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Name: Vorame: Matrkel-Nr.: BERGISCHE UNIVERSITÄT WUPPERTAL FB B: SCHUMPETER SCHOOL OF BUSINESS AND ECONOMICS Itegrerter Studegag Wrtshaftswsseshaft Klausuraufgabe zur Hauptprüfug Prüfugsgebet: BWW 2.8

Mehr

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen?

(i) Wie kann man für eine Police mit Einmalbeitrag E = 20000 eine kongruente Deckung des Gewinnversprechens darstellen? Aufgabe 1 (60 Pukte) De Gesellschaft XYZ betet als prvate Reteverscherug ee Idepolce gege Emalbetrag a mt eer Aufschubfrst vo zwe Jahre. Ivestert wrd e so geates IdeZertfkat, das be Retebeg das folgede

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit

Gliederung: A. Vermögensverwaltung I. Gegenstand II. Ablauf III. Kosten. Jan Lenkeit Glederug: A. Vermögesverwaltug I. Gegestad II. Ablauf III. Koste B. Grudzüge der Kaptalmarkttheore I. Portefeulletheore 1. Darstellug. Krtk II. Captal Asset Prcg Model (CAPM) 1. Darstellug. Krtk III. Arbtrage

Mehr

Workshops zum TI-83 PLUS

Workshops zum TI-83 PLUS Workshops zum TI-83 PLUS Beträge vo T 3 Flader / Belge E Uterrchtsbehelf zum Esatz moderer Techologe m Mathematkuterrcht T 3 Österrech / ACDCA am PI-Nederösterrech, Hollabru Vorwort Alässlch userer gemesame

Mehr

Teil IV Musterklausuren (Univ. Essen) mit Lösungen

Teil IV Musterklausuren (Univ. Essen) mit Lösungen Tel IV Musterklausure (Uv. Esse) mt Lösuge Hauptklausur WS 9/9 Aufgabe : a) Revolverheld R stzt m Saloo ud pokert. De Wahrschelchket, daß er dabe ee seer Mtspeler bem Falschspel erwscht (Eregs F), bezffert

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Innovative Information Retrieval Verfahren

Innovative Information Retrieval Verfahren Thomas Madl Iovatve Iformato Retreval Verfahre Hauptsemar Wtersemester 004/005 Überblc Formales Vortrag Ausarbetug Scheerwerb Termplaug Kurzvorstellug Theme Themevergabe Wederholug Grudlage Gewchtug ud

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Einführung in Statistik

Einführung in Statistik Eführug Statstk 4. Semester Begletedes Skrptum zur Vorlesug m Fachhochschul-Studegag Iformatostechologe ud Telekommukato vo Güther Kargl FH Campus We 2009 Ihaltsverzechs Eführug Statstk Eletug. Deskrptve

Mehr

5. Photophysikalische Untersuchungen mit der Optischen Spektroskopie

5. Photophysikalische Untersuchungen mit der Optischen Spektroskopie 132 5. Photophysalsche Utersuchuge mt der Optsche Spetrosope 5.1 Allgemees 1959 st vo Pars ud Bradt erstmalg über de Lchtemsso des [Rubpy) 3 ] 2+ berchtet [59] worde, setdem st ee gewaltge Azahl vo Bpyrdylomplexe

Mehr

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien

REGRESSION. Marcus Hudec Christian Neumann. Eine anwendungsorientierte Einführung. Unterstützt von Institut für Statistik der Universität Wien REGRESSION Ee awedugsoreterte Eführug Marcus Hudec Chrsta Neuma Uterstützt vo Isttut für Statstk der Uverstät We Eletug De Regresso st e velfältg esetzbares Werkzeug zur Beschrebug ees fuktoale Zusammehags

Mehr

Inhaltsverzeichnis. 1 Allgemeine Messtechnik

Inhaltsverzeichnis. 1 Allgemeine Messtechnik Ihaltsverzechs I Allgemee Messtechk. Grudsätzlches. Grudbegrffe des Messes.. Iteratoales Ehetesystem (SI), Begrffe des Normes, Eche, Justere, Kalbrere.. Das Meßgerät als System, der Begrff der Übertragug.3

Mehr

Katalog MOVIDRIVE MDX60B / 61B. Ausgabe 06/2005 DA360000 11324007 / DE

Katalog MOVIDRIVE MDX60B / 61B. Ausgabe 06/2005 DA360000 11324007 / DE Getrebemotore \ Idustregetrebe \ Atrebselektrok \ Atrebsautomatserug \ Servces MOVIDRIVE MDX60B / 61B DA360000 Ausgabe 06/2005 11324007 / DE Katalog SEW-EURODRIVE Drvg the world 1 Systembeschrebug... 4

Mehr

D. Plappert Die Strukturgleichheit verschiedener physikalischer Gebiete gezeigt am Beispiel Hydraulik-Elektrizitätslehre

D. Plappert Die Strukturgleichheit verschiedener physikalischer Gebiete gezeigt am Beispiel Hydraulik-Elektrizitätslehre D. Plappert De Strukturglechhet verschedeer physkalscher Gebete gezegt am Bespel Hydraulk-Elektrztätslehre Erschee Kozepte ees zetgemäße Physkuterrchts, Heft 3, Schroedel Verlag 979. Eletug De megeartge

Mehr

Stoffwerte von Flüssigkeiten. Oberflächenspannung (PHYWE)

Stoffwerte von Flüssigkeiten. Oberflächenspannung (PHYWE) Stoffwerte vo Flüssgkete Oberflächespaug (PHYWE) Zel des Versuches st, de Platzbedarf ees Ethaol-Moleküls der Grezfläche zwsche Dapfphase ud Lösug aus der Kozetratosabhäggket der Oberflächespaug be wässrge

Mehr

Investition und Finanzierung Skript III

Investition und Finanzierung Skript III Ivestto ud Fazerug Skrpt III zuletzt geädert am: 05.05.03 Ivestto ud Fazerug Skrpt III Quelle: Vorlesug Ivestto ud Fazerug 6. Semester, FH Erfurt, Prof. Dr. Waldhelm Copyrght 2003 BSTM Sete Alle Agabe

Mehr

Grundzüge der Preistheorie

Grundzüge der Preistheorie - - Grudzüge der Prestheore Elemetare Gedake der uterehmersche Prespoltk Verso 3. Harr Zgel 999-3, EMal: HZgel@aol.com, Iteret: http://www.zgel.de Nur für Zwecke der Aus- ud Fortbldug Ihaltsüberscht. Grudgedake.....

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quattatve BWL. el: Fazwtschaft Mag. oáš Sedlačk Lehstuhl fü Fazdestlestuge Uvestät We Quattatve BWL: Fazwtschaft Ogasatosches Isgesat wd es 6 ee gebe (5 Ehete + Klausu Klausu fdet a D 7. Jaua 009 statt

Mehr

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf

Das Verfahren von Godunov. Seminar Numerik 25.11.2010 Anja Bettendorf Das Verfahre vo Goduov Semar Numerk 5..00 Aja Beedorf Das Verfahre vo Goduov Übersch Goduov - Goduovs Verfahre für Leare Syseme Aweduge & Folgeruge aus Goduovs Verfahre - De Numersche Fluss-Fuko m Goduov

Mehr

Eine einfache Formel für den Flächeninhalt von Polygonen

Eine einfache Formel für den Flächeninhalt von Polygonen Ee efache Formel für de Flächehalt vo Polygoe Peter Beder Set ege Jahre hat der Mathematkddaktk de sogeate emprsche Uterrchtsforschug mt quattatve ud qualtatve Methode Kojuktur, währed stoffddaktsche Arbete

Mehr

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee

Mehr

Bestimmen einer stetigen Ausgleichsfunktion f(x), die eine gegebene Menge von n Datenpunkten (x k

Bestimmen einer stetigen Ausgleichsfunktion f(x), die eine gegebene Menge von n Datenpunkten (x k Hochschule für Tech ud Archtetur Ber Iformat ud agewadte Mathemat 3- Ausglechs- ud Iterpolatosrechug 3 Ausglechs- ud Iterpolatosrechug De Aufgabe der Ausglechsrechug st mt Hlfe eer stetge Futo f()ee bestmmte

Mehr

Beitrag zur Berechnung der Stromverdrängung in Niederspannungsasynchronmaschinen mit Kurzschlussläufern mittlerer bis großer Leistung

Beitrag zur Berechnung der Stromverdrängung in Niederspannungsasynchronmaschinen mit Kurzschlussläufern mittlerer bis großer Leistung Betrag zur Berechug der Stromverdrägug Nederspaugsasychromasche mt Kurzschussäufer mtterer bs großer Lestug Vo der Fautät für Maschebau, Verfahres- ud Eergetech der Techsche Uverstät Bergaademe Freberg

Mehr

III. Die persönliche Einkommensteuer

III. Die persönliche Einkommensteuer Kp. -d Verso vom 3.0.05 III. De persölche Ekommesteuer Steuer küpfe ber cht ur - we de Verbruch- oder Verkehrsteuer - der Verwedug des Ekommes, soder uch desse Etstehug. De Steuerzhlug bemsst sch d cht

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 3.08 Harry Zgel 99-009, EMal: fo@zgel.de, Iteret:

Mehr

Sozialwissenschaftliche Methoden und Statistik I

Sozialwissenschaftliche Methoden und Statistik I Sozalwsseschaftlche Methode ud Statstk I Uverstät Dusburg Esse Stadort Dusburg Itegrerter Dplomstudegag Sozalwsseschafte Skrpt zum SMS I Tutorum Vo Mark Lutter Stad: Aprl 004 Tel I Deskrptve Statstk Mark

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

8. Mehrdimensionale Funktionen

8. Mehrdimensionale Funktionen Prof. Dr. Wolfgag Koe Mathematk, SS05.05.05 8. Mehrdmesoale Fuktoe Wer Greze überschretet, versucht, ee eue Dmeso vorzustoße. [Dael Mühlema, (*959), Übersetzer ud Aphorstker] Ege Leute sollte cht dü werde,

Mehr

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden

Oesterreichische Kontrollbank AG. Pensionskassen. Performanceberechnung Asset Allocation. Berechnungsmethoden Oeserrechsche Korollbak AG esoskasse erformaceberechug Asse Allocao Berechugsmehode Jul 200 Ihal erformaceberechug der OeKB...3 2 erformace...3 2. Defo der erformace...3 2.2 Berechugsmehode...4 2.3 Formel...4

Mehr

Ralf Korn. Elementare Finanzmathematik

Ralf Korn. Elementare Finanzmathematik Ralf Kor Elemetare Fazmathematk Ihaltsverzechs. Eletug Exkurs : Akte Begrffe, Grudlage ud Geschchte. We modellert ma Aktekurse? 4. Edlche E-Perode-Modelle 6. Edlche Mehr-Perode-Modelle 3.3 Das Black-Scholes-Modell

Mehr

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung

Zum Problem unterjähriger Zinsen und Zahlungen in der Zinseszinsrechnung Zu Proble urjährger Zse ud Zahluge der Zsessrechug Gewöhlch geht a der Zsessrechug davo aus, dass de Zse ach ee Jahr de Kapl ugeschlage werde ud da weder Zse trage. Der Zssat, t de das Kapl ultplert wrd,

Mehr

Praxis der Antriebstechnik Gebersysteme von SEW-EURODRIVE

Praxis der Antriebstechnik Gebersysteme von SEW-EURODRIVE Atrebstechk \ Atrebsautomatserug \ Systemtegrato \ Servces raxs der Atrebstechk Gebersysteme vo SEW-EURODRIVE Ausgabe 11/2009 16742001 / DE SEW-EURODRIVE Drvg the world Ihaltsverzechs Ihaltsverzechs 1

Mehr

FInAL. Übungen mit Lösungen zur Mathematik für Wirtschaftsinformatik. Ulrich Hoffmann

FInAL. Übungen mit Lösungen zur Mathematik für Wirtschaftsinformatik. Ulrich Hoffmann Jhrgg, Het, Otober, ISSN 99-88 IAL Übuge t Lösuge zur Mthet ür Wrtschtsort Ulrch Ho Techcl Reports d Worg Ppers Leuph Uverstät Lüeburg Hrsg der Schrtrehe INAL: Ulrch Ho Schrhorststrße, D-5 Lüeburg Übuge

Mehr

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004

Statistik für Ingenieure (IAM) Version 3.0/21.07.2004 Stattk fü Igeeue (IAM) Veo 74 Vaazaalye Mt de efache Vaazaalye (ANOVA Aaly of Vaace) wd de Hypothee gepüft, ob de Mttelwete zwee ode mehee Stchpobe detch d, de au omaletelte Gudgeamthete gezoge wede, de

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Analyse und praktische Umsetzung unterschiedlicher Methoden des Randomized Branch Sampling

Analyse und praktische Umsetzung unterschiedlicher Methoden des Randomized Branch Sampling Aalse ud praktsche Umsetzug uterschedlcher Methode des Radomzed Brach Samplg Dssertato zur Erlagug des Doktorgrades der Fakultät für Forstwsseschafte ud Waldökologe der GeorgAugustUverstät Göttge vorgelegt

Mehr

Deskriptive Statistik und moderne Datenanalyse

Deskriptive Statistik und moderne Datenanalyse homas Cleff Destve tatst ud modee Dateaalse Ee comutegestützte Efühug mt Ecel ud AA 0XX /. Auflage Fomelsammlug Cleff Destve tatst ud modee Dateaalse Gable Velag Wesbade 0XX GableL Zusatzfomatoe zu Mede

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Institut für Physik Universität Augsburg Praktikum für Fortgeschrittene (FP) Versuchsanleitung (Version: 01/2015) RAMANEFFEKT

Institut für Physik Universität Augsburg Praktikum für Fortgeschrittene (FP) Versuchsanleitung (Version: 01/2015) RAMANEFFEKT FP-Versuch Ramaeffekt Isttut für Physk Uerstät Augsburg Praktkum für Fortgeschrttee (FP) Versuchsaletug (Verso: /5) RAMANFFKT I. letug II. Theore des Ramaeffekts III. Grudlage der Gruppetheore IV. Versuchsaufbau

Mehr

BANK ONLINE Zentraler Bankdaten-Transfer

BANK ONLINE Zentraler Bankdaten-Transfer BANK ONLINE Zetraler Bakdate-Trasfer Ihaltsverzechs 1 Lestugsbeschrebug... 3 2 Itegrato das Ageda-System... 4 3 Hghlghts... 5 3.1 Efachste Aktverug... 5 3.2 Abruf vo Kotoauszüge... 6 3.3 Bakeübergrefede

Mehr

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler

Kommentierte Formelsammlung der deskriptiven und induktiven Statistik für Wirtschaftswissenschaftler Kommeterte Formelsammlug der deskrptve ud duktve Statstk für Wrtschaftswsseschaftler Prof. Dr. Iree Rößler Prof. Dr. Albrecht Ugerer Wetere Bespele ud ausführlche Erläuteruge sowe detallerte Lösuge der

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 0.00 Harry Zgel 99-006, EMal: HZgel@aol.com, Iteret:

Mehr

Prof. Dr. Dietmar Pfeifer Institut für Mathematik. Risikotheorie

Prof. Dr. Dietmar Pfeifer Institut für Mathematik. Risikotheorie Prof. Dr. Detmar Pfefer Isttut für Mathemat Rsotheore Stad: 5. Aprl 5 Ihalt Vorbemerug... 3 I Persoeverscherugsmathemat... 6 I.. Bewertug vo Fazströme... 6 I.. Lebesdauerverteluge ud Sterbetafel... I.

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche ozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso 8.9 Harry Zgel 99-4, EMal: HZgel@aol.com, Iteret:

Mehr

Agrarwirtschaft 57 (2008), Heft 2

Agrarwirtschaft 57 (2008), Heft 2 Agrarwrtschaft 57 (008), Heft Im Dschugel der Importzölle De Bedeutug der verwedete Methodk be der Aggregato vo Importzölle I the jugle of mport tarffs The mportace of the mplemeted measure to aggregate

Mehr

Nagl, Einführung in die Statistik Seite 1

Nagl, Einführung in die Statistik Seite 1 Nagl, Eführug de Statstk Sete Eletug Damt der Wert des Faches Statstk für wsseschaftlche Utersuchuge besser gesehe werde ka, wrd zuerst e kurzer Abrß über de Ablauf eer wsseschaftlche Utersuchug voragestellt.

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Klausur Betriebswirtschaftslehre PM/B

Klausur Betriebswirtschaftslehre PM/B Isttut für Fazwrtschaft, Bake ud Verscheruge, Karlsruher Isttut für Techologe Klausur Betrebswrtschaftslehre PM/B Achtug: Ihalte der Vorlesug köe Zukuft ggf. cht mehr kosstet mt de Ihalte deser Klausur

Mehr

Methoden zur Bewertung von Credit Default Swaps

Methoden zur Bewertung von Credit Default Swaps Methoen zur Bewertung von Cret Default Swas Dr. Walter Gruber ( PLUS GmbH); Sylva Lause (Sarasse Hannover) Inhalt Enführung... Moell er Dscounte Sreas... 3 Moell er Ajuste Sreas... 4 Moell von JPMorgan...

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß

1 k. 2.5 Logistischer Trend, Sättigungsmodelle Nichtlineare Regressionsanalyse, Bestimmtheitsmaß als Prüfmaß Thema Zetrehe Statstk - Neff INHALT. Zetreheaalyse, Tred Leare Regressosaalyse mt eem Eflussfaktor X = "Zet" De tredberegte Sasoschwakuge e = s = y ŷ De mttlere Sasoschwakuge s j k k = = s De rreguläre

Mehr

Formelsammlung der Betriebswirtschaft

Formelsammlung der Betriebswirtschaft - - Formelsammlug der Betrebswrtschaft Ee Überscht über de wchtgste mathematsche Kozepte ud Recheverfahre Rechugswese, Cotrollg ud Betrebswrtschaft Verso.06 Harry Zgel 99-007, EMal: HZgel@aol.com, Iteret:

Mehr

Datenblatt. Geber- und Geberkabelvergleich MOVIDRIVE MDX 61B DT..- / DV..-Motoren zu DR..-Motoren

Datenblatt. Geber- und Geberkabelvergleich MOVIDRIVE MDX 61B DT..- / DV..-Motoren zu DR..-Motoren Atrebstechk \ Atrebsautomatserug \ Systemtegrato \ Servces Dateblatt Geber- ud Geberkabelverglech MOVIDRIVE MDX B DT..- / DV..-Motore zu -Motore Ausgabe 02/200 0040 / DE SEW-EURODRIVE Drvg the world Geberverglech

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 145

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 145 Mahemer Mauskrpte zu Rskotheore, Portfolo Maagemet ud Verscherugswrtschaft Nr. 45 Methode der rskobaserte Kaptalallokato m Verscherugs- ud Fazwese vo Peter Albrecht ud Sve Korycorz Mahem 03/2003 Methode

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr