Fliesskommazahlen sind rationale Zahlen. Halblogarithmische Darstellung auf 2er-Basis: 1) s m 2 e

Größe: px
Ab Seite anzeigen:

Download "Fliesskommazahlen sind rationale Zahlen. Halblogarithmische Darstellung auf 2er-Basis: 1) s m 2 e"

Transkript

1 Inaltsverzeicnis 1 Grundlagen 1.1 Zalendarstellungen Grundlegende Untersceidungen: Ganzzalen (Integer, int, etc.) Fliesskommazalen (float, double, REAL) Spezielle Typen: Komplex,... Jede Zal wird in einer bestimmten Anzal von bits gespeicert (Typisc: 16, 3, 64, 18 bit). Anzal Bits und Darstellung entsceiden über den Zalenvorrat eines Typs. Insbesondere: Dynamik: Verältnis von (betragsmässig) grösster zu kleinster Zal. Auflösung: Di erenz zwiscen benacbarten Zalen. Fliesskommazalen sind rationale Zalen. Halblogaritmisce Darstellung auf er-basis: z =( 1) s m e Typisc: double (FORTRAN: REAL*8), in 64 bit dargestellt nac IEEE-Standard (s. ttp://en.wikipedia.org/wiki/ieee754): 1 bit Vorzeicen (s), 5 bit Mantisse (m), 11 bit Exponent (e). Dynamik: 11 bit Exponent mit Vorzeicen e = = ) Dynamik des Exponenten relative Auflösung der Mantisse:

2 Matlab: Default -Typ ist double (bzw. komplex mit double -Darstellung für Real- u. Imaginärteil) Ganzzalen müssen explizit generiert werden, z.b. int3(). Ganzzalaritmetik rundet auf oder ab (untypisc)! Vgl. Sprace C etc.: Nur Abrundung (Abscneiden). 1. Diskretisierung Diskretisierung von Funktionen Funktion, z.b. f(x) wird durc endlice Menge von Zalen, z.b. f i (Zälindex i), dargestellt. f(x) ) f i,i=1,, 3,... Beispiel: f i ist Wert von f(x) an bestimmter Stelle x i f i ist Mittelwert von f(x) in einem bestimmten Intervall x I i f i ist ein bestimmter Fourerkoe f i ist sonstiger Entwicklungskoe Polynome etc.) zient von f(x) zient in einem anderen Funktionensystem (z.b. Entsprecend: Diskretisierung von Operatoren Operator, z.b. L[f] ) Recenvorscrift, z.b. L d [f i ] Index d: DiskreterOperatorängt von der Art der Diskretisierung von f ab. L d [f i ] ist i.a. eine Näerung für L(f) Bei gleicer Diskretisierung von f ist die Diskretisierung von L i.a. nict eindeutig. 4

3 1.3 Di erentiation Einfacstes Beispiel: Funktion f(x) in einer unabängigen Variablen x, di erenzierbar. Gesuct: Diskrete Form der Ableitung f 0 (x) =:D[f] (D: Di erential-operator ) als Recenvorscrift für diskrete Funktionswerte f i. Aus Definition der Ableitung (rectsseitig) df dx (x) =f 0 f(x + ) f(x) (x) :=lim!0 Approximation für die Ableitung f 0 an der Stelle x mit endlicem : Dies ist die Vorwärts-Di erenz. f 0 (x) f(x + ) f(x) Konvergenztest Beispiel Vorwärts-Di erenz: bekanntes f(x), f 0 (x) für kleiner werdendes ( Li- wäle Stelle x, Stützstellenabstand >0 berecne diskreten Operator D [f] := f(x+) mes ) f(x) berecne Diskretisierungsfeler E := f 0 (x) D [f] Ergebnis für alle (di baren) f(x) und x: 1. Vorwärts-Di erenz ist konvergent: lim!0 D [f] konvergiert bis zum Rundungs/Darstellungs/Abscneidefeler. Vorwärts-Di erenz ist konsistent: D [f] konvergiert gegen den rictigen Wert f 0 (x) 3. Konvergenz ist 1. Ordnung in : E get mindestens wie gegen null 5

4 Alternative: Linksseitige (Rückwärts-)Di erenz: f 0 (x) ) Rückwärts-Di erenz ebenfalls konsistent konvergiert ebenfalls mit 1. Ordnung in f(x) f(x ) Weitere Alternative: Zentrale Di erenz: f 0 (x) f(x + ) f(x ) ) Konvergiert mit. Ordnung in Diskretisierungsfeler E / im Limes! 0 Bestimmung der Konvergenz-Ordnung aus Taylor-Entwicklung: f(x + ) = f(x)+f 0 (x)+ f 00 (x) + 3 f 000 (x) + O( 4 ) 6 f(x ) = f(x) f 0 (x)+ f 00 (x) 3 f 000 (x) + O( 4 ) 6 Daraus: f(x + ) f(x) f(x) f(x ) aber: f(x + ) f(x ) = f 0 (x)+ f 00 (x) = f 0 f 00 (x) (x) = f 0 (x)+ f 000 (x) 6 + f 000 (x) 6 + f 000 (x) 6 + O( 3 )=f 0 (x)+o() + O( 3 )=f 0 (x)+o() + O( 3 )=f 0 (x)+o( ) 1.3. Stencil -Notation ( Scablone ), deutscer Term: Stempel oder Stern. Oder Stencil. 6

5 0 Finite Differenzen Konvergenz 5 log Feler log Abbildung 1: Konvergenz von Vorwärts- (rot), Rückwärts- (grün) und zentraler (blau) Di erenz aus Test an Beispielfunktion. Stencil bezüglic Stützstellenabstand : := := := f(x + ) f(x) = Standard Vorwärts-Di erenz f(x) f(x ) = Standard Rückwärts-Di erenz f(x + ) f(x ) = Standard zentrale-di erenz Bem: = Elimination des Felerterms / Zentrale Di erenz mit breitem Stencil, ersetze! : 1 f(x +) f(x ) = 4 4 = f 0 (x)+ 4 f 000 (x) +O( 3 )=f 0 (x)+o( ) 6 7

6 Elimination des -Felerterms: =3 f 0 (x)+o( 3 ) 4 Damit: f 0 (x) = O( 3 ) Höere Ableitungen Analoges Vorgeen. Beispiel:. Ableitung. Starte wieder mit Taylor: f(x + ) = f(x)+f 0 (x)+ f 00 (x) + 3 f 000 (x) + O( 4 ) 6 f(x ) = f(x) f 0 (x)+ f 00 (x) 3 f 000 (x) + O( 4 ) 6 Daraus Standard.-Ableitung mit 3-Punkt Stencil f 00 (x) = f(x + )+f(x ) f(x) + O( )= O( ) Spektralveralten eines diskreten Operators Biser: Feste Testfunktion f(x), varriert ) Konvergenz Jetzt: Betracte versciedene Funktionen, speziell Fourier-Moden f(x) =e ikx f 0 (x) =ike ikx Beacte: Operator ist linear, damit entält Wirkung auf Fourier-Moden praktisc komplette Information! Bestimme f 0 aus zentraler Di erenz: 8

7 f(x + ) f(x ) = eik(x+) eik(x ) = eikx = f 0 (x) {z } exakterw ert e ik e ik = ieikx sin(k) sin(k) k Spektraler Diskretisierungsfeler: sin(k) k 1 Amplitudenfaktor der zentralen Di erenz: x sin(x)/x 1+O(k),Diskretisie- langwellige (niederfrequente) Moden k 1: sin(k) k rungsfeler. Ordnung Zentrale Di. wirdnullbeik = bzw. Wellenlänge := k falsces Vorzeicen! =. Danac Betrag der zentralen Di. von e ikx ist immer apple 1 Spektrum der zentralen Di. ist rein reell,kein Pasenfeler. 9

8 1.4 Nullstellen und Minima (Extrema) Eindimensionale Algoritmen Nullstellen von f(x) im Intervall [a, b] mit f(a)f(b) < 0 finden: Iterationsverfaren x i! x i+1,sucef(x? )=0 Bisektion (Intervallscactelung): Funktioniert immer, Intervallgröße reduziert sic mit jeder Iteration um Faktor 1/. Nur Vorzeicen, nict Wert von f(x) bei a, b, a+b verwendet. Sekantenmetode und Regula Falsi: I.A. scneller als Bisektion, da mer Information über Funktionsverlauf ausgenutzt wird. f(x) 3 4 x f(x) x 1 10

9 Skizzen zur Sekantenmateode (oben) bzw Regula Falsi (unten) Newton-Rapson: x i+1 = x i f(x i ) f 0 (x i ) Nae einer Nullstelle deutlic scneller als obige, aber funktionert nict immer. Ableitung f 0 (x) muss bekannt sein. Häufig angewandt in seiner Verallgemeinerung auf merdimensionale Probleme. f(x) 1 3 x Komination, Verbesserungen von obigen,... Minima (äquivalent: Maxima) von f(x) finden: Intervallverfaren zum Einkreisen eines Minimums: 3 Stellen (a, b, c) notwendig, Zusammenzieen des Intervalls, Goldene Regel. Verbesserung: Nutze Information aus f 0 (x) 1.4. Nullstellen und Minimierung im Merdimensionalen Nullstellensuce für f(x 1,x,x 3,...) scwierig. Aber: Minimierung (relativ) einfac. f(x? 1,x?,x? 3,...)=0) f at Minimum bei (x? 1,x?,x? 3,...) also: Suce Minimum von f als Kanditat für Nullstelle von f 11

10 Metoden: Gradientenverfaren: Füre sukzessive eindimensionale Minimierungen entlang von Sucrictungen durc Steilster Abstieg : Gee in Rictung des Gradienten bis zum Minimum. Dann neue Bestimmung des Gradienten. Beispiele für guten und weniger guten Abstieg. 1

11 In der Regel nict zu empfelen! Verbesserung: Konjugierte Gradienten. Neue Sucrictung nict unbedingt senkrect zur vorerigen. Scnelle Konvergenz bei quadratiscen Formen. Verbreitete Anwendung in der linearen Algebra zum Lösen von lin. Gleicungssystemen. Anderer Zugang: Simplex-Downill-Verfaren Simplex-Algoritmus zum Finden von Extrema im Merdimensionalen Simplex-Verfaren: Funtion f(x 1,x,...,x N ) gegeben. Finde (ein) Minimum! Idee: Verallgemeinerung der Intervallscactelung, aber Intervall ersetzt durc Simplex = N +1-Eck (z.b. N =:Dreieck) Simplex versuct, sic am Minimum auf Punkt zusammenzuzieen Simplex wandert um Minimum aufzuspüren Vier möglice Simplex-Operationen: Spiegelung, Spiegelung mit Expansion, Kontraktion in einer Rictung, Kontraktion in N Rictungen. 13

12 Algoritmus: (Nelder & Mead, 1965) 1. Starte mit beliebigen Simplex-Eckpositionen r 1... r N+1 und berecne Funtionswerte f 1,...f N+1. Suce den maximalen (= sclectesten ), zweitgrößten, kleinsten (= besten ) Wert und die entsprecenden Ecken 3. Spiegele den sclectesten Wert, wenn dadurc Verbesserung wenn Spiegelung erfolgreic und ausserdem neuer Wert kleiner als vormals kleinster, füre zusätzlice Expansion um Faktor aus ( ser gute Rictung) 4. Wenn bei 3. keine Spiegelung erfolgte: versuce Kontraktion in dieser Rictung um Faktor 1/ (Simplex wird kürzer in dieser sclecten Rictung) 14

13 Wenn durc diesen Kontraktionsversuc der Wert nict kleiner wird, kontraiere statt dessen in allen anderen Rictungen um Faktor 1/ (Simplex ziet sic in die Länge) 5. Wiederole Iteration, bis alle Funktionswerte bis auf vorgegebene Genauigkeit gleic sind (oder: Eckpunkte zusammengezogen sind). Beispiel: simplex.m 15

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1

r 11 r 12 r 13 0 r 22 r r 33 l ik r kj die Gleichungen: k= (II) 2 (I) = 3 2 1 Tecnisce Universität Berlin Wintersemester 004/005 Fakultät II; Institut für Matematik Prof. Dr. G. Bärwolff/C. Mense.0.005 Probeklausur zur LV Numerik für Informatiker en Aufgabe a Berecnen Sie die LU-Zerlegung

Mehr

Numerische Differenziation

Numerische Differenziation In vielen Anwendungen ist es notwendig, Funktionen näerungsweise mit Hilfe eines numeriscen Verfarens zu differenzieren: Die analytisce Berecnung der Ableitung ist zum Beispiel unmöglic, wenn die zu differenzierende

Mehr

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x

Mathematik GK 11 m3, AB 06 Klausurvorbereitung Differentialq. Lsg x 3 9x 4 2x 2 x 4. 4x 3 9x 4 : 2x 2 x 4 =2x 1 x 3 2x 2 8x Aufgabe : Berecne a) 4x 5x 5x 4x b) 4x 9x 4 x x 4 4x 5x 5x : 4x x x 4x x 4x 5x 4x x 4x 4x 4x 9x 4 : x x 4 x x x 8x x x 4 x x 4 c) 4x 4 x 8x 4x 4 x 4x 4 x 4 x 4x x : x x x x 4 4x 4x x x x x Aufgabe : Bestimme

Mehr

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient

Differentialrechnung. Kapitel 7. Differenzenquotient. Graphische Interpretation des Differentialquotienten. Differentialquotient Differenzenquotient Sei f : R R eine Funktion. Der Quotient Kapitel 7 Differentialrecnung f f 0 + f 0 f f 0 0 eißt Differenzenquotient an der Stelle 0. f, f Sekante 0, f 0 f 0 Josef Leydold Matematik für

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Tecnisce Universität Müncen SoSe 2013 Institut für Informatik Prof. Dr. Tomas Huckle Dipl.-Inf. Cristop Riesinger Dipl.-Mat. Jürgen Bräckle Numerisces Programmieren, Übungen 2. Übungsblatt: Kondition,

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Mittwoc: Ableiten, Kurvendiskussionen, Optimieren, Folgen und Reien Betracte auf einem Hügel einen Weg, dessen Seitenansict

Mehr

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren

( ), und legen deshalb eine Ebene fest. Als Aufpunkt dient ein beliebiger Punkt von g oder h, als Spannvektoren Lösungen zur analytiscen Geometrie, Buc S. 9f. a) E in die Parameterform umwandeln: x = x + x + Wäle: x = ; x = x = + E : X = x x x = + + = + In F einsetzen: + + = + = = In E einsetzen: s: X = + + ( )

Mehr

Mathematik für Chemiker I

Mathematik für Chemiker I Universität D U I S B U R G E S S E N Campus Essen, Matematik PD Dr. L. Strüngmann WS 007/08 Übungsmaterial sowie andere Informationen zur Veranstaltung unter: ttp://www.uni-due.de/algebra-logic/struengmann.stml

Mehr

AN2 - Praktikumsaufgaben 3

AN2 - Praktikumsaufgaben 3 AN - Pratiumsaufgaben 3 Andreas Kron Jan Pilipp Scucer 1 Juni 7 1 Aufgabe 1: Ermittlung von nac Arcimedes Ein lassisces Beispiel für eine iterative Approximation an die exate Lösung ist ide Bestimmung

Mehr

Vorlesung für Schüler

Vorlesung für Schüler Universität Siegen Facbereic Matematik Vorlesung für Scüler 1.12.2 Emmy-Noeter-Campus Prof. Dr. H. J. Reinardt Computerlösungen dynamiscer Probleme Zusammenfassung Es werden zunäcst einface dynamisce Probleme

Mehr

Institut für Angewandte und Numerische Mathematik Prof. Dr. Christian Wieners, Dipl.-Math. techn. Daniel Maurer

Institut für Angewandte und Numerische Mathematik Prof. Dr. Christian Wieners, Dipl.-Math. techn. Daniel Maurer Institut für Angewandte und Numerisce Matematik Prof. Dr. Cristian Wieners, Dipl.-Mat. tecn. Daniel Maurer Numerisce Matematik für die Facrictungen Informatik und Ingenieurwesen Lösungen zur Klausurvorbereitung

Mehr

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum

Anwendungen der Potenzreihenentwicklung: Approximation, Grenzwerte; Wachstum Anwendungen der Potenzreienentwicklung: Approximation, Grenzwerte; Wacstum Lokale Näerung einer Funktion durc ganzrationale Funktionen Ganzrationale Funktionen aben viele angeneme Eigenscaften. Man weiß

Mehr

Vorkurs Mathematik Herbst Skript Teil VI

Vorkurs Mathematik Herbst Skript Teil VI Vorkurs Matematik Herbst 2009 M. Carl E. Bönecke Skript Teil VI. Stetigkeit Definition. Eine Funktion f : R R eißt stetig im Punkt p, wenn für alle konvergente Folgen x : N R, n x n mit gleicen Grenzwert

Mehr

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a:

Geometrisch ergibt sich deren Graph als Schnitt von G mit der senkrechten Ebene y = b bzw. x = a: Fläcen im Raum Grap und Scnittkurven Im ganzen Artikel bezeicnet D eine Teilmenge des R 2 und eine skalarwertige Funktion in zwei Veränderlicen. Der Grap f : D R 2 R : (x, y) z = f(x, y) G = { (x, y, z)

Mehr

Mathematik GK m3, 2. KA gebr. rat. Funktionen / Steigungen Lösung

Mathematik GK m3, 2. KA gebr. rat. Funktionen / Steigungen Lösung Aufgabe 1: Gebrocen rationale Funktion Gegeben ist die folgende gebrocen rationale Funktionen f (x)= 0.5x4 +2 x 3 16x 2 x 3 6x 2 +12x 8 1.1 Berecne die Nullstellen der Funktion. (Kontrolllösung: x 1 =0

Mehr

Geometrische Mehrgitterverfahren. Annabell Schlüter

Geometrische Mehrgitterverfahren. Annabell Schlüter Geometrisce Mergitterverfaren Annabell Sclüter 13.07.2010 Inaltsverzeicnis 1 Einleitung 2 2 Das Mergitterverfaren für lineare Probleme 3 2.1 Dämpfungseigenscaften des Jacobiverfarens............ 3 2.2

Mehr

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz

Mathematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Matematik 1 für Studierende der Biologie Teil II: Limes & Konvergenz Cristian Leibold 7. Oktober 2014 Folgen Allgemeines zu Folgen Monotonie und Bescränkteit Grenzwerte und Konvergenz Summen und Reien

Mehr

Numerik I. Gewöhnliche Differentialgleichungen. Prof.Dr.G.Wittum. Teil I:

Numerik I. Gewöhnliche Differentialgleichungen. Prof.Dr.G.Wittum. Teil I: Numerik I Prof.Dr.G.Wittum Teil I: Gewönlice Differentialgleicungen Sommersemester 2005 INHALTSVERZEICHNIS 1 Inaltsverzeicnis 1 Numerik gewönlicer Differentialgleicungen 2 1.1 Einleitung....................................

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

2 Ein Beispiel und der Haken an der Sache

2 Ein Beispiel und der Haken an der Sache Numerik I. Version: 9.02.08 2 Ein Beispiel und der Haken an der Sace In lineare Algebra I-II wurde gezeigt, wie durc das Gaußsce Verfaren lineare Gleicungssysteme gelöst werden. Das folgende einface Beispiel

Mehr

3.2 Polarkoordinaten und exponentielle Darstellung

3.2 Polarkoordinaten und exponentielle Darstellung 42 3.2 Polarkoordinaten und exponentielle Darstellung Ein Punkt z = a + bi der Gaußscen Zalenebene ist durc seine kartesiscen Koordinaten a und b eindeutig festgelegt. Man kann jedoc auc zwei andere Grössen

Mehr

Übungsaufgaben zur Differential-Rechnung

Übungsaufgaben zur Differential-Rechnung Übungsaufgaben zur Differential-Recnung Weitere Übungsaufgaben mit Lösungen gibt es z.b. in Brauc/Dreyer/Haacke, Papula, Stingl, Stöcker, Minorski usw.. Bestimme allgemeines Folgen-Element, Eigenscaften

Mehr

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner?

Mathematik und Nanotechnologie: Warum werden Computer immer kleiner? 1 Matematik und Nanotecnologie: Warum werden Computer immer kleiner? Ansgar Jüngel Institut für Analysis und Scientific Computing www.juengel.at.vu Einleitung: vom Computer zum Halbleiterbauteil Herleitung

Mehr

15 / 16 I GK EF Übung 2 Dez.15

15 / 16 I GK EF Übung 2 Dez.15 1 / 16 I GK EF Übung Dez.1 Nr. 1: Ableitungsdefinition - Tangentenberecnung Gegeben ist die ganzrationale Funktion. Grades mit: f(x) = x - x a) Bestimmen Sie die durcscnittlice Änderungsrate (Sekantensteigung)

Mehr

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1

TU Dresden Fakultät Mathematik Institut für Numerische Mathematik 1 TU Dresden Fakultät Matematik Institut für Numerisce Matematik Lösung zur Aufgabe 4 (a) des 9. Übungsblattes größtmöglicer Definitionsbereic: Die Funktion ist überall definiert, außer an der Stelle = 3

Mehr

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5

D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. Lösung - Serie 5 D-MAVT/D-MATL Analysis I HS 08 Dr. Anreas Steiger Lösung - Serie 5 MC-Aufgaben (Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welce er folgenen Aussagen ist rictig? (a) (b) f ist stetig f ist ifferenzierbar.

Mehr

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist.

Analysis 1. Torsten Wedhorn. f(x) f( x) x x. (2) Die Funktion f heißt auf D differenzierbar, falls f in jedem Punkt x D differenzierbar ist. Analysis Torsten Wedorn 8 Differentiation (A) Differenzierbare Funktionen (B) Recenregeln für die Ableitung (C) Lokale Extrema und Mittelwertsatz (D) Ableitung und Monotonie (E) Der Satz von l Hospital

Mehr

2. ELLIPTISCHE GLEICHUNGEN 57

2. ELLIPTISCHE GLEICHUNGEN 57 2 ELLIPTISCHE GLEICHUNGEN 57 2 Finite Differenzen für elliptisce Gleicungen Im Gegensatz zu yperboliscen Gleicungen aben elliptisce Gleicungen einen Glättungseffekt, d im Allgemeinen besitzen solce Gleicungen

Mehr

Anleitung zur Berechnung von Ableitungsfunktionen

Anleitung zur Berechnung von Ableitungsfunktionen Matematik 11d 7..009 Stefan Krissel Anleitung zur Berecnung von Ableitungsfunktionen Prolog Es gibt nict das Verfaren zur Berecnung der Ableitungsfunktion, genausowenig wie es das Verfaren zum Screiben

Mehr

Musterlösung zu Übungsblatt 1

Musterlösung zu Übungsblatt 1 Prof. R. Pandaripande J. Scmitt, C. Scießl Funktionenteorie 23. September 16 HS 2016 Musterlösung zu Übungsblatt 1 Aufgabe 1. Sei F ein Körper, der R als einen Unterkörper entält. Das eisst R ist eine

Mehr

6 Numerische Integration (Quadratur)

6 Numerische Integration (Quadratur) 6 Numerisce Integrtion (Qudrtur) In diesem Kpitel get es um die pproximtive Berecnung des Wertes eines bestimmten Integrls Anwendungen sind zb die Berecnung von Oberfläcen, Volumin, Wrsceinlickeiten, ber

Mehr

Schülerbuchseite 8 11

Schülerbuchseite 8 11 Scülerbucseite 8 I Sclüsselkonzept: Ableitung Funktionen Seite 8 Die andere Person muss nict notwendig dieselbe Strecke gefaren sein, nur weil sie denselben Farpreis bezalt at. Es gibt versciedene Verbindungen,

Mehr

Funktionentheorie A. K. Hulek

Funktionentheorie A. K. Hulek Funktionenteorie A K. Hulek 1 Holomorpe Funktionen Die wictigsten Objekte dieser Vorlesung sind die olomorpen Funktionen. Es sei U C offen, f : U C eine Abbildung und z 0 U ein Punkt. Definition (i Die

Mehr

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik

Numerische Simulation von Differential-Gleichungen der Himmelsmechanik Numerisce Simulation von Differential-Gleicungen der Himmelsmecanik Teilnemer: Max Dubiel (Andreas-Oberscule) Frank Essenberger (Herder-Oberscule) Constantin Krüger (Andreas-Oberscule) Gabriel Preuß (Heinric-Hertz-Oberscule)

Mehr

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe)

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. 1. MC-Aufgaben (Online-Abgabe) D-MAVT/D-MATL Analysis I HS 07 Dr. Anreas Steiger Lösung - Serie 3. MC-Aufgaben (Online-Abgabe). Es sei ie Funktion f : [0, ) [0, ) efiniert urc f() = ln( + ), wobei er Logaritmus ln zur Basis e ist. Welce

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

Repetitorium Analysis I für Physiker

Repetitorium Analysis I für Physiker Micael Scrapp Ubungsblatt 3 Lösungen Tecnisce Universität Müncen Repetitorium Analysis I für Pysiker Analysis I Aufgabe Wir definieren zunäcst die Funktion g(t) = 2 0 f(t)t 2 dt Die Menge B = g (], 5[)ist

Mehr

1 Differentiation im Komplexen

1 Differentiation im Komplexen 1 Differentiation im Komplexen 1.1 Definition und einface Eigenscaften Die folgende Definition der komplexen Differenzierbarkeit mittels der komplexen Division ist eine folgenreice Verscärfung der Differentiation

Mehr

Übungsaufgaben zur Kursarbeit

Übungsaufgaben zur Kursarbeit Übungsaufgaben zur Kursarbeit I) Tema Funktionen. Gib jeweils die maximale Definitionsmenge der Funktion an f(x) = (x ) D f = R (x) = x D = {x R /x } g(x) = (x ) D = {x R /x } g k(x) = x D = {x R /x >

Mehr

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen.

Differenzierbarkeit. Wir betrachten zuerst die Differenzierbarkeit reellwertiger Funktionen. Differenzierbarkeit Wir betracten zuerst die Differenzierbarkeit reellwertiger Funktionen. Definition. Sei f : R n R und x 0 D(f) ein innerer Punkt. Dann eißt f differenzierbar an x 0, wenn es einen Vektor

Mehr

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 1 Newton Verfahren Taylor Approximation 1. Ordnung von Newton Verfahren! 0 Setze 0und berechne Löse lineares Gleichungssystem für : 2

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Grundlagen der Differentialrechnung

Grundlagen der Differentialrechnung Grundlagen der Differentialrecnung Wolfgang Kippels 26. Oktober 2018 Inaltsverzeicnis 1 Vorwort 2 2 Grundprinzip der Differenzialrecnung 3 3 Ableiten von Funktionen 7 3.1 Ableitungen wictiger Grundfunktionen:..................

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen

Tutorium: Analysis und lineare Algebra. Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

Numerisches Programmieren (IN0019) 9. Symmetrisches Eigenwertproblem. Eigenwert-Problem. Verallgemeinerte Fourier-Reihe

Numerisches Programmieren (IN0019) 9. Symmetrisches Eigenwertproblem. Eigenwert-Problem. Verallgemeinerte Fourier-Reihe Numerisces Programmieren (IN009) Frank R. Scmidt 9. Symmetrisces Eigenwertproblem Winter Semester 06/07 Verallgemeinerte Fourier-Reie Das Berecnen von Eigenwerten wird bei viele praktisce Anwendungen vorausgesetzt,

Mehr

Unterlagen zu endlichen Körpern. Erhard Aichinger

Unterlagen zu endlichen Körpern. Erhard Aichinger Unterlagen zu endlicen Körpern Erard Aicinger Linz, im November 2005 Alle Recte vorbealten 1 KAPITEL 1 Endlice Körper 1 Definition endlicer Körper DEFINITION 11 Ein Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

Produktregel (Ableitung von f g)

Produktregel (Ableitung von f g) Produktregel (Ableitung von f g) f f g 0 f 0 g g 0 Wir aben die Hoffnung, dass die Ableitung von f g mit Hilfe der Ableitungen von f und g ermittelt werden kann. f ( 0 ) = lim 0 f( 0 +) f( 0 ) g ( 0 )

Mehr

Das Mehrgitterverfahren

Das Mehrgitterverfahren KAPITEL 3 Das Mergitterverfaren Mergitterverfaren kombinieren ein iteratives Lösungsverfaren mit einer Hierarcie untersciedlicer Diskretisierungsgitter. Ausgeend von einer Näerungslösung auf einem feinen

Mehr

Einstiegsphase Analysis (Jg. 11)

Einstiegsphase Analysis (Jg. 11) Einstiegspase Analysis (Jg. 11) Ac Geradengleicungen: Eine Gerade g verlaufe durc P(-3/-2) und Q(4/3). Eine Gerade gee durc R(1/y) und stee senkrect auf g. Zeicne diese Geraden und stelle ire Gleicungen

Mehr

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2.

Tangentensteigung. Gegeben ist die Funktion f(x) = x 2. Tangentensteigung Gegeben ist die Funktion () =. Um die Steigung der Tangente im Punkt P( ) zu bestimmen, ermitteln wir zunäcst die Steigung der Sekante durc P( ) und Q( ). Q soll so beweglic sein, dass

Mehr

Mathematik LK 11 M2, AB 13 Funktionsuntersuchungen Lösung h h

Mathematik LK 11 M2, AB 13 Funktionsuntersuchungen Lösung h h Matematik LK 11 M2, AB 1 Funktionsuntersucungen Lösung 14.0.2016 Aufgabe 1: Gegeben ist die Funktion f (x)=x x 2 1.1 Berecne die ersten drei Ableitungsfunktionen der Funktion f mit Hilfe des Differentialquotienten,

Mehr

Nullstellenberechnung von nichtlinearen Funktionen

Nullstellenberechnung von nichtlinearen Funktionen Kapitel 3 Nullstellenberechnung von nichtlinearen Funktionen In dieser Vorlesung wird nur die Nullstellenberechnung reeller Funktionen einer reellen Variablen f : R R betrachtet. Man nennt die Nullstellen

Mehr

Übersicht. Einführung Universelles Hashing Perfektes Hashing

Übersicht. Einführung Universelles Hashing Perfektes Hashing Hasing Übersict Einfürung Universelles Hasing Perfektes Hasing 2 Das Wörterbuc-Problem Gegeben: Universum U = [0 N-1], wobei N eine natürlice Zal ist. Ziel: Verwalte Menge S U mit folgenden Operationen.

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

14 Die Integralsätze der Vektoranalysis

14 Die Integralsätze der Vektoranalysis 4 Die Integralsätze der Vektoranalysis 72 4 Die Integralsätze der Vektoranalysis Die Integralsätze stellen eine Verallgemeinerung des Hauptsatzes der Differential- und Integralrecnung dar und sind für

Mehr

7.2. Ableitungen und lineare Approximation

7.2. Ableitungen und lineare Approximation 7.. Ableitungen und lineare Approximation Eindimensionale Ableitungen und Differentialquotienten einer Funktion bekommt man bekanntlic als Limes von Differenzenquotienten f ( a) = f ( a + ) f( a ) = x

Mehr

Explizite, eingebettete und implizite RK-Verfahren

Explizite, eingebettete und implizite RK-Verfahren Kutta-Teorie: Explizite, eingebettete und implizite RK-Verfaren Lukas Klic Kutta-Teorie: : Explizite, eingebettete und implizite RK- Verfaren Lukas Klic Seite: Gliederung -Verfaren - Explizite Verfaren

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim

8. Differentiation. f(x) f(x 0 ) =: f,x0 (x) lim 8. Differentiation Sei I R ein Intervall. Eine Funktion f : I R eißt in x 0 I differenzierbar (Steno: diffbar), wenn der für x I, x x 0 erklärte Differenzenquotient f(x) f(x 0 ) =: f,x0 (x) nac x 0 stetig

Mehr

Differenzialrechnung Was du nach den Ferien kannst! Klasse 10

Differenzialrechnung Was du nach den Ferien kannst! Klasse 10 Differenzialrecnung Was du nac den Ferien kannst! Klasse 10 Zeicne die Tangenten an den Stellen x=-4, x=-1 und x=3 an den abgebildeten Funktionsgrap, und bestimme die Tangentengleicung. Zeicne die Sekanten

Mehr

Tutorium: Analysis und lineare Algebra

Tutorium: Analysis und lineare Algebra Tutorium: Analysis und lineare Algebra Regeln von de l Hospital, Reihen, Funktionen mehrerer Variablen, komplexe Zahlen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Die Regeln von de l

Mehr

Ferienkurs Theoretische Mechanik SS 2011

Ferienkurs Theoretische Mechanik SS 2011 Ferienkurs Teoretisce Mecanik SS Lösungen Freitag Aufgabe : Rotation eines Quaders um die Raumdiagonale Die Hauptacsen verlaufen durc den Scwerpunkt des Quaders parallel zu den Kanten. Die Kante der Länge

Mehr

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker

Rudolphs Schlitten. Aufgabe. Autor: Jochen Ricker Rudolps Sclitten Autor: Jocen Ricker Aufgabe Endlic ist es wieder soweit: Weinacten stet vor der Tür! Diesmal at der Weinactsmann sic ein ganz besonderes Gescenk für seine Rentiere einfallen lassen. Sie

Mehr

Linear. Halbkreis. Parabel

Linear. Halbkreis. Parabel Vom Parabolspiegel zur Ableitungsfunktion Im Folgenden get es darum erauszufinden, was ein Parabolspiegel ist und wie er funktioniert. Das fürt uns auf wictige Fragen eines Teilgebietes der Matematik,

Mehr

Andreas Platen

Andreas Platen Seminar zur Approximationsteorie im Wintersemester 2009/2010 Monge-Ampère-Gleicung Numerisce Verfaren zur Lösung der Monge-Ampère-Gleicung, Teil II Andreas Platen 29.01.2010 1 Inaltsverzeicnis Inaltsverzeicnis

Mehr

Differenzial- und Integralrechnung IV

Differenzial- und Integralrechnung IV Differenzial- un Integralrecnung IV Rainer Hauser September 202 Einleitung. Ableitung un Integral Die Ableitung einer Funktion f: R R, f() ist efiniert urc en Differenzialquotienten als f () = f() = f(

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

4.3.2 Ableitungsregeln

4.3.2 Ableitungsregeln Vorbereitungskurs auf die Aufnameprüfung der ETH: Matematik 4.3.2 Ableitungsregeln Der Differentialquotient [s. 43] zur Definition der Ableitung beinaltet eine Grenzwertbildung Limes), welce meist dadurc

Mehr

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders

Ein immer wiederkehrendes Konzept in der Mathematik ist die Zurückführung auf Bekanntes, beziehungsweise auf besonders Vorlesung 14 Differentialrecnung Ein immer wiedererendes Konzept in der Matemati ist die Zurücfürung auf Beanntes, bezieungsweise auf besonders einface Fälle. Besonders einfac sind lineare Funtionen in

Mehr

5 Differenzialrechnung für Funktionen einer Variablen

5 Differenzialrechnung für Funktionen einer Variablen 5 Differenzialrecnung für Funktionen einer Variablen Ist f eine ökonomisce Funktion, so ist oft wictig zu wissen, wie sic die Funktion bei kleinen Änderungen verält. Bescreibt etwa f einen Wacstumsprozess,

Mehr

Angewandte Mathematik am Rechner 1

Angewandte Mathematik am Rechner 1 Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 1 SOMMERSEMESTER 2017 Kapitel 5 Grundlagen Analysis Kontinuierliche Mengen Vollständige Mengen Folgen Iterative Berechnungen Grenzwert:

Mehr

Algorithmen und Datenstrukturen 9. Vorlesung

Algorithmen und Datenstrukturen 9. Vorlesung T Algoritmen und Datenstrukturen Vorlesung Martin Dietzfelbinger Juni S : U [m] U : Universum der Sclüssel [m] ={,,m } : Indebereic für Tabelle T S U, S = n U m FG KTuEA, TU Ilmenau AuD FG KTuEA, TU Ilmenau

Mehr

Institut für Analysis SS 2014 Prof. Dr. Roland Schnaubelt Dipl.-Math. Leonid Chaichenets. Höhere Mathematik II für die Fachrichtung Physik

Institut für Analysis SS 2014 Prof. Dr. Roland Schnaubelt Dipl.-Math. Leonid Chaichenets. Höhere Mathematik II für die Fachrichtung Physik Institut für Analysis SS 4 Prof. Dr. Roland Scnaubelt 8.7.4 Dipl.-Mat. Leonid Caicenets Höere Matematik II für die Facrictung Pysik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 68: Wir arbeiten den Folgenden

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Taylor-Entwicklung und lokale Extrema

Vorlesung: Analysis II für Ingenieure. Wintersemester 09/10. Michael Karow. Themen: Taylor-Entwicklung und lokale Extrema Vorlesung: Analysis II für Ingenieure Wintersemester 09/10 Michael Karow Themen: Taylor-Entwicklung und lokale Extrema Motivierendes Beispiel: die Funktion f(x, y) = x(x 1) 2 2 y 2. Dieselbe Funktion von

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Ableitung, Extrem- und Wendepunkten, Interpretation von Grapen von Ableitungsfunktionen, Tangenten und Normalen (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Scwarz www.mate-aufgaben.com

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K

Analysis I. Vorlesung 18. Differenzierbare Funktionen. f: D K Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 18 Differenzierbare Funktionen In dieser Vorlesung betracten wir Funktionen, wobei D K eine offene Menge in K ist. Das ist eine Menge derart,

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida

GMA. Grundlagen Mathematik und Analysis. Nullstellen und Fixpunkte Reelle Funktionen 3. Christian Cenker Gabriele Uchida GMA Grundlagen Mathematik und Analysis Reelle Funktionen 3 Christian Cenker Gabriele Uchida Data Analytics and Computing Nullstellen cos log : 0, 0,? 1 Fixpunkte Beispiel 1 Beispiel 2 1 0 0 und 1 1sin,?

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Das Nelder Mead Verfahren Sei f : R n R eine (nicht

Mehr

Das Delta-Potential. Gruppe PLANCK. Anton Hörl Thomas Kloiber Bernd Kollmann Miriam Mutici Jakob Schwarz. Quantenmechanik Projekt 2

Das Delta-Potential. Gruppe PLANCK. Anton Hörl Thomas Kloiber Bernd Kollmann Miriam Mutici Jakob Schwarz. Quantenmechanik Projekt 2 Das Delta-Potential Quantenmecanik Projekt Gruppe PLANCK Anton Hörl Tomas Kloiber Bernd Kollmann Miriam Mutici Jakob Scwarz Max Planck (1858 1947) 4.4 Delta-Potential Ist die räumlice Ausdenung eines Potentials

Mehr

N a c h s c h r e i b k l a u s u r

N a c h s c h r e i b k l a u s u r N a c s c r e i b k l a u s u r Aufgabe Bestimmen Sie die Ableitung der Funktion f (x) an der Stelle x 0, indem Sie den Grenzwert des Differenzenquotienten berecnen. a) f (x) = 4 x 2 x 2 x 0 = 4 b) f (x)

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Analysis I. 6. Beispielklausur mit Lösungen

Analysis I. 6. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I 6. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Eine Relation zwischen den Mengen X und Y.

Mehr

Übungsblatt 2 Musterlösung

Übungsblatt 2 Musterlösung MSE SoSe Übungsblatt Musterlösung Lösung 4 Einfluß von Randbedingungen) a) Durc Integration erälten wir: u x) = ux) = x x fy)dy +c = x π sinπz)+c b) Seien nun u) = u) = Daraus folgt: cosπy)dy +c = π sinπx)+c.

Mehr

Numerische Methoden 2

Numerische Methoden 2 Numerische Methoden 2 von I. S. Beresin und N. P. Shidkow Mit 11 Abbildungen m VEB Deutscher Verlag der Wissenschaften Berlin 1971 INHALT 6. Lösung von linearen algebraischen Gleichungssystemen 9 6.1.

Mehr

Ableitung und Mittelwertsätze

Ableitung und Mittelwertsätze Ableitung und Mittelwertsätze Definition. Sei I R ein Intervall und f : I R. ) f eißt differenzierbar an 0 I, wenn der Grenzwert eistiert. f() f( 0 ) lim 0 0 = f ( 0 ) = lim 0 f( 0 + ) f( 0 ) Ist dabei

Mehr

Übungsaufgaben Folgen und Reihen

Übungsaufgaben Folgen und Reihen Kallenrode, www.sotere.uos.de Übungsaufgaben Folgen und Reihen. Untersuchen Sie die folgenden Folgen auf Monotonie, Beschränktheit und Konvergenz (geben Sie gegebenenfalls den Grenzwert an): inverse Fakultäten:,,

Mehr

Übungen zum Mathematik-Abitur. Geometrie 1

Übungen zum Mathematik-Abitur. Geometrie 1 Geometrie Übungen zum atematik-abitur -7/8 Übungen zum atematik-abitur Geometrie Gegeben sind die Punkte ( 4 ) und ( 5 6 4) P und die Gerade 7 4 g: x= + r 4 Aufgabe : Die Ebene E entält g und Bestimmen

Mehr

Jgst. 11/I 1.Klausur

Jgst. 11/I 1.Klausur Jgst. /I.Klausur..00 A. Bestimme den Scnittpunkt und den Scnittwinkel der beiden folgenden Geraden: g : x y = 5 : + y = 5x Zunäcst müssen die beiden Geraden auf Normalform gebract werden: x y = 5 y = x

Mehr

Numerische Simulation in der Luft- und Raumfahrttechnik

Numerische Simulation in der Luft- und Raumfahrttechnik Numerisce Simulation in der Luft- und Raumfarttecnik Dr. Felix Jägle, Prof. Dr. Claus-Dieter Munz (IAG) Universität Stuttgart Pfaffenwaldring, 70569 Stuttgart Email: felix.jaegle@iag.uni-stuttgart.de Inalt

Mehr

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...

Mehr

Iterative Verfahren: Allgemeines, Fixpunkt-Iteration, Nullstellen. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

Iterative Verfahren: Allgemeines, Fixpunkt-Iteration, Nullstellen. Prof. U. Rüde - Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Iterative Verfahren: Allgemeines, Fiunkt-Iteration, Nullstellen Motivation Viele numerische Probleme lassen sich nicht mit endlich vielen Schritten lösen Nullstellen

Mehr

Tutorium: Analysis und lineare Algebra. Vorbereitung der Abschlussklausur (Teil 1)

Tutorium: Analysis und lineare Algebra. Vorbereitung der Abschlussklausur (Teil 1) Tutorium: Analysis und lineare Algebra Vorbereitung der Abschlussklausur (Teil 1) Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 Konvergenz, Stetigkeit und Differenzierbarkeit 3 Konvergenz

Mehr

Polynomiale Approximation. und. Taylor-Reihen

Polynomiale Approximation. und. Taylor-Reihen Polynomiale Approximation und Taylor-Reihen Heute gehts um die Approximation von glatten (d.h. beliebig oft differenzierbaren) Funktionen f nicht nur durch Gerade (sprich Polynome vom Grade 1) und Polynome

Mehr