Dilatationen. Seminararbeit

Größe: px
Ab Seite anzeigen:

Download "Dilatationen. Seminararbeit"

Transkript

1 Technische Universität Dortmund Fakultät für Mathematik Dilatationen Seminararbeit Niklas Geske Matrikelnummer: Betreuung: Prof. Dr. Detlev Hoffmann Alexander Schönert 19. November 2019

2 Inhaltsverzeichnis 1 Dilatationen Einleitung Definition Beispiele Satz Korollar Bemerkung Satz Bemerkung Fixpunkte und Fixgeraden bei Dilatationen Definition Satz Beispiele in AG(2, R) Satz Definition Satz Literatur 9 1

3 Kapitel 1 Dilatationen 1.1 Einleitung Dilatationen sind Abbildungen zwischen den Punkten affiner Ebenen. Bei Dilatationen müssen alle verschiedenen Bildpunkte einer Geraden g auf eine zu g parallele Gerade abgebildet werden. Wie bereits in LinA2, den vorangegangenen Vorträgen und der Schule besprochen, sind Abbildungen als Streckung, Drehung oder Verschiebung bekannt. Im Folgenden wird nun untersucht, welche dieser Abbildungen Dilatationen sind oder sein können. Notation: {P, Q} P 2 bedeutet, dass die Punkte P, Q verschieden sind. 1.2 Definition Eine Abbidung δ : P P heißt Dilatation: (i) {P, Q} P 2 : δ(q) (δ(p ) P Q) und (ii) {A, B} P 2 mit δ(a) δ(b). Dilatationen bilden Geraden auf (Teilmengen von) Geraden ab. Wir werden beweisen, dass Dilatationen Geraden auf eine dazu parallele Gerade abbilden. 1.3 Beispiele (i) Die Identität ist in jeder affinen Ebene eine Dilatation. (ii) In AG(2, R) ist jede Translation und jede Streckung wegen δ(g) g eine Dilatation. Die Parallelität bleibt bei diesen Abbildungen also erhalten. (iii) Drehungen sind hingegen in AG(2, R) keine Dilatationen. Ausnahmen sind Drehungen, bei denen der Drehwinkel ein Vielfaches von π ist. (iv) Welche Abbildungen im Minimalmodell sind Dilatationen? Lösung: Da Streckungen im Minimalmodell = Z/2Z keinen Sinn ergeben, sind nur Verschiebungen Dilatationen im Minimalmodell. 2

4 Dabei ist die Identität klar. Also gibt es insgesamt die Möglichkeiten: (x, y) (x, y) (x, y) (x + 1, y) (x, y) (x, y + 1) (x, y) (x + 1, y + 1), womit alle Fälle für Dilatationen in Z/2Z abgehandelt wären. (v) Warum ist die Abbildung α : (x, y) (x, y+1) eine Dilatation in der Moultonebene? Zur Erinnerung: In der Moultonebene verhalten sich Geraden mit negativer Steigung wie in der Anschauungsebene. Geraden mit positiver Steigung knicken hingegen an der y-achse und verdoppeln dort ihre Steigung. Somit ist der Unterschied zur Anschauungsebene folgender: g : y = mx + b für x 0 und m 0 und y = 2mx + b für x 0 und m 0. Damit haben wir 4 Fallunterscheidungen für diese Dilatation in der Moultonebene: 1. Fall: α(g k ) (g k ) und sind Geraden vom Typ (g k ) identisch unter α. 2. Fall: α(g m,b ) (g m,b+1 ) für x R und m 0, wobei (g m,b ) (g m,b+1 ) gilt. 3. Fall: α(g m,b ) (g m,b+1 ) für x (,0] und m > 0, wobei (g m,b ) (g m,b+1 ) gilt. 4. Fall: α(g 2m,b ) (g 2m,b+1 ) für x [0, ) und m 0, wobei (g 2m,b ) (g 2m,b+1 ) gilt. (vi) Eine Abbildung δ P : P P ; X Q für ein festes Q P erfüllt (i) der Definition einer Dilatation, (ii) wird hingegen nicht erfüllt, und so wird δ P eine ausgeartete Dilatation genannt. Die ausgeartete Dilatation hat also nach Definition nicht den Namen Dilatation verdient. Wie viel von einer Dilatation muss bekannt sein, damit diese eindeutig zu bestimmen ist? Der folgende Satz besagt, dass eine Dilatation bereits durch die Bilder zweier Punkte eindeutig bestimmt ist. 1.4 Satz Seien α, β Dilatationen(auch ausgeartet möglich). Für {P, Q} P 2 mit α(p ) = β(p ) ; α(q) = β(q) α = β. Beweis : Zu zeigen ist, dass α(r) = β(r) R P. Wir unterscheiden dabei zwei Fälle. 1.Fall: R / P Q. Nach Def 1.1 ist α(r) (α(p ) P R) = (β(p ) P R) β(r) analog α(r) (α(q) QR) = (β(q) P R) β(r) Wegen PR QR (α(p ) P R) (α(q) QR) (α(p ) P R) (α(q) QR) = 1 α(r) = β(r) 3

5 Also unterscheiden sich α und β nicht für die Punkte, welche nicht auf der Geraden PQ liegen. 2.Fall: R P Q Falls R = P R = Q ist, ist nichts zu zeigen. Durch (AE3) S / P Q. Für diesen Punkt S gilt nach Fall 1 α(s) = β(s). Weil nun R / P S, wenden wir wieder Fall 1 auf R, P, S an Behauptung. Also ist α(r) = β(r) R P. 1.5 Korollar Jede Dilatation δ mit zwei Fixpunkten ist die Identität. Beweis : Für Fixpunkte P, Q P gilt: δ(p ) = P = id(p ) ; δ(q) = Q = id(q) δ = id 1.6 Bemerkung Satz 1.4 kann nicht auf beliebige Kollineationen (Isomorphien) übertragen werden; z.b besitzt eine Geradenspiegelung in AG(2, R) unendliche viele Fixpunkte und ist ungleich der Identität. Im Weiteren wollen wir den Zusammenhang zwischen Kollineationen und Dilatationen genauer untersuchen. 1.7 Satz Jede (nicht ausgeartete) Dilatation δ ist eine Kollineation. Beweis : Nach Definition bilden Dilatationen Geraden auf Teilmengen von Geraden ab. Zu zeigen ist also noch die Bijektivität. 1. Injektivität: Angenommen für A, B P sei δ(a) = δ(b). Wir vergleichen δ mit der ausgearteten Dilatation δ P, welche jeden beliebigen Punkt X auf ein festes P abbildet. Da beide Dilatationen übereinstimmen, gilt nach Satz 1.4 δ = δ P. Dies ist jedoch ein Widerspruch zur Vorraussetzung δ ist injektiv. 2. Surjektivität: Wir suchen zu einem beliebigen T ein Urbild. {P, Q} P 2 mit δ(p ) = P Q = δ(q). 1. Fall: T / P Q : Also T P T Q (P T P ) (Q T Q ). Die Geraden haben also einen Schnittpunkt :=T 0, der nach Definition bereits das gesuchte Urbild von T ist. 2. Fall: T P Q : Falls T = P T = Q ist nichts zu zeigen. Wähle beliebigen Punkt S / P Q. Wie gerade gezeigt S 0 P mit δ(s 0 ) = S; so wenden wir Fall 1 auf T / P S an. Behauptung 4

6 1.8 Bemerkung Bzgl. der Verkettung als Verknüpfung bilden die Dilatationen eine Untergruppe der Gruppe aller Affinitäten. (UG1) id (D, ) (UG2) Seien σ, δ D ; {P, Q} P 2 Nach Def. gilt δ(q) (δ(p ) P Q) (σ δ)(q) ((σ δ)(p ) δ(p )δ(q)). Es wurde die Transitivität der Parallelität ausgenutzt. (UG3) id = σ δ (δ 1) id δ 1 = σ δ δ 1 δ 1 = σ δ 1 (D, ) 5

7 Kapitel 2 Fixpunkte und Fixgeraden bei Dilatationen 2.1 Definition Sei α eine Kollineation. g G heißt Fixgerade : P g : α(p ) g. Fixgerade bedeutet aber nicht, dass jeder Punkt auf ihr ein Fixpunkt ist, sondern lediglich, dass der Punkt nach der Abbildung wieder auf der ursprünglichen Geraden liegt. 2.2 Satz Für jede Affinität α gilt: g,h Fixgeraden mit g h g h ist Fixpunkt von α. Also der Schnittpunkt zweier Fixgeraden ist stets ein Fixpunkt. Beweis : Seien g,h Fixgeraden mit g h Sei P der eindeutig bestimmte Schnittpunkt von g und h. Weil g und h Fixgeraden sind, folgt α(p ) g h P = α(p ) 2.3 Beispiele in AG(2, R) (i) τ : (x, y) (x + 1, y + 1) ist eine Dilatation mit Fixgerade g 1,0. τ(g 1,0 ) = {τ(x, x); x R} = {(x + 1, x + 1); x R} = g 1,0 Also ist kein Punkt Fixpunkt unter τ. Weiter ist jede Gerade mit der Steigung 1 Fixgerade. Die Geraden g 1,b bilden also ein Parallelbüschel. (ii) δ : (x, y) ( x, y) ist eine Dilatation, bei der jede Gerade durch (0,0) Fixgerade ist, und (0,0) nach Satz 2.2 Fixpunkt ist. ( ) ( ) ( ) 1 0 xy x Zusätzlich ist δ bereits aus LinA 2 bekannt: 0 1 = y Damit ist δ eine Drehung um 180 Grad. (iii) α : (x, y) (y, x) ist keine Dilatation, allerdings eine Kollineation. Die Parallelität bleibt unter α nicht erhalten. ( ) ( ) ( ) 0 1 xy y Auch α ist bereits aus LinA 2 bekannt. 1 0 = x Damit ist α eine Drehung um 90 Grad. (iv) β : (x, y) (x, y) ist wie (iii) eine Kollineation, allerdings keine Dilatation. Jede Gerade vom Typ g k ist Fixgerade, genau wie die Gerade g 0,0. Dabei ist jeder Punkt auf 6

8 g 0,0 sogar Fixpunkt. β ist also eine Spiegelung an der x-achse, bei der die Parallelität zwischen Geraden natürlich nicht erhalten bleibt. 2.4 Satz Im Fall von Dilatationen besitzen Fixgeraden interessante Eigenschaften. Für jede Dilatation δ gilt: (i) g ist Fixgerade P g mit δ(p ) g. (ii) Hat δ keine Fixpunkte, so bildet die Menge der Fixgeraden ein Parallelbüschel. (iii) Ist P Fixpunkt von δ id, so ist die Menge der Fixgeraden die Menge aller Geraden durch P. Insbesondere liegen die Fixgeraden parallel. Beweis : (i) folgt aus Def 2.1 Sei P g mit δ(p ) g. Weiter Q g mit Q P. So folgt δ(q) (δ(p ) P Q) = g, also ist g Fixgerade. (ii) g := P δ(p ) (P δ(p )) ist nach (i) für jeden Punkt P Fixgerade. Für jeden weiteren Punkt Q muss wegen (Satz 2.2) (g Qδ(Q)) seien, denn sonst hätte δ einen Fixpunkt. Qδ(Q) = (Q g) und so ist jede zu g parallele Gerade Fixgerade unter δ. Weitere Fixgeraden kann es wegen Satz 2.2 nicht geben. (iii) Nach (i) sind alle Geraden durch P Fixgeraden. Alle weiteren Geraden haben mit mindestens einer dieser Fixgeraden einen Schnittpunkt. Gäbe es weitere Fixgeraden, so würde es neben P einen weiteren Fixpunkt geben. Nach Satz 1.4 würde dann allerdings δ = id folgen, was allerdings ein Widerspruch zur Vorraussetzung ist. 2.5 Definition Dilatationen können keinen, einen oder jeden Punkt als Fixpunkt besitzen. (i) Eine Dilatation σ heißt Streckung : σ besitzt einen Fixpunkt. Dieser Fixpunkt wird auch Zentrum einer Dilatation genannt. Beispielaufgabe zu (i): Für α R {0} sei σ α : R 2 R 2 ; (x, y) (α(x), α(y) a) Bestimme die Bilder aller Geraden unter σ α σ α ist bijektiv. Weiter ist (0, 0) (0, 0) Fixpunkt unter σ α. σ(g k ) = g αk g k σ(g m,b ) = g m,αb g m,b Damit bleibt unter σ α die Parallelität für alle Geraden erhalten und so ist σ α eine Dilatation. Genauer ist σ α eine Streckung. Aus LinA2 ist die dazugehörige lineare Abbildung bekannt. 7

9 ( ) ( ) α 0 xy 0 α = ( ) αx αy mit det(σ α ) = α 2 0 (ii) Eine Dilatation τ heißt Translation : τ = id oder τ besitzt keinen Fixpunkt. Beispielaufgabe zu (ii): Gegeben sind 2 Punkte mit zugehörigen Bildpunkten. τ : ( 1, 1) (1, 0) und (1, 2) (3, 1) Da sich die Geraden aus Punkt und Bildpunkt (nach 2.4 (i) Fixgeraden) nicht schneiden, folgt, dass es keinen Fixpunkt unter τ gibt. τ : (x, y) (x + 2, y 1) So ist jede Gerade mit der Steigung 1 Fixgerade und bildet ein Parallelbüschel. 2 Korollar: In der Anschauungsebene ist jede Abbildung (x, y) (x + a, y + b) eine Translation. Bei Dilatationen haben wir gesehen, dass zwei Punkte mit zugehörigen Bildpunkten ausreichen, um sie eindeutig zu bestimmen. Bei Translationen ist dies noch leichter möglich. 2.6 Satz Seien τ 1, τ 2 Translationen mit τ 1 (P ) = τ 2 (P ) für P P τ 1 = τ 2 Beweis : Sei τ 1 (P ) = τ 2 (P ) = P P ( sonst wäre P Fixpunkt und nach Def 2.5 (ii) wäre τ = id) Sei R P P, so ist τ i (R) (R P P ) für i=1,2 und damit gilt: τ 1 (R) (R P P ) (P P R) τ 1 (P ) = τ 2 (P ), nach Satz 1.4 stimmen die Abbildungen überein. 8

10 Literatur [1] Kiechle, H.(2012). Skript: Grundbildung Geometrie [2] Kiechle, H. Skript: Geometrie. Online unter: zuletzt aufgerufen am

6 Geometrie. 0 Vorbemerkungen 56 6 GEOMETRIE

6 Geometrie. 0 Vorbemerkungen 56 6 GEOMETRIE i Inhaltsverzeichnis 6 Geometrie 56 0 Vorbemerkungen 56 1 Affine Ebenen: Definition und einfache Beispiele 58 2 Sphärenmodell und Moultonebene 61 3 Isomorphie und Kollineationen 63 4 Schließungssätze 67

Mehr

6 Geometrie. 0 Vorbemerkungen GEOMETRIE

6 Geometrie. 0 Vorbemerkungen GEOMETRIE 160 6 GEOMETRIE 6 Geometrie 0 Vorbemerkungen Als Antwort auf die Frage : Wovon handelt Geometrie? werden häufig Begriffe wie Punkt, Gerade, Kreis, Winkel, Fläche, Volumen, Länge, Lot fällen, Spiegelungen,

Mehr

Inhaltsverzeichnis INHALTSVERZEICHNIS 1

Inhaltsverzeichnis INHALTSVERZEICHNIS 1 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 6 Geometrie 171 0 Vorbemerkungen 171 1 Affine Ebenen: Definition und einfache Beispiele 173 2 Sphärenmodell und Moultonebene 177 3 Isomorphie und Kollineationen

Mehr

Seminararbeit zum Thema Translationen und Schiefkörper

Seminararbeit zum Thema Translationen und Schiefkörper Seminararbeit zum Thema Translationen und Schiefkörper Miriam Hraßnigg 9. Januar 2013 1 Inhaltsverzeichnis 1 Translationen 3 2 Der Schiefkörper 7 2 1 Translationen Beginnen wir damit uns zwei schon lange

Mehr

VI.0 Vorbemerkungen S A. Bereitstellung von notwendigem Handwerkszeug:

VI.0 Vorbemerkungen S A. Bereitstellung von notwendigem Handwerkszeug: VI.0 Vorbemerkungen S. 160 161 A. Bereitstellung von notwendigem Handwerkszeug: Punktmenge P = {A, B, P, Q...}, Geradenmenge G = {a, b, g, h,...} P g (bedeutet P liegt auf g) Geraden der Anschauungsebene:

Mehr

Seminararbeit zum Seminar aus reiner Mathematik

Seminararbeit zum Seminar aus reiner Mathematik Seminararbeit zum Seminar aus reiner Mathematik Gudrun Freidl, Julia Schönhart Vortrag am 12.12.2012 1 In dieser Seminararbeit wollen wir den Beginn des 3. Kapitels des Buches Projektive Geometrie behandeln.

Mehr

Geometrie. Homepage zur Veranstaltung: Lehre Geometrie

Geometrie. Homepage zur Veranstaltung:  Lehre Geometrie Geometrie 5.1 Geometrie Homepage zur Veranstaltung: http://www.juergen-roth.de Lehre Geometrie Geometrie 5.2 Inhaltsverzeichnis Geometrie 0 Geometrie!? 1 Axiome der Elementargeometrie 2 Kongruenzabbildungen

Mehr

Geometrische Abbildungen der Ebene

Geometrische Abbildungen der Ebene Geometrische Abbildungen der Ebene Dr. Elke Warmuth Sommersemester 2018 1 / 29 Bezeichnungen Kongruenzabbildungen Spiegelungen Klassifikation aller Kongruenzabbildungen 2 / 29 Abbildung, Funktion, Transformation

Mehr

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2

Geometrie (4b) Wintersemester 2015/16. Kapitel 2. Abbildungsgeometrie. Teil 2 Kapitel 2 Abbildungsgeometrie Teil 2 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

37 II.1. Abbildungen

37 II.1. Abbildungen 37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen TEIL II: GRUPPEN In der modernen Algebra versucht man die Zahlen (Z, Q, R, ) durch die Konzentration auf Rechenoperationen (+,,... ), oder allgemeiner auf strukturelle Eigenschaften dieser Operationen,

Mehr

5.3 Typen und Klassifikation affiner Abbildungen

5.3 Typen und Klassifikation affiner Abbildungen 53 Typen und Klassifikation affiner Abbildungen Definition 531 Sei A ein AR und Aff(A) die Gruppe der Affinitäten von A τ Aff(A) heißt Translation falls p, q A gilt: pτ(p) = qτ(q) Der dann von der Wahl

Mehr

Geraden-Schnittpunkte

Geraden-Schnittpunkte Geraden-Schnittpunkte Erinnerung: Axiom. Durch zwei verschiedene Punkte geht höchstens eine Gerade. Anders ausgedrückt: Seien P und Q Punkte und g und h Geraden. Wenn g und h durch P und Q gehen... und

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Gruppen, Bewegungen Stefan Witzel Drehungen und Verschiebungen vertauschen nicht Proposition. Wenn τ id eine Verschiebung ist und ρ eine Drehung,

Mehr

Kapitel V. Affine Geometrie

Kapitel V. Affine Geometrie Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b

Mehr

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie

Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie FB 3: Mathematik/Naturwissenschaften Prof. Dr. R. Frank/ Dr. D. Habeck Modulprüfung BA 04 Mathematik: Grundlagen der Mathematik C: Geometrie, Elementare Algebra und Zahlentheorie 09.04.2015 Name: Vorname:

Mehr

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen

3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen Inhaltsverzeichnis Teil II: Gruppen 2 3.1 Gruppen, Untergruppen und Gruppen-Homomorphismen.................. 2 3.1.1 Gruppen.......................................... 2 3.1.2 Untergruppen.......................................

Mehr

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3

3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 3 Geometrische Klassifikation der Bewegungen im R 2 und R 3 Sei f : R n R n eine Bewegung Sie kann beschrieben werden in der Form Dabei ist T (f)(x) = A x f(x) = Ax + b mit A O(n) und b R n Definition:

Mehr

Plan für Heute/Morgen

Plan für Heute/Morgen Plan für Heute/Morgen Kongruenzsätze: aus der Schule wissen wir die SSS, SWS, und SSW Kongruenzsätze für Dreiecke: Wir wollen diese Sätze im Rahmen unseres Modells (wenn Punkte die 2 Tupel von reellen

Mehr

5.3 Typen und Klassifikation affiner Abbildungen

5.3 Typen und Klassifikation affiner Abbildungen 53 Typen und Klassifikation affiner Abbildungen Definition 531 Sei A ein AR und Aff(A) die Gruppe der Affinitäten von A τ Aff(A) heißt Translation falls p, q A gilt: pτ(p) = qτ(q) Der dann von der Wahl

Mehr

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe

Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:

Mehr

21. Affine Koordinaten und affine Abbildungen

21. Affine Koordinaten und affine Abbildungen 21.1. Grundbegriffe Definition: Sei A ein affiner Raum mit Richtungs-VRm V der Dimension n. (a) Sei B die Menge aller Basen von V. Ein Paar K := (O, B) A B heißt affines Koordinatensystem, wobei O der

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Proseminar Lineare Algebra und Elementargeometrie. Jens Diewald und Simone Naldi

Proseminar Lineare Algebra und Elementargeometrie. Jens Diewald und Simone Naldi Proseminar Lineare Algebra und Elementargeometrie Technische Universität Dortmund WS 16/17 Jens Diewald und Simone Naldi Inhaltsverzeichnis Allgemeine Informationen 2 Vortragstermine 3 Themen 3 Homepage

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

3. Ähnlichkeitsabbildungen

3. Ähnlichkeitsabbildungen 3. Ähnlichkeitsabbildungen 3.1 Definitionen: Ähnlichkeitsabbildungen, Dilatationen Bis jetzt haben wir Isometrien (Kongruenzabbildungen) betrachtet. Diese bbildungen wurden aufgebaut aus den Geradenspiegelungen.

Mehr

5.3 Darstellungsmatrizen affiner Abbildungen

5.3 Darstellungsmatrizen affiner Abbildungen 5.3 Darstellungsmatrizen affiner Abbildungen Definition 5.3.1. Seien A und B endlich-dimensionale ARs mit dim A n, dim B m und KS E : (p 0,..., p n ) von A und KS F : (q 0,..., q m ) von B. Sei α : A B

Mehr

Synthetische Geometrie

Synthetische Geometrie Aufgabe 1 Lineare Räume mit wenig Punkten Erstes Übungsblatt zur Veranstaltung Bestimmen Sie bis auf Isomorphie alle linearen Räume mit höchstens vier Punkten. Aufgabe 2 Koordinatenebene Bestimmen Sie

Mehr

2. Isometrien oder Kongruenzabbildungen

2. Isometrien oder Kongruenzabbildungen 6 2. Isometrien oder Kongruenzabbildungen 2.1 Einführende Überlegungen Kongruente Figuren sind deckungsgleiche Figuren. Eine Figur wird so bewegt, dass sie mit einer anderen Figur zur Deckung gebracht

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 03.11.2017 (Stand: 02.11.2017, 23:25 Uhr) Mathematik für Studierende der Biologie und des Lehramtes

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y

: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y 5 GRUPPEN 5 Gruppen Hier fehlt eine schöne Einleitung oder ein motivierendes Beispiel. Definition [5.1] Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung.

Mehr

Aufbau der Projektiven Geometrie

Aufbau der Projektiven Geometrie Seminararbeit zum Seminar aus Reiner Mathematik Aufbau der Projektiven Geometrie Leonie Knittelfelder Matr. Nr. 1011654 WS 2012/13 Inhaltsverzeichnis 1 Einleitung 3 2 Linearmengen 4 2.1 Satz (1.3.1): Das

Mehr

Kapitel 2. Abbildungsgeometrie

Kapitel 2. Abbildungsgeometrie Kapitel 2 Abbildungsgeometrie 1 Maximilian Geier, Institut für Mathematik, Campus Landau, Universität Koblenz Landau Kapitel 2 Abbildungsgeometrie 2.1 2,3,4 Geradenspiegelungen 2.2 Sinn & Orientierung

Mehr

2. Übungsblatt zur Analysis I. Gruppenübungen

2. Übungsblatt zur Analysis I. Gruppenübungen Prof. Dr. Helge Glöckner Wintersemester 2013/2014 24.10.2013 2. Übungsblatt zur Analysis I Wichtig: Bitte geben Sie die Hausübungen in ihrer jeweiligen Übungsgruppe ab. Gruppenübungen Aufgabe G1 (Rechnen

Mehr

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen

Gruppenarbeit zu geometrischen Abbildungen Gruppe A: Verschiebungen Gruppe A: Verschiebungen Eine Abbildung heißt Verschiebung v r, wenn für jeden Punkt P und seinen Bildpunkt P jeweils gilt: r OP' = OP + v. Eine Figur heißt verschiebungssymmetrisch, wenn sie durch eine

Mehr

GEOMETRIE (4a) Kurzskript

GEOMETRIE (4a) Kurzskript GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur mit weiteren Erläuterungen in der Veranstaltung genutzt werden. Fehler sind

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 06.12.2013 Alexander Lytchak 1 / 16 Wiederholung Ist V ein Vektorraum, so heißen Abbildungen T v : V V der Form w w

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden?

Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden? Warum konnten wir Inversionen so erfolgreich beim Lösen von schulgeometrischen Aufgaben anwenden? Weil bei einigen Aufgaben die Problemstellung einfacher wird, wenn wir Inversionen anwenden, die Aufgabenstellung

Mehr

Symmetrien. Transformationen. Affine und euklidische Räume

Symmetrien. Transformationen. Affine und euklidische Räume Symmetrien Transformationen Der Gruppenbegriff entwickelte sich aus dem Begriff der Transformationsgruppe. In dieser Form tauchen auch die meisten Gruppen in der Mathematik, Physik, Chemie, Kristallographie,

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Gruppen, Bewegungen Stefan Witzel Gruppen Eine Menge G von Bijektionen X X ist eine Gruppe, wenn 1. die Identität id: X X in G liegt, 2. für

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Gruppen, Bewegungen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Gruppen, Bewegungen Stefan Witzel Gruppen Eine Menge G von Bijektionen X X ist eine Gruppe, wenn 1. die Identität id: X X in G liegt, 2. für

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Universität Hannover Seminar zu elliptischen Funktionen, elliptischen Kurven und Modulformen; WS 04/05 Der Torus als algebraische Kurve

Universität Hannover Seminar zu elliptischen Funktionen, elliptischen Kurven und Modulformen; WS 04/05 Der Torus als algebraische Kurve Universität Hannover Seminar zu elliptischen Funktionen, elliptischen Kurven und Modulformen; WS 04/05 Der Torus als algebraische Kurve Volker Kamps, Matrikelnummer: 2134437 8. Februar 2005 Inhaltsverzeichnis

Mehr

D-MATH Tommaso Goldhirsch. Serie 3

D-MATH Tommaso Goldhirsch. Serie 3 Serie 3 Aufgabe 1 Sei G eine Gruppe und X eine Teilmenge von G. Die von X erzeugte Untergruppe von G ist die kleinste Untergruppe von G die X enthält. (Dass es eindeutig eine "kleinste" gibt wird in der

Mehr

Homöomorphismen und Überlagerungen

Homöomorphismen und Überlagerungen Technische Universität Dortmund Fachbereich Mathematik Institut für Differentialgeometrie Homöomorphismen und Überlagerungen Schriftliche Ausarbeitung im Differentialgeometrie-Seminar von Sebastian Bühren

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Grundlagen Stefan Witzel Punkte, Abstand Die Euklidische Ebene E 2 besteht aus Punkten. Zwei Punkte P, Q E 2 haben einen Abstand PQ 0. Axiome

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Def. Eine Gleitspiegelung ist eine Spiegelung an einer Geraden (Spiegelachse) verknüpft mit einer Translation parallel zu dieser

Mehr

kommt zur Kreisinversion eine Spiegelung des Punktes an der reellen Achse dazu. Die folgenden vier Eigenschaften gelten auch für diese Abbildung

kommt zur Kreisinversion eine Spiegelung des Punktes an der reellen Achse dazu. Die folgenden vier Eigenschaften gelten auch für diese Abbildung 1 3. Die Kreisinversion 3.1. Definition Die Abbildung 1 ordnet der Zahl das folgende Bild zu 1 1 1 1 1 Die Konstruktion des Bildpunkts besteht also aus zwei Schritten: Der Punkt wird in den Bildpunkt abgebildet,

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Grundlagen. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Grundlagen Stefan Witzel Punkte, Abstand Die Euklidische Ebene E 2 besteht aus Punkten. Zwei Punkte P, Q E 2 haben einen Abstand PQ 0. Axiome

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.12.2013 Alexander Lytchak 1 / 15 Motivation Für das Verständis affiner Teilräume eines Vektorraums sind Translationen

Mehr

eine O fixierende Bewegung.

eine O fixierende Bewegung. 1. Bewegungen der hyperbolischen Ebene Sei nun H eine hyperbolische Ebene. Dann erhält man dieselben Klassen von Bewegungen wie im Euklidischen Fall und eine weitere Klasse. Wir haben oben nur ein einziges

Mehr

4. Morphismen. 30 Andreas Gathmann

4. Morphismen. 30 Andreas Gathmann 30 Andreas Gathmann 4. Morphismen Wir haben nun viele Beispiele und Konstruktionen von Gruppen gesehen. Natürlich wollen wir diese vielen verschiedenen Gruppen jetzt auch irgendwie miteinander in Beziehung

Mehr

3: Bewegungen und Ähnlichkeiten:

3: Bewegungen und Ähnlichkeiten: 3: Bewegungen und Ähnlichkeiten: Was sind kongruente (bzw. deckungsgleiche) Figuren? [Box2-94] [Kra2-138] [Rei2-173a] [Rei2-173b] Zwei Teilmengen M,M einer Euklidischen Ebene (E,G) heißen kongruent, wenn

Mehr

Kapitel 2: Abbildungen und elementare Funktionen

Kapitel 2: Abbildungen und elementare Funktionen Kapitel 2: Abbildungen und elementare Funktionen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Abbildungen und elementare Funktionen 1 / 18 Gliederung

Mehr

Fragen und Aufgaben zum Examenskolloquium (Lehramt GM/So)

Fragen und Aufgaben zum Examenskolloquium (Lehramt GM/So) Fragen und Aufgaben zum Examenskolloquium (Lehramt GM/So) A Blunck, H Kiechle, S Koch Hinweis: Die mit einem Stern versehenen Aufgaben sind vielleicht etwas schwieriger oder umfangreicher, manchmal hilft

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Hintergrund Geschichte - Grundbegriffe Vom Wesen der Geometrie

Hintergrund Geschichte - Grundbegriffe Vom Wesen der Geometrie Einführung in die Geometrie SS 2007 Prof.Dr.R.Deissler Einführung Literatur Titelblatt Hintergrund Geschichte - Grundbegriffe Vom Wesen der Geometrie Empirische Wissenschaft Erfahrungswissenschaft wie

Mehr

Licht wählt unter allen möglichen Wegen den kürzesten (im Allgemeinen: den schnellsten) Was ist der kürzeste Weg von P über S nach A?

Licht wählt unter allen möglichen Wegen den kürzesten (im Allgemeinen: den schnellsten) Was ist der kürzeste Weg von P über S nach A? Kapitel 2: Kongruenzabbildungen 2.1 Geradenspiegelungen a) Spiegel Wie wirkt ein Spiegel? Modellvorstellung: Jeder beleuchtete Punkt P sendet nach allen Seiten Lichtstrahlen aus Wie verlaufen die Lichtstrahlen

Mehr

Projektionen auf abgeschlossene konvexe Mengen

Projektionen auf abgeschlossene konvexe Mengen Projektionen auf abgeschlossene konvexe Mengen Seminarvortrag von Veronika Pick Seminar Optimierung bei Herrn Prof. Dr. F. Jarre Heinrich-Heine-Universität Düsseldorf SS 2006 1 Vorbemerkung Das Seminarthema

Mehr

Wir gehen aus vom euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht.

Wir gehen aus vom euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht. 2 Ein wenig projektive Geometrie 2.1 Fernpunkte 2.1.1 Projektive Einführung von Fernpunkten Wir gehen aus vom euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden

Mehr

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009

Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Aufgabensammlung zu Einführung in das mathematische Arbeiten Lineare Algebra und Geometrie WS 2009 Schulstoffbeispiele 1. Lineare Gleichungssysteme. Lösen Sie die folgenden linearen Gleichungssysteme.

Mehr

Vortrag 11: Der Satz von Bézout. Friedrich Feuerstein, Christian Pehle 17. Juli 2009

Vortrag 11: Der Satz von Bézout. Friedrich Feuerstein, Christian Pehle 17. Juli 2009 Vortrag 11: Der Satz von Bézout Friedrich Feuerstein, Christian Pehle 17. Juli 2009 1 Einleitung Ziel dieses Vortrages ist es zu zeigen, dass zwei Kurven vom Grad s bzw. t in der Ebene genau st Schnittpunkte

Mehr

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen

Kapitel 1. Mengen und Abbildungen. 1.1 Mengen Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf

Mehr

3. Untergruppen. 3. Untergruppen 23

3. Untergruppen. 3. Untergruppen 23 3. Untergruppen 23 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen)

Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) WS 2015/16 Diskrete Strukturen Kapitel 5: Algebraische Strukturen (Gruppen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15

Mehr

5.1 Affine Räume und affine Abbildungen

5.1 Affine Räume und affine Abbildungen 402 LinAlg II Version 1.2 21. Juli 2006 c Rudolf Scharlau 5.1 Affine Räume und affine Abbildungen Ein affiner Raum besteht aus zwei Mengen P und G zusammen mit einer Relation der Inzidenz zwischen ihnen.

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Übersicht zur Vorlesung

Übersicht zur Vorlesung Stand: 19.1.2012 Übersicht zur Vorlesung Ausgewählte Kapitel der Geometrie Definitionen/Axiome Anordnungsaxiome Archimedisches Axiom Definition von größer in den reellen Zahlen Intervalle Punkte, Geraden

Mehr

13 Lineare Abbildungen

13 Lineare Abbildungen 13 Lineare Abbildungen Grob gesprochen sind lineare Abbildungen bei Vektorräumen dasselbe wie Homomorphismen bei Gruppen, nämlich strukturerhaltende Abbildungen. Auch in diesem Kapitel seien V, W Vektorräume.

Mehr

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt: 5 Zur Geometrie euklidischer Bewegungen 5.1 Bewegungen Eine Affinität α eines euklidischen Raumes heißt eine Bewegung, wenn sie Abstände (und damit auch Winkel) erhält, wenn also für alle Punkte X, Y gilt:

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und

Mehr

Vorkurs Gruppen. Jonas Müller. 11. Oktober 2018

Vorkurs Gruppen. Jonas Müller. 11. Oktober 2018 Vorkurs Gruppen Jonas Müller 11. Oktober 2018 Für den Vorkurs der Fachschaft MathPhysInfo im Wintersemester 2018/19. Basierend auf den Vorträgen der letzten Jahre von Saskia Klaus. Inhaltsverzeichnis 1

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

1.1 Geradenspiegelungen

1.1 Geradenspiegelungen 1.1 Geradenspiegelungen 1.1.1 Eigenschaften Definition 1.1 Eine Abbildung der Ebene ist eine Vorschrift, die jedem Punkt P der Ebene einen Bildpunkt P zuordnet. Beispiel 1.1 Zentrische Streckung mit Zentrum

Mehr

Seminar Sommersemester 2011: Geometrie Lehramt Gymnasium

Seminar Sommersemester 2011: Geometrie Lehramt Gymnasium Technische Universität Dortmund Fakultät für Mathematik Lehrstuhl VII: Differentialgeometrie Seminar Sommersemester 2011: Geometrie Lehramt Gymnasium Prof Dr Lorenz Schwachhöfer Vortrag 3 am 2742011: Gruppen

Mehr

Aufgabenblatt 1: Abgabe am vor der Vorlesung

Aufgabenblatt 1: Abgabe am vor der Vorlesung Aufgabenblatt 1: Abgabe am 17.09.09 vor der Vorlesung Aufgabe 1. a.) (1P) Geben Sie die Lösungsmenge der folgenden Gleichung an: 6x + y = 10. Zeichnen Sie die Lösungsmenge in ein Koordinatensystem. b.)

Mehr

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni.

Lineare Algebra II. Prof. Dr. M. Rost. Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni. Lineare Algebra II Prof. Dr. M. Rost Übungen Blatt 9 (SS 2011) Abgabetermin: Donnerstag, 16. Juni http://www.math.uni-bielefeld.de/~rost/la2 Erinnerungen, Ergänzungen und Vorgriffe zur Vorlesung: Affine

Mehr

D-MATH Tommaso Goldhirsch. Serie 4. C h (g) = hgh 1, L h (g) = hg

D-MATH Tommaso Goldhirsch. Serie 4. C h (g) = hgh 1, L h (g) = hg Serie 4 Aufgabe 1 Wahr oder Falsch Es sei G eine Gruppe. Für h G betrachten wir die Abbildungen C h, L h : G G, C h (g) = hgh 1, L h (g) = hg genannt Konjugation beziehungsweise Linksmultiplikation. Welche

Mehr

Semesterklausur zur Elementargeometrie (L) von 60 Punkten bestanden Korrektor

Semesterklausur zur Elementargeometrie (L) von 60 Punkten bestanden Korrektor Technische Universität Berlin Wintersemester 03/04 Fakultät II, Institut für Mathematik Prof. Dr. Ulrich Kortenkamp Sekretariat MA6-2 Andreas Fest Semesterklausur zur Elementargeometrie (L) 06.02.2004

Mehr

Überabzählbarkeit der reellen Zahlen

Überabzählbarkeit der reellen Zahlen Überabzählbarkeit der reellen Zahlen Mathematik M4 Dozentin: Dr. Regula Krapf Jan Lukas Schallenberg Matr. Nr.: 214202241 November 2017 1 Inhaltsverzeichnis 1 Dedekindsche Schnitte 3 2 Addition und Multiplikation

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.24 2017/05/18 11:18:04 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.6 Bewegungen und Kongruenzbegriffe In diesem Abschnitt wollen wir die Automorphismengruppe der euklidischen

Mehr

Elementare Geometrie Vorlesung 6

Elementare Geometrie Vorlesung 6 Elementare Geometrie Vorlesung 6 Thomas Zink 10.5.2017 1.Bewegungen Definition Es sei E eine Ebene. Eine Abbildung f : E E heißt eine Bewegung, wenn sie die folgenden Eigenschaften hat: (1) f ist bijektiv.

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

Musterlösung 7 Lineare Algebra für die Naturwissenschaften

Musterlösung 7 Lineare Algebra für die Naturwissenschaften Musterlösung 7 Lineare Algebra für die Naturwissenschaften Aufgabe Entscheiden Sie, ob folgende Abbildungen linear sind, und geben sie für die linearen Abbildungen eine Matrixdarstellung (in einer Basis

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

Klassifikation ebener affiner Abbildungen

Klassifikation ebener affiner Abbildungen Klassifikation ebener affiner Abbildungen Die Analyse und Klassifikation der affinen Abbildungen der Ebene ist ein hervorragendes Beispiel für das, was Freudenthal lokales Ordnen nennt. Die affinen Abbildungen

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 4 Injektive und surjektive Abbildungen Definition 4.1. Es seien L und M Mengen und es sei eine Abbildung. Dann heißt F F

Mehr

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen

3.2 Operationen von Gruppen auf Mengen und Faktorgruppen Kurzskript MfI:AGS WS 2018/19 Teil II: Gruppen 16 wohldefiniert, ein Gruppen-Homomorphismus, injektiv und surjektiv ist. ( Dies ist eine Anwendung vom Satz 2.4.1.) Siehe die Aufgaben (Blatt 6). 3.2 Operationen

Mehr

Prof. Dr. Rudolf Scharlau, Stefan Höppner

Prof. Dr. Rudolf Scharlau, Stefan Höppner Aufgabe 13. Bestimme alle Untergruppen der S 4. Welche davon sind isomorph? Hinweis: Unterscheide zwischen zyklischen und nicht zyklischen Untergruppen. Lösung. Die Gruppe S 4 besitzt die folgenden Elemente:

Mehr

Aufgabe 5: Analytische Geometrie (WTR)

Aufgabe 5: Analytische Geometrie (WTR) Abitur Mathematik: Nordrhein-Westfalen 203 Aufgabe 5 a) () PARALLELOGRAMMEIGENSCHAFTEN NACHWEISEN Zu zeigen ist, dass die gegenüberliegenden Seiten parallel sind, d. h. und. Zunächst ist 0 0 2 0, 3 2 0

Mehr