Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten"

Transkript

1 Effiziente Erzeugung qualitativ hochwertiger Bilder anhand punktbasierter Geometriedaten Referent: Arndt Ebert 1

2 2

3 Ziel des Vortrags Einordnung der point based representation (PBR) und Grundlagen Effiziente hierarchische Datenstruktur geringer Speicherbedarf pro Punkt Rendering-Algorithmus schnelle 3D-Transformation und Schattierung der Punkte Punktattribute Traversierung der hierarchischen PBR Erweiterung um Surface Splatting zur Vermeidung von Artefakten und Aliasing Software-Implementierung rendert 14 Mio. Phong-Schattierte und texturierte samples pro Sekunde 3

4 Kriterien zur Beurteilung der Algorithmen Speichereffizienz Punktmenge kann sehr groß werden Speicherbedarf pro Punkt QSplat: 4 Byte nur Geometriedaten Performanz der Bilderzeugung fast alles sind Software-Lösungen Qualität der Bilderzeugung bereits gut erforschte Techniken Verbesserungen schwer möglich 4

5 Gleichmäßige Unterteilung der Fläche S Bounding cube umschließen der Fläche mit einer bounding cube Unterteilung in n x n x n - Voxel sample point P i in der Mitte eines Voxels Eigenschaften: sampling density s h s 3h Fehler der Approximation ε 3 4h Binäres Voxel Gitter G 0 (Binary voxel grid) keine Berechnung des Mittelpunktes Schnitt der Fläche mit Voxel Eintrag 1 für Voxel Diskretisierung: 3 ℵ s : R {0,1 } 5

6 Die hierarchische PBR (1) Algorithmus: Definieren n=2 k, i=0 1) Initial-Gitter G i mit n x n x n Voxel 2) Für jeden 2 x 2 x 2 Block aus Voxel von G i : - fasse den Block zu einem Voxel in G i+1 zusammen 3) Erhöhe i und wiederhole Schritt 2) solange bis ein Gitter G k entstanden ist mit einem Voxel ermöglicht effiziente Speicherung des binären Voxel Gitters G 0 Verlust von Informationen in jedem Schritt speichern zusätzlich einen Byte-Code zu jedem Voxel 6

7 Die hierarchische PBR (2) Notwendige Zusatzinformationen: Rekonstruktion von G 0 : 7

8 Speichereffizienz (1) Berechnung des Speicherbedarfs m = O(n 2 ) = Anzahl der sample points speichern nur volle Voxel Reduzierung der vollen Voxel ungefähr um Faktor 4 bei Übergang von G i zu G i+1 k i= 1 1 i 4 *m 1 3 *m Bytecodes Speicherbedarf pro Punkt ca. 2,67 Bit unabhängig von der Tiefe k deshalb auch unabhängig von sampling density Genauigkeit der Quantisierung ε 8

9 Speichereffizienz (2) Speicherbedarf in Zahlen 2,67 Bit pro sample point bei durchschnittlichen Verzweigungsfaktor von 4 ca. 2 Bit mit Komprimierung Komprimierung mittels Entropy Encoder häufige Bitfolgen werden mit Entropy-Tree durch kürzere Bitfolgen kodiert Ø=2,47 Bit Byte Kodierung

10 Effizientes Rendering Ansatzpunkte zur Steigerung der Effizienz Berechnung der Transformation von sample points Verwaltung zusätzlicher Punktattribute Sichtbarkeit von Punkten Algorithmen zur Traversierung des Oktree 10

11 Projektive 3D-Transformation Berechnung ohne hierarchische PBR Multiplikation von 3D-Punkt P(x,y,z,1) in homogenen Koordinaten mit 4x4-Matrix Umrechnung in affine Koordinaten P (x/w, y/w) 16 Multiplikationen 12 Additionen 3 Divisionen Berechnung mit hierarchischer PBR 0 Multiplikationen 4 Additionen 2 Divisionen bereits während der Rekonstruktion 11

12 Berechnung während Traversierung (1) Koordinaten beim Übergang von G i zu G i-1 ein Voxel wird unterteilt in 8 kleinere Voxel innerhalb dieses Voxels 8 neue Mittelpunkte bestimmen Addition eines Vektors zum alten Mittelpunkt in alle 8 Richtungen d i, j = (2 i 1 ± 1 ± 1 * h) * ±

13 Berechnung während Traversierung (2) Pfad von Wurzel bis zum Sample Point p Mittelpunkt des Blattvoxels ist der sample point k p = c + d i,ji i= 1 Einsetzen in Transformationsgleichung M *p = M *c + k i= 1 Vorberechnung möglich M *d i, j i = c' + k i= 1 transformiertem Wurzelkoordinaten 8k-transformierte Verschiebungsvektoren unter Ausnutzung von d = 2* d i+ 1,j i,j d' i, j i 13

14 Berechnung während Traversierung (3) Mathematische Analyse Anzahl Vektoradditionen pro Punkt k i= i 4 3 bei 3D-Punkten: 4 Additionen durch Umrechnung in affine Koordinaten: 2 Divisionen 14

15 Punktattribute (1) Speicherung in jedem Punkt einzeln hoher Speicherbedarf in lookup tables Quantisierung der Attributwerte Zugriff über Index gespeichert zum Punkt Realisierung in der hierarchischen PBR Oktrahedrons hierarchische lookup-tables 15

16 Punktattribute (2) Unterteilung eines Oktahedrons Normalenindex für hierarchische lookup-table Vorteile verschiedene Genauigkeitsstufen Vorberechnungen möglich Vermeidung von Redundanz 16

17 Sichtbarkeit von Punkten View Frustum Culling für jeden Knoten im Baum schauen, ob die Punkte im Teilbaum außerhalb des Sichtvolumens liegen Umgeben der Punkte im Teilbaum mit einer bounding box Vorteile durch die hierarchische PBR Größe der bounding box bekannt (Größe des Voxels in Gitter i keine Zusatzinformationen in den Punkten speichern Befindet sich die Wurzel des Teilbaumes (Voxel im Gitter i) schon außerhalb des Sichtvolumens kompletter Teilbaum (ab i-1) außerhalb 17

18 Traversierung der PBR nochmals die Struktur der PBR Bytecode (Geometriedaten) steuert die Traversierung Indizes (Verweise auf lookup-tables) verwalten Zusatzinformationen zu den Punkten Speicherung der Attribute in den sample points, d.h. vollen Voxel in G 0 Algorithmen zur Traversierung Tiefen-Traversierung (depth-first traversal) Breiten-Traversierung (breadth-first traversal) 18

19 Tiefen-Traversierung 19

20 Breiten-Traversierung 20

21 High Quality Rendering Hauptprobleme Artefakte Bildschirmpixel schneidet keinen sample point Aliasing mehrere sample points ins gleiche Pixel gemappt Lösung Surface Splatting Quantisiertes Surface Splatting 21

22 Surface Splatting Ersetzen der sample points durch Scheiben (splats) Radius annähernd der sampling density Verteilung der Intensität auf der Scheibe (footprint) Überlappung mehrerer Splats Mittelung der Intensitäten Verminderung von Aliasing in der hierarchischen PBR Tangential disks optimaler Splat-footprint 22

23 Quantisiertes Surface Splatting Verwendung in der hierarchischen PBR Footprint approximieren durch Pixelmatrix Quantisierung der Splat-Normalen 8 Bit ohne Orientierung 64 verschiedene Splat-Formen Lookup-table für die Normalen Berechnung von Phong-Beleuchtung wie bei den Attributen besprochen ausblenden der letzten Bit des 13bit- Normalenindex für 8bit-Splat-Normalen 23

24 Point Rendering vs. Surface Splatting Frames rates? Points 16,3 5,1 1,4 Splatting 5,2 1,6 0,5 PBR-Tiefe: 9 #Punkte: 600K PBR-Tiefe: 11 #Punkte: 10,5 Mio PBR-Tiefe: 10 #Punkte: 2,6 Mio 24

25 Zusammenfassung Speicherbedarf pro Punkt mit Komprimierung Geometrie-Bytecodes Quantisierte Normalen (13 bit) Farben (8 bit) 2-3 bit 5-8 bit 2-6 bit Speicherbedarf in der Implementation 4 Byte pro Punkt durch Verwendung von Standard- Datentypen aber kein zusätzlicher Oktree fürs Rendering notwendig definierte Grenzen für Speicherbedarf und Aufwand bei Berechnungen Software-Implementation Iterativ möglich Schneller als QSplat 25

26 Vielen Dank für Ihre Aufmerksamkeit Kopfmodell von David : Zwischendarstellungen bei der Breiten-Traversierung (5, 15, 50 and 100%) 26

Überblick Echtzeit-Rendering. Uwe Domaratius dou@hrz.tu-chemnitz.de

Überblick Echtzeit-Rendering. Uwe Domaratius dou@hrz.tu-chemnitz.de Überblick Echtzeit-Rendering Uwe Domaratius dou@hrz.tu-chemnitz.de Gliederung 1. Einleitung 2. geometriebasierende Verbesserungen 3. Level-of-Detail 4. Culling 5. Texturen 6. bildbasiertes Rendering Was

Mehr

Punktbasiertes Rendering mit modernen Grafikkarten

Punktbasiertes Rendering mit modernen Grafikkarten Punktbasiertes Rendering mit modernen Grafikkarten Diplomarbeit im Fach Informatik vorgelegt von Carsten Dachsbacher geb. am 1. Dezember 1976 in Neuendettelsau angefertigt am Institut für Informatik Lehrstuhl

Mehr

Kodierungsalgorithmen

Kodierungsalgorithmen Kodierungsalgorithmen Komprimierung Verschlüsselung Komprimierung Zielsetzung: Reduktion der Speicherkapazität Schnellere Übertragung Prinzipien: Wiederholungen in den Eingabedaten kompakter speichern

Mehr

Inhalt. Bildaufnahme / Digitale Bilder. Kameras CCD Sensoren Auge Sampling / Aliasing Quantisierung

Inhalt. Bildaufnahme / Digitale Bilder. Kameras CCD Sensoren Auge Sampling / Aliasing Quantisierung Inhalt Bildaufnahme / Digitale Bilder Kameras CCD Sensoren Auge Sampling / Aliasing Quantisierung Abtastung, Parameter Aliasing-Beispiel: Unterabtastung einer periodischen Funktion. Rekonstruktion ergibt

Mehr

Point Rendering. Diplomarbeit

Point Rendering. Diplomarbeit Fachbereich 4: Informatik Point Rendering Diplomarbeit zur Erlangung des Grades eines Diplom-Informatikers im Studiengang Computervisualistik vorgelegt von Pascal Dietz Erstgutachter: Zweitgutachter: Prof.

Mehr

Martin Fiedler. Occlusion Culling

Martin Fiedler. Occlusion Culling Martin Fiedler Occlusion Culling Seminar Computergrafik Professur Grafische Datenverarbeitung und Visualisierung Fakultät für Informatik Technische Universität Chemnitz Inhalt Übersicht 2 Teil 1: Übersicht

Mehr

Algorithmen und Datenstrukturen Bereichsbäume

Algorithmen und Datenstrukturen Bereichsbäume Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung k-d Baum BSP Baum R Baum Motivation

Mehr

Kodierung. Kodierung von Zeichen mit dem ASCII-Code

Kodierung. Kodierung von Zeichen mit dem ASCII-Code Kodierung Kodierung von Zeichen mit dem ASCII-Code Weiterführende Aspekte zur Kodierung: Speicherplatzsparende Codes Fehlererkennende und -korrigierende Codes Verschlüsselnde Codes Spezielle Codes, Beispiel

Mehr

Grundlegende Algorithmen

Grundlegende Algorithmen 3D Spieleprogrammierung Grundlegende Algorithmen Übersicht Game Loop Spielarchitektur Aufäumen von Strukturen Vorbereiten für spätere Aufgaben Bewegungen Zeitmessung Zeitunabhängigkeit GameLoop Game Engine

Mehr

12. Modelle für 3D-Objekte und -Szenen

12. Modelle für 3D-Objekte und -Szenen 12. Modelle für 3D-Objekte und -Szenen Modell: Abbild der Realität, welches bestimmte Aspekte der Realität repräsentiert (und andere ausblendet) mathematische Modelle symbolische Modelle Datenmodelle Experimentalmodelle

Mehr

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind.

! DBMS organisiert die Daten so, dass minimal viele Plattenzugriffe nötig sind. Unterschiede von DBMS und files Speichern von Daten! DBMS unterstützt viele Benutzer, die gleichzeitig auf dieselben Daten zugreifen concurrency control.! DBMS speichert mehr Daten als in den Hauptspeicher

Mehr

Zahlensysteme: Oktal- und Hexadezimalsystem

Zahlensysteme: Oktal- und Hexadezimalsystem 20 Brückenkurs Die gebräuchlichste Bitfolge umfasst 8 Bits, sie deckt also 2 8 =256 Möglichkeiten ab, und wird ein Byte genannt. Zwei Bytes, also 16 Bits, bilden ein Wort, und 4 Bytes, also 32 Bits, formen

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Rendering Grundlagen Autodesk Maya. Grundlagen. Version 1.0-2009-04-08. 2009 Ingo Clemens brave rabbit www.braverabbit.de

Rendering Grundlagen Autodesk Maya. Grundlagen. Version 1.0-2009-04-08. 2009 Ingo Clemens brave rabbit www.braverabbit.de Rendering Grundlagen Version 1.0-2009-04-08 Allgemeine Unterschiede bei Renderern Scanline Rendering Raytrace Rendering Renderlayer Einsatz von Renderlayern Overrides Material Overrides Layer Presets Batch

Mehr

Computer Graphik. Mitschrift von www.kuertz.name

Computer Graphik. Mitschrift von www.kuertz.name Computer Graphik Mitschrift von www.kuertz.name Hinweis: Dies ist kein offizielles Script, sondern nur eine private Mitschrift. Die Mitschriften sind teweilse unvollständig, falsch oder inaktuell, da sie

Mehr

Grafikformate 1 Grafikformate 2 Grafikformate 3 Grafikformate 4 Grafikformate 5 Grafikformate 2 Lösungen: 1. Bild mit Hilfe eines Rasters von Punkten beschreiben Bitmap-Grafik 2. Bild in geometrische Objekte

Mehr

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung Erinnerung Arbeitsschritte der Computergraphik Modellierung Animation Generierung Ausgabemedium Graphik/-Pipeline Wandelt die Beschreibung einer Szene im dreidimensionalen Raum in eine zweidimensionale

Mehr

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Autentizierung und Bilderkennung Inhaltsverzeichnis 1 Einleitung Das graphische Model.1 Image Thinning................................. 3.

Mehr

Schulinternes Curriculum im Fach Informatik

Schulinternes Curriculum im Fach Informatik Schulinternes Curriculum im Fach Informatik Unterricht in EF : 1. Geschichte der elektronischen Datenverarbeitung (3 Stunden) 2. Einführung in die Nutzung von Informatiksystemen und in grundlegende Begriffe

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Texture Based Direct Volume Rendering

Texture Based Direct Volume Rendering Texture Based Direct Volume Rendering Vorlesung: "Advanced Topics in Computer Graphics" cbrak@upb.de 1 Agenda 1. Einleitung Volume Rendering 1.1. Volumendatensatz 1.2. Volumenintegral 1.3. Image order

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 6. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Datenkomprimierung Bei den meisten bisher betrachteten

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Volumenrendering. Modellierung der visuellen Erscheinung von semitransparenten, beleuchteten Objekten. Marcel Petrick

Volumenrendering. Modellierung der visuellen Erscheinung von semitransparenten, beleuchteten Objekten. Marcel Petrick Volumenrendering Modellierung der visuellen Erscheinung von semitransparenten, beleuchteten Objekten Marcel Petrick Einleitung Anwendung zur Visualisierung von Skalarfunktionen dreidimensionaler Variablen

Mehr

Kapitel 8: Physischer Datenbankentwurf

Kapitel 8: Physischer Datenbankentwurf 8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Computergrafik Bilder, Grafiken, Zeichnungen etc., die mithilfe von Computern hergestellt oder bearbeitet werden, bezeichnet man allgemein als Computergrafiken. Früher wurde streng zwischen Computergrafik

Mehr

Jan Parthey, Christin Seifert. 22. Mai 2003

Jan Parthey, Christin Seifert. 22. Mai 2003 Simulation Rekursiver Auto-Assoziativer Speicher (RAAM) durch Erweiterung eines klassischen Backpropagation-Simulators Jan Parthey, Christin Seifert jpar@hrz.tu-chemnitz.de, sech@hrz.tu-chemnitz.de 22.

Mehr

Sicherheit von PDF-Dateien

Sicherheit von PDF-Dateien Sicherheit von PDF-Dateien 1 Berechtigungen/Nutzungsbeschränkungen zum Drucken Kopieren und Ändern von Inhalt bzw. des Dokumentes Auswählen von Text/Grafik Hinzufügen/Ändern von Anmerkungen und Formularfeldern

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Kompakte Graphmodelle handgezeichneter Bilder

Kompakte Graphmodelle handgezeichneter Bilder Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Authentizierung und Bilderkennung Inhaltsverzeichnis Seminar Mustererkennung WS 006/07 Autor: Stefan Lohs 1 Einleitung 1 Das graphische Modell.1

Mehr

Quellen: Towards a Human Computer InteractionPerspective. Übersicht. Warum visuelle Sprachen? Begriffsdefinitionen: Hinderungsgründe bisher:

Quellen: Towards a Human Computer InteractionPerspective. Übersicht. Warum visuelle Sprachen? Begriffsdefinitionen: Hinderungsgründe bisher: Quellen: Towards a Human Computer InteractionPerspective von B.K. & B.K. LV: Visuelle Sprachen (03-763) Universität Bremen WS 2001/02 Visual Language Theory: Towards a Human- Computer Perspective; N. Hari

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Datenorganisation und Datenstrukturen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00

Mehr

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression

Grafikformate. Grafikformate. Digitale Bildverarbeitung Bildkompression Digitale Bildverarbeitung Bildkompression Einleitung Datenmenge für ein unkomprimiertes Bild Verwendungszweck des Bildes Bild soll weiterverarbeitet werden Bild soll archiviert werden Bild soll per E-Mail

Mehr

Computer Graphik II Tesselierung impliziter Kurven und Flächen

Computer Graphik II Tesselierung impliziter Kurven und Flächen Computer Graphik II impliziter Kurven und Flächen 1 impliziter Flächen Problem: Nullstellenmenge kann nicht explizit berechnet werden! Lösung: ApproximaCon der Fläche auf Zellen Beispiel 2D: f p ( )

Mehr

EDV-Anwendungen im Archivwesen II

EDV-Anwendungen im Archivwesen II EDV-Anwendungen im Archivwesen II 070472 UE WS08/09 Grundlagen der Digitalisierung Überblick Allgemeine Grundlagen der Digitalisierung anhand der Ton-Digitalisierung Abtastrate (Samplerate) Wortlänge (Bitrate)

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Billboard Clouds for Extreme Model Simplification

Billboard Clouds for Extreme Model Simplification Fakultät für Elektrotechnik, Informatik und Mathematik Arbeitsgruppe Algorithmen und Komplexität Prof. Friedhelm Meyer auf der Heide Billboard Clouds for Extreme Model Simplification Seminararbeit im Rahmen

Mehr

Teil 1: Modellierung. Einleitung. 3D Szene Inhalt. Objekte und ihre Beschreibung

Teil 1: Modellierung. Einleitung. 3D Szene Inhalt. Objekte und ihre Beschreibung Objekte und ihre Beschreibung Einleitung Computergraphik: 3D sehr wichtig photo-realistic rendering Computer-Animation, Modellierung Visualisierung, Virtual Reality Ansatz: per rendering wird eine 3D-Szene

Mehr

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in

Mehr

Repräsentation von Daten Binärcodierung ganzer Zahlen

Repräsentation von Daten Binärcodierung ganzer Zahlen Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes

Mehr

Visualisierung und Volumenrendering I

Visualisierung und Volumenrendering I Institut für Computervisualistik Universität Koblenz 05.07.2012 Inhaltsverzeichnis 1 Motivation 2 Volumendaten 3 Pipeline 4 Transferfunktionen 5 Gradienten 6 Volumenvisualisierung 7 IVR 8 DVR Wissenschaftliche

Mehr

Virtuelle Objekte und Szenerie

Virtuelle Objekte und Szenerie 3D Grafik und Animation Überblick Q-Medien GmbH Konzept Design Produktion Virtuelle Objekte und Szenerie Wie entsteht eigentlich ein 3D-Modell? Wir fangen mit einer 2D-Darstellung an und zeichnen ein Rechteck

Mehr

Raumbezogene Datenbanken (Spatial Databases)

Raumbezogene Datenbanken (Spatial Databases) Raumbezogene Datenbanken (Spatial Databases) Ein Vortrag von Dominik Trinter Alexander Christian 1 Inhalte Was ist ein raumbezogenes DBMS? Modellierung Abfragen Werkzeuge zur Implementierung Systemarchitektur

Mehr

OPERATIONEN AUF EINER DATENBANK

OPERATIONEN AUF EINER DATENBANK Einführung 1 OPERATIONEN AUF EINER DATENBANK Ein Benutzer stellt eine Anfrage: Die Benutzer einer Datenbank können meist sowohl interaktiv als auch über Anwendungen Anfragen an eine Datenbank stellen:

Mehr

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik Informatik I WS 2012/13 Tutorium zur Vorlesung 1. Alexander Zietlow zietlow@informatik.uni-tuebingen.de Wilhelm-Schickard-Institut für Informatik Eberhard Karls Universität Tübingen 11.02.2013 1. 2. 1.

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

GDV III - Geometric Computing detaillierterer Überblick 20.10.08 Dr. Dietmar Hildenbrand

GDV III - Geometric Computing detaillierterer Überblick 20.10.08 Dr. Dietmar Hildenbrand GDV III - Geometric Computing detaillierterer Überblick 20.10.08 Dr. Dietmar Hildenbrand Interactive Graphics Systems Group (GRIS) Technische Universität Darmstadt Heutige Themen Überblick über Ray-Tracer

Mehr

3D-Algebra Version 2

3D-Algebra Version 2 3D-Algebra Version 2 Fakultät für Mathematik und Informatik Datenbanksysteme für neue Anwendungen FernUniversität in Hagen 19.November 2015 c 2015 FernUniversität in Hagen Das Ziel Repräsentation von Punkten,

Mehr

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter

Tutoren Simon Andermatt Lukas Beck. Alexis Peter Thomas Ritter UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Assistenten Brian Amberg Andreas Forster Tutoren Simon Andermatt Lukas Beck Webseite http://informatik.unibas.ch/lehre/hs10/cs101/index.html

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha Scherrer. Grundlagen der Programmierung (CS101) - Blatt 8 Theorie [4 Punkte] - Praxis [12 Punkte]

Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha Scherrer. Grundlagen der Programmierung (CS101) - Blatt 8 Theorie [4 Punkte] - Praxis [12 Punkte] UNIVERSITÄT BASEL Dozent Prof. Dr. Thomas Vetter Departement Informatik Bernoullistrasse 16 CH 4056 Basel Assistenten Bernhard Egger Andreas Forster Tutoren Jan Ebbe Pat Mächler Valentino Rugolo Sascha

Mehr

1. Daten, Information, Wissen. 2. Fortsetzung Informationsdarstellung. 1. Zahlensysteme 1. Binärsystem, Hexadezimalsystem. 2. Bilder. 3.

1. Daten, Information, Wissen. 2. Fortsetzung Informationsdarstellung. 1. Zahlensysteme 1. Binärsystem, Hexadezimalsystem. 2. Bilder. 3. Überblick GRUNDKURS INFORMATIK 1 DATEN - INFORMATION - WISSEN 1. Daten, Information, Wissen 2. Fortsetzung Informationsdarstellung 1. Zahlensysteme 1. Binärsystem, Hexadezimalsystem 2. Bilder 3. Audio

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Schulinternes Curriculum für Informatik (Q2) Stand April 2015

Schulinternes Curriculum für Informatik (Q2) Stand April 2015 Schulinternes Curriculum für Informatik (Q2) Stand April 2015 Unterrichtsvorhaben Q2-I Thema: Modellierung und Implementierung von Anwendungen mit dynamischen, nichtlinearen Datenstrukturen Modellieren

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

Data Mining und Text Mining Einführung. S2 Einfache Regellerner

Data Mining und Text Mining Einführung. S2 Einfache Regellerner Data Mining und Text Mining Einführung S2 Einfache Regellerner Hans Hermann Weber Univ. Erlangen, Informatik 8 Wintersemester 2003 hans.hermann.weber@gmx.de Inhalt Einiges über Regeln und Bäume R1 ein

Mehr

MF Breadcrumbs. Sergej Schefer & Fabian Marx

MF Breadcrumbs. Sergej Schefer & Fabian Marx MF Breadcrumbs Sergej Schefer & Fabian Marx MF Breadcrumbs! Entwurf! Algorithmen! Screenshots / Live-Demo Entwurf! 2.5D Jump n Run! Spieler kann sich durch Level bewegen und Punkte aufsammeln! Freie Levelgestaltung

Mehr

TECHNISCHE UNIVERSITÄT DRESDEN. Diplomarbeit

TECHNISCHE UNIVERSITÄT DRESDEN. Diplomarbeit TECHNISCHE UNIVERSITÄT DRESDEN FAKULTÄT INFORMATIK INSTITUT FÜR SOFTWARE- UND MULTIMEDIATECHNIK PROFESSUR FÜR COMPUTERGRAPHIK UND VISUALISIERUNG PROF. DR. STEFAN GUMHOLD Diplomarbeit zur Erlangung des

Mehr

Wie erstellt man dynamische Elemente mit JSXGraph?

Wie erstellt man dynamische Elemente mit JSXGraph? Wie erstellt man dynamische Elemente mit JSXGraph? 1. Kurzinformation zu JSXGraph Was ist JSXGraph? Eine freie dynamische Mathematiksoftware, die vollständig in Javascript programmiert ist. Daher benötigt

Mehr

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese

:= Modellabbildung. Bildsynthese (Rendering) Bildsynthese Geometrisches Modell bestehend aus Datenstrukturen zur Verknüpfung geometrischer Primitive, welche eine Gesamtszene beschreiben Bildsynthese := Modellabbildung Pixelbasiertes Modell zur Darstellung eines

Mehr

Rasterdaten in ArcGIS Lutz Ernesti Team Vertrieb Hannover

Rasterdaten in ArcGIS Lutz Ernesti Team Vertrieb Hannover Lutz Ernesti Team Vertrieb Hannover Was ist ein Raster? Raster = Image = Bild Eine graphische Repräsentation Meist optisch oder elektronisch produziert Zelle = Pixel Eine Anzahl von Rechtecken (Pixel)

Mehr

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation Bildtransformationen Geometrische Transformationen Grauwert-Interpolation Transformation Transformation zwei Schritte geometrische Transformation (Trafo der Koordinaten) Neuberechnung der Pielwerte an

Mehr

Schwerpunkt Vektor vs. Pixel

Schwerpunkt Vektor vs. Pixel the making of unregelmäßige Publikation Habemus Dito, Design Agentur Schwerpunkt Vektor vs. Pixel Neu in München Teil 1 Bürogemeinschaft I ngrid Tancsics, Innenarchitektur Schwerpunkt Vektor vs. Pixel

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi Motivation Themenblock: Data Preprocessing We are drowning in information, but starving for knowledge! (John Naisbett) Was genau ist Datenanalyse? Praktikum: Data Warehousing und Data Mining Was ist Data

Mehr

1 Einleitung 1 1.1 Motivation... 1 1.2 Zielsetzung... 4 1.3 Aufbau und Gliederung der Arbeit... 5

1 Einleitung 1 1.1 Motivation... 1 1.2 Zielsetzung... 4 1.3 Aufbau und Gliederung der Arbeit... 5 1 Einleitung 1 1.1 Motivation.................................... 1 1.2 Zielsetzung................................... 4 1.3 Aufbau und Gliederung der Arbeit...................... 5 2 Hygromechanische

Mehr

Programmieren. 10. Tutorium 4./ 5. Übungsblatt Referenzen

Programmieren. 10. Tutorium 4./ 5. Übungsblatt Referenzen Programmieren 10. Tutorium 4./ 5. Übungsblatt Inhalt I. Übungsblatt 4 II. III. - Rückgabe und Besprechung - Vorbereitung auf Wiederholung/ Nachtrag - Operatorpräzedenzen IV. Übungsblatt 5 - Vorstellung

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Werbung entfernen mit VirtualDub. Werbung entfernen mit VirtualDub

Werbung entfernen mit VirtualDub. Werbung entfernen mit VirtualDub Werbung entfernen mit VirtualDub 8. Besser ohne: Herausschneiden der Werbung und Logos Die meisten Fernsehaufnahmen werden durch Werbepausen und Senderlogos gestört. Dabei gibt es einfache Möglichkeiten,

Mehr

Real-Time 3D Model Acquisition

Real-Time 3D Model Acquisition Seminarvortrag Real-Time 3D Model Acquisition Alexander Barth Nach Folien von Szymon Rusinkiewicz, Olaf Hall-Holt und Marc Levoy Einführung 3D-Scannen 2 Einführung Ziele Hohe Präzision Hohe Geschwindigkeit

Mehr

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL

Relationales Modell: SQL-DDL. SQL als Definitionssprache. 7. Datenbankdefinitionssprachen. Anforderungen an eine relationale DDL Relationales Modell: SQLDDL SQL als Definitionssprache SQLDDL umfaßt alle Klauseln von SQL, die mit Definition von Typen Wertebereichen Relationenschemata Integritätsbedingungen zu tun haben Externe Ebene

Mehr

Direct Volume Rendering

Direct Volume Rendering Direct Volume Rendering Seminar im Wintersemester 2003/04 Karsten Schwenk k schwen@informatik.uni-kl.de April 2004 Betreuer: Gerd Reis AG Graphische Datenverarbeitung und Computergeometrie Fachbereich

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Fakultät Wirtschaftswissenschaft

Fakultät Wirtschaftswissenschaft Fakultät Wirtschaftswissenschaft Matrikelnr. Name Vorname KLAUSUR: Entwurf und Implementierung von Informationssystemen (32561) TERMIN: 11.09.2013, 14.00 16.00 Uhr PRÜFER: Univ.-Prof. Dr. Stefan Strecker

Mehr

AutoSPARQL. Let Users Query Your Knowledge Base

AutoSPARQL. Let Users Query Your Knowledge Base AutoSPARQL Let Users Query Your Knowledge Base Christian Olczak Seminar aus maschinellem Lernen WS 11/12 Fachgebiet Knowledge Engineering Dr. Heiko Paulheim / Frederik Janssen 07.02.2012 Fachbereich Informatik

Mehr

Erster Schritt mit Mocha:

Erster Schritt mit Mocha: Was ist Mocha for After Effects CS4? Mocha ist ein Advanced Tracking System das im Gegensatz zu After Effects nicht auf Pixeln und Kontrastkanten basiert, sondern auf Formen die unter Mustererkennung im

Mehr

P2P-Netzwerke für dynamische 3D-Szenen

P2P-Netzwerke für dynamische 3D-Szenen P2P-Netzwerke für dynamische 3D-Szenen Projektgruppe im WS 2003/2004 High Performance = Innovative Computer Systems + Efficient Algorithms Jens Krokowski 1 Problemstellung hochdynamische 3D-Szene Spieler/Objekte

Mehr

Objektrelationale und erweiterbare Datenbanksysteme

Objektrelationale und erweiterbare Datenbanksysteme Objektrelationale und erweiterbare Datenbanksysteme Erweiterbarkeit SQL:1999 (Objekt-relationale Modellierung) In der Vorlesung werden nur die Folien 1-12 behandelt. Kapitel 14 1 Konzepte objekt-relationaler

Mehr

Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian. Dauer: 30 min jeweils. Note: 1.

Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian. Dauer: 30 min jeweils. Note: 1. Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian Dauer: 30 min jeweils Note: 1.0 jeweils Alles in allem eine lockere Atmosphäre, man bekommt genug Papier und

Mehr

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000)

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000) Planare Projektionen und Betrachtungstransformation Quelle: Angel (2) Gliederung Einführung Parallelprojektionen Perspektivische Projektionen Kameramodell und Betrachtungstransformationen Mathematische

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Direkte Volumenvisualisierung

Direkte Volumenvisualisierung Universität Stuttgart Direkte Volumenvisualisierung Seminar Medizinische Visualisierung SS06 Alexander Lauser Struktur des Vortrags Motivation Grundlagen Volume Render-Algorithmen Raycasting Volume-slicing

Mehr

3D-Visualisierung. Stefan Wesarg. Graphisch-Interaktive Systeme (GRIS) Technische Universität Darmstadt. Fraunhoferstraße 5 64283 Darmstadt

3D-Visualisierung. Stefan Wesarg. Graphisch-Interaktive Systeme (GRIS) Technische Universität Darmstadt. Fraunhoferstraße 5 64283 Darmstadt 3D-Visualisierung Stefan Wesarg Graphisch-Interaktive Systeme (GRIS) Technische Universität Darmstadt Fraunhoferstraße 5 64283 Darmstadt http://www.gris.informatik.tu-darmstadt.de Seminar Kardiologie Darmstadt,

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Zielstellung - "bildhafte" Darstellung von Informationen. "Ein Bild sagt mehr als 1000 Worte"

Zielstellung - bildhafte Darstellung von Informationen. Ein Bild sagt mehr als 1000 Worte Informatik - Präsentation / Graphik 1 Präsentation / Graphik Zielstellung - "bildhafte" Darstellung von Informationen "Ein Bild sagt mehr als 1000 Worte" - Aufnahmefähigkeit des Menschen Lesen 10-150 Bit/s

Mehr

Terrain-Rendering mit Geometry Clipmaps

Terrain-Rendering mit Geometry Clipmaps Vorarbeiten & Grundlagen Basiskomponenten Der Clipmap-Algorithmus Terrain-Rendering mit Seminar Computergrak 2010 Vorarbeiten & Grundlagen Basiskomponenten Der Clipmap-Algorithmus Worum geht's? Algorithmus

Mehr

Spline-artige Kurven auf Subdivision Surfaces. Jörn Loviscach Hochschule Bremen, Germany

Spline-artige Kurven auf Subdivision Surfaces. Jörn Loviscach Hochschule Bremen, Germany Spline-artige Kurven auf Subdivision Surfaces Jörn Loviscach Hochschule Bremen, Germany Überblick Spline-artige Kurven auf Spline-Flächen Kurven auf SDS: Problem, Anwendung Verwandte Arbeiten Spline-artige

Mehr

Kapitel 6: Graphalgorithmen Gliederung

Kapitel 6: Graphalgorithmen Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Einführung in Bildverarbeitung und Computervision

Einführung in Bildverarbeitung und Computervision Einführung in Bildverarbeitung und Computervision Vorlesung 1: Grundlagen Dipl.-Math. Dimitri Ovrutskiy SS 2010 HTWdS Auf Basis der Vorlesungen von und mit Danksagung an Hr. Prof. Dr. J. Weikert Bildverarbeitung

Mehr

Volumen Visualisierung

Volumen Visualisierung Volumen Visualisierung Seminar Interaktive Visualisierung (WS 06/07) Fabian Spiegel und Christian Meß Fabian Spiegel und Christian Meß 1 Übersicht Anwendungsbeispiele Volumendaten Entstehung Repräsentation

Mehr

D A T E N... 1 Daten Micheuz Peter

D A T E N... 1 Daten Micheuz Peter D A T E N.....! Symbole, Alphabete, Codierung! Universalität binärcodierter Daten! Elementare Datentypen! Speicherung binärcodierter Daten! Befehle und Programme! Form und Bedeutung 1 Daten Micheuz Peter

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr