Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39"

Transkript

1 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.0/39 Lerziele 1. Formuliere, was geschätzt wird. 2. Uterscheide Puktschätzer ud Itervallschätzer. 3. Erkläre Itervallschätzer. 4. Bereche Kofidezitervalle für Mittelwerte ud Ateile. 5. Bereche otwedige Stichprobegröße. Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.1/39 Was sid ud wozu braucht ma Schätzer? Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.2/39

2 Wir sid iteressiert a der durchschittliche Körpergröße aller Studetie ud Studete im Hörsaal (der Grudgesamtheit). Wie köe wir sie bestimme? Vollerhebug Messe Körpergröße aller Awesede. (zeitaufwedig ud teuer; i viele Probleme umöglich) Teilerhebug Messe Körpergrösse eier kleie zufällige Auswahl vo Awesede (Stichprobe). (Schätzwert mit Usicherheit aber berechebar) Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.3/39 Statistische Methode Statistische Methode Beschreibede Statistik Schließede Statistik Schätze Teste Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.4/39 Schätze eies Parameters Grudgesamtheit Parameter µ ubekat Stichprobe (Zufallsauswahl) Mit 95%iger Sicherheit liegt µ zwische 160cm ud 190cm. Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.5/39

3 Parameter Stichprobestatistik Mittel µ x Ateil θ p Differez µ 1 µ 2 x 1 x 2 viele adere θ 1 θ 2 p 1 p 2 Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.6/39 Schätzmethode Schätze Puktschätzer Itervallschätzer Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.7/39 Puktschätzer Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.8/39

4 Liefert eie eizele Zahl. Basiered auf eier Stichprobe. Keie Iformatio über die Abweichug vom ubekate Parameter. Beispiel: Der bekate Stichprobemittelwert x 175 ist ei Puktschätzer für de ubekate Parameter µ. Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.9/39 Itervallschätzer Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.10/39 Itervallschätzer Liefert ei Itervall für de ubekate Parameter. Basiered auf eier Stichprobe. Gibt Iformatio über die Abweichug vom ubekate Parameter. Ausgedrückt durch Wahrscheilichkeite. Exakte Agabe würde Ketis des (ubekate) Parameters erforder. Beispiel: Der ubekate Mittelwert liegt zwische 160cm ud 190cm mit eier Sicherheit vo 95%. Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.11/39

5 Parameter fällt mit bekater Wahrscheilichkeit i das Itervall. Kofidezitervall uterer Rad oberer Rad x Stichprobestatistik (Puktschätzer) Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.12/39 Kofidezitervall Parameter = Statistik Fehler 1. µ X Fehler 2. Fehler X µ oder X µ 3. Z X µ σ x Fehler σ x (stadard-ormalverteilt) 4. Fehler Z σ x 5. µ X Z σ x Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.13/39 Stichprobeverteilug des Mittels X µ Z σ x µ 1.65σ x µ 1.96σ x µ 2.58σ x µ 90% der Stichprobe 95% der Stichprobe 99% der Stichprobe x Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.14/39

6 Das Kofideziveau ist die Wahrscheilichkeit, dass das Itervall de ubekate Parameter überdeckt. Wird mit 1 % bezeichet. ist die Wahrscheilichkeit, dass das Itervall icht de Parameter überdeckt. Typische Werte für 1 % sid: 90%, 95% ud 99%. Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.15/39 Itervalle ud Kofideziveau Stichprobeverteilug µ x µ Kostruiere X zσ x, X zσ x Davo: 1 % aller KI überdecke µ. % icht. Viele Kofidezitervalle Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.16/39 Kofidezitervall // Eiflüsse auf die Läge KI X zσ x, X zσ x Streuug der Date. Gemesse durch die Stadardabweichug σ. Stichprobegröße. σ σ x Kofideziveau 1. Bestimmt z. Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.17/39

7 Mittel Ateil σ bekat σ ubekat Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.18/39 Kofidezitervall für Mittel (σ bekat) Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.19/39 Kofidezitervall // Berechug Kofidezitervall Kofidezitervall Mittel Ateil σ bekat σ ubekat Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.20/39

8 Voraussetzuge: Grudgesamtheit ist ormalverteilt. Falls icht, köe Stichprobe mit Größe 30 äherugsweise als ormalverteilt ageomme werde. (zetraler Grezwertsatz) Stadardabweichug σ i der Grudgesamtheit ist bekat. Berechug des 1 -Kofidezitervalls: z 1 2 : P z 1 2 Z z X z 1 σ µ X z 1 σ Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.21/39 Beispiel Das Mittel eier Stichprobe der Größe 25 ist x 50. Wie lautet das 95% Kofidezitervall für µ, falls die Stadardabweichug der ormalverteilte Grudgesamtheit σ 10 beträgt? X z 1 σ µ X z 1 σ z hägt vo Normalverteilug ud vom Kofideziveau ab: , 0.05, : z µ µ Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.22/39 Beispiel Die Stadardabweichug beim Befülle vo 2-Liter-Weiflasche beträgt σ 0.05 Liter. Bei eier Kotrolle der Abfüllmaschie werde 100 Flasche zufällig ausgewählt ud die abgefüllte Weimege bestimmt. Der dabei bestimmte Stichprobemittelwert beträgt x 1.99 Liter. Was ist das 90% Kofidezitervall für die tatsächliche mittlere Füllmege? X z σ µ X z 1 σ µ µ Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.23/39

9 Kofidezitervall für Mittel (σ ubekat) Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.24/39 Kofidezitervall // Berechug Kofidezitervall Mittel Ateil σ bekat σ ubekat Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.25/39 KI für Mittel (σ ubekat) Voraussetzug: Grudgesamtheit (äherugsweise) ormalverteilt. Stadardabweichug der Grudgesamtheit ubekat. Stadardabweichug σ muss durch Stichprobestadardabweichug S geschätzt werde. Usicherheit S größer größeres Kofidezitervall Verwede t-verteilug (Studet-Verteilug). Berechug des 1 -Kofidezitervalls: X t 1 2, 1 S µ X t 1 2, 1 S Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.26/39

10 Wahrscheilichkeit für Abstad vom Mittelwert höher Normalverteilug Studets t-verteilug (ν 2) 0 t Z Form hägt vo de Freiheitsgrade ν ab. Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.27/39 Freiheitsgrade Die Azahl der Beobachtuge, die variiert werde köe, ohe dass sich die Stichprobestatistik ädert. Azahl Freiheitsgrade ν = 1 Die Summe vo 3 Zahle ist 6 (=Stichprobestatistik). X 1 = 1 (oder irged eie adere Zahl) X 2 = 2 (oder irged eie adere Zahl) X 3 = 3 (ka icht verädert werde) Summe = 6 Azahl Freiheitsgrade = 3 1 = 2 Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.28/39 Studets t-verteilug // Tabelle t-verteilug Tabelle(Auszug): P T t 1 ν t-werte Beispiel: 3, ν , t 1,ν t 0.95, t,ν t 1,ν t 1,ν Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.29/39 t

11 Das Mittel eier Stichprobe der Größe 25 ist x 50 mit (Stichprobe-) Stadardabweichug s 8. Wie lautet das 95% Kofidezitervall für µ? (ν 1 24) X t 1 2, 1 S µ X t 1 2, 1 S µ µ Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.30/39 Beispiel Bei Kotrolle eies computergesteuerte Nähautomate wurde folgede Bearbeitugszeite (i Miute) gemesse: 3.6, 4.2, 4.0, 3.5, 3.8, 3.1 Wie lautet das 90% Kofidezitervall für die durchschittliche Bearbeitugszeit? X t 1 2, 1 S µ X t 1 2, 1 x s , s 0.159, ν 1 5, t 0.95, µ µ S Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.31/39 Kofidezitervall für Ateilswerte Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.32/39

12 Kofidezitervall Mittel Ateil σ bekat σ ubekat Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.33/39 Kofidezitervall für Ateilswerte Voraussetzug: Zwei mögliche Auspräguge: hat Eigeschaft / hat Eigeschaft icht Grudgesamtheit ist biomialverteilt. Der Ateilswert p ist i eier große Stichprobe äherugsweise ormalverteilt. (Faustregel: p 1 p 9) Berechug des Kofidezitervalls: p z 1 p 1 p θ p z 1 p 1 p Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.34/39 Beispiel Bei eier Umfrage gebe vo 32 vo 400 Befragte a, das eue Waschmittel Gigaweiß bereits zu kee. Wie lautet das 95 % Kofidezitervall für de Ateil θ i der Grudgesamtheit? p z 1 p 1 p θ p z 1 p 1 p 400, p , z 1 2 z θ θ Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.35/39

13 Bestimmug der Stichprobegröße Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.36/39 Notwedige Stichprobegröße Wie groß muss die Stichprobe sei, damit mei Kofidezitervall für µ klei geug ist? Ich möchte aber auch keie zu große Stichprobe habe! (Das Kofideziveau halte wir fest.) 1. Z X µ σ x Fehler σ x 2. Fehler Z σ x Z σ 3. Stichprobegröße Z 2 σ 2 Fehler 2 z σ 2 Fehler 2 Der Fehler ist hier die maximale zulässige Abweichug vo µ. Die Läge des KI ist 2 Fehler. Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.37/39 Beispiel Ei Parameter µ soll bestimmt werde. Wie groß sollte die Stichprobe sei, damit das Ergebis mit 90% Sicherheit auf 5 Eiheite geau bestimmt werde ka? (D.h., das 90% Kofidezitervall sollte, z.b., 85, 95 laute.) Eie Vorerhebug lässt darauf schließe, dass die Stadardabweichug σ 45 beträgt. Stichprobegröße z σ 2 Fehler Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.38/39

14 1. Formulierte, was geschätzt wird. 2. Uterschiede Puktschätzer ud Itervallschätzer. 3. Erklärte Itervallschätzer. 4. Berechete Kofidezitervalle für Mittelwerte ud Ateile. 5. Berechete die otwedige Stichprobegröße. Statistik Eiführug // Kofidezitervalle für eie Parameter 7 p.39/39

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Quantitative Methoden in der klinischen Epidemiologie Der statistische Test

Quantitative Methoden in der klinischen Epidemiologie Der statistische Test Lerziele Quatitative Methode i der kliische Epidemiologie Der statistische Test Dr. Markus Pfirrma pfi@ibe.med.ui-mueche.de IBE Der Statistische Test Im Zetrum jeder kliische ud epidemiologische Studie

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

2.4.1 Grundprinzipien statistischer Hypothesentests

2.4.1 Grundprinzipien statistischer Hypothesentests 86 2.4. Hypothesetests 2.4 Hypothesetests 2.4.1 Grudprizipie statistischer Hypothesetests Hypothese: Behauptug eier Tatsache, dere Überprüfug och aussteht (Leuter i: Edruweit, Trommsdorff: Wörterbuch der

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

6.6 Grundzüge der Fehler- und Ausgleichsrechnung 6.6.1 Fehlerarten- Aufgaben der Fehler- und Ausgleichsrechnung physikalisch-technische Experiment

6.6 Grundzüge der Fehler- und Ausgleichsrechnung 6.6.1 Fehlerarten- Aufgaben der Fehler- und Ausgleichsrechnung physikalisch-technische Experiment 103 66 Grudzüge der Fehler- ud Ausgleichsrechug 661 Fehlerarte- Aufgabe der Fehler- ud Ausgleichsrechug Jedes physikalisch-techische Experimet liefert gewisse gemessee Werte x Bei dem Messvorgag verwede

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Inhaltsverzeichnis Office Excel 2003 - Themen-Special: Statistik I

Inhaltsverzeichnis Office Excel 2003 - Themen-Special: Statistik I W-EX2003S Autor: Christia Müster Ihaltliches Lektorat: Peter Wies Überarbeitete Ausgabe vom 23. Mai 2007 by HERDT-Verlag für Bildugsmedie GmbH, Bodeheim Microsoft Office Excel 2003 für Widows Theme-Special:

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

Stichproben im Rechnungswesen, Stichprobeninventur

Stichproben im Rechnungswesen, Stichprobeninventur Stichprobe im Rechugswese, Stichprobeivetur Prof Dr Iree Rößler ud Prof Dr Albrecht Ugerer Duale Hochschule Bade-Württemberg Maheim Im eifachste Fall des Dollar-Uit oder Moetary-Uit Samplig (DUS oder MUS-

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

elektr. und magnet. Feld A 7 (1)

elektr. und magnet. Feld A 7 (1) FachHochschule Lausitz Physikalisches Praktikum α- ud β-strahlug im elektr. ud maget. Feld A 7 Name: Matrikel: Datum: Ziel des Versuches Das Verhalte vo α- ud β-strahlug im elektrische ud magetische Feld

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

Einführung in die Investitionsrechnung

Einführung in die Investitionsrechnung Eiführug i die Ivestitiosrechug Geld ud / oder Zeit Frage: Wie viel ist mei Geld morge wert? Wie viel muss ma jährlich zahle, um i Jahre eie bestimmte Betrag gespart zu habe? Wie lage muss bei eiem gegebee

Mehr

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung

5 Bernoulli-Kette. 5.1 Bernoulli-Experiment. Jakob Bernoulli 1654-1705 Schweizer Mathematiker und Physiker. 5.1.1 Einleitung Seite vo 7 5 Beroulli-Kette Jakob Beroulli 654-705 Schweizer Mathematiker ud Physiker 5. Beroulli-Exerimet 5.. Eileitug Oft iteressiert ma sich bei Zufallsexerimete icht für die eizele Ergebisse, soder

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Aufbaustudium Grüdugscotrollig Lösugshiweise zur 3. Musterklausur Lösugshiweise

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Kerncurriculum Berufliche Gymnasien Niedersachsen Stochastik

Kerncurriculum Berufliche Gymnasien Niedersachsen Stochastik Jes Hellig Herausgeber: Klaus Schillig Kercurriculum Berufliche Gymasie Niedersachse Stochastik Darstelle Auswerte Beurteile 2. Auflage Bestellummer 03330 Habe Sie Areguge oder Kritikpukte zu diesem Produkt?

Mehr

"Ich glaube nur die Statistik, die ich selbst gefälscht habe."

Ich glaube nur die Statistik, die ich selbst gefälscht habe. THEORETISCHE GRUNDLAGEN I der Biophysik versuche wir biologische Vorgäge mit physikalische Methode zu utersuche ud zu verstehe. Wir setze dabei voraus, dass biologische Größe quatitativ gemesse ud mit

Mehr

3. Einführung in die Statistik

3. Einführung in die Statistik 3. Eiführug i die Statistik Grudlegedes Modell zu Date: uabhägige Zufallsgröße ; : : : ; mit Verteilugsfuktio F bzw. Eizelwahrscheilichkeite p ; : : : ; p r i de Aweduge: kokrete reale Auspräguge ; : :

Mehr

Kapitel 1. Einige Begriffe aus der Asymptotik. 1.1 Wiederholung

Kapitel 1. Einige Begriffe aus der Asymptotik. 1.1 Wiederholung Kapitel Eiige Begriffe aus der Asymptotik. Wiederholug Eiwesetlicher Teil der Ökoometrie befasst sichmit der Ermittlug voschätzer ud dere Eigeschafte. Diese werde beötigt, um aus de beobachtbare Date eier

Mehr

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I

Model CreditRisk + : The Economic Perspective of Portfolio Credit Risk Part I Model CreditRisk + : The Ecoomic Perspective of Portfolio Credit Risk Part I Semiar: Portfolio Credit Risk Istructor: Rafael Weißbach Speaker: Pablo Kimmig Ageda 1. Asatz ud Ziele Was ist CreditRisk +

Mehr

Robuste Asset Allocation in der Praxis

Robuste Asset Allocation in der Praxis Fiazmarkt Sachgerechter Umgag mit Progosefehler Robuste Asset Allocatio i der Praxis Pesiosfods ud adere istitutioelle Aleger sid i aller Regel a ei bestimmtes Rediteziel (Rechugszis) gebude, das Jahr

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff

Mehr

Internet-Zahlungsverfahren aus Sicht der Händler: Ergebnisse der Umfrage IZH5

Internet-Zahlungsverfahren aus Sicht der Händler: Ergebnisse der Umfrage IZH5 Iteret- aus Sicht der Hädler: Ergebisse der Umfrage IZH5 Vorab-Kurzauswertug ausgewählter Aspekte Dezember 2009 1 Gegestad ud ausgewählte Ergebisse der Studie Mit der aktuelle füfte Umfragewelle zum Thema

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

Empirische Methoden I

Empirische Methoden I Hochschule für Wirtschaft ud 2012 Umwelt Nürtige-Geislige Fakultät Betriebswirtschaft ud Iteratioale Fiaze Prof. Dr. Max C. Wewel Prof. Dr. Corelia Niederdrek-Felger Aufgabe zum Tutorium Empirische Methode

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Arbeitsplätze in SAP R/3 Modul PP

Arbeitsplätze in SAP R/3 Modul PP Arbeitsplätze i SAP R/3 Modul PP Was ist ei Arbeitsplatz? Der Stadort eier Aktioseiheit, sowie dere kokrete räumliche Gestaltug Was ist eie Aktioseiheit? kleiste produktive Eiheit i eiem Produktiosprozess,

Mehr

Statistik und Wahrscheinlichkeitslehre

Statistik und Wahrscheinlichkeitslehre Statistik ud Wahrscheilichkeitslehre Zufall ud Mittelwerte Für alle techische Studiegäge Prof. Dr.-Ig. habil. Thomas Adamek Grudlage der Wahrscheilichkeitsrechug. Eiführug Grudlage vo Statistik ud Wahrscheilichkeitsrechug

Mehr

Statistik. Deskriptive Statistik. Deskriptive Statistik. Deskriptive Statistik

Statistik. Deskriptive Statistik. Deskriptive Statistik. Deskriptive Statistik AGAH Aual Meetig 004, Berli Grudlage der Biometrie Beschreibede ud schließede Statistik i kliische Studie Jede mathematische Formel reduziert die Azahl der Zuhörer um 50% PD Dr. Thomas Sudhop & Dr. med.

Mehr

1 Einführung in die Fehlerrechnung

1 Einführung in die Fehlerrechnung Physik für Biologie ud Zwei-Fächer-Bachelor Chemie Kap.: Eiführug i die Fehlerrechug Eiführug i die Fehlerrechug Tiefemessschiee Abbildug: Messschieber. Theoretische Grudlage Bei jeder physikalische Messug

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Vorlesung Experimentalphysik I am 16.10.2000 und 17.10.2000 J. Ihringer

Vorlesung Experimentalphysik I am 16.10.2000 und 17.10.2000 J. Ihringer V1_1Messe.DOC 1 Vorlesug Experimetalphysik I am 16.10.2000 ud 17.10.2000 J. Ihriger 1 Mechaik Die Mechaik ist die Lehre vo der Bewegug ud Verformug vo Körper uter dem Eifluß vo Kräfte. I der Mechaik der

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

Zur Ableitung zulässiger Messunsicherheiten

Zur Ableitung zulässiger Messunsicherheiten Zur Ableitug zulässiger Messusicherheite aus Toleraze bei Igeieurvermessuge a Krabahe Has Schulz Vo de jeweilige Herstelltoleraze ist für die Vermessug ei bestimmter Ateil die Vermessugstoleraz vorzusehe,

Mehr

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Daten und Zufall in der Jahrgangsstufe 9 Seite 1

Daten und Zufall in der Jahrgangsstufe 9 Seite 1 Date ud uall i der Jahrgagsstue Seite usammegesetzte uallsexperimete, Padregel Aubaued au de Erahruge aus de vorhergehede Jahrgagsstue beschätige sich die Schüler systematisch mit zusammegesetzte uallsexperimete

Mehr

Service-Paket Druckluft: kleine und mittlere Anlagen

Service-Paket Druckluft: kleine und mittlere Anlagen Service-Paket Druckluft: kleie ud mittlere Alage Arbeitsistrumet für de Druckluft-Abieter Bei der Erzeugug vo Druckluft biete sich beachtliche Chace zur Sekug der Eergiekoste. Die Kotrolle ud Wartug des

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr

Byzantinische Einigung im Full-Information-Modell in O(log n) Runden

Byzantinische Einigung im Full-Information-Modell in O(log n) Runden Byzatiische Eiigug im Full-Iformatio-Modell i O(log ) Rude Martia Hüllma Uiversität Paderbor (martiah@upb.de) Zusammefassug. Byzatiische Eiigug stellt ei grudlegedes Problem im Bereich verteilter Systeme

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58. eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases

Mehr

Fingerprinting auf Basis der Geometrischen Struktur von Videos

Fingerprinting auf Basis der Geometrischen Struktur von Videos 35.1 Figerpritig auf Basis der Geometrische Struktur vo Videos Dima Pröfrock, Mathias Schlauweg, Erika Müller Uiversität Rostock, Istitut für Nachrichtetechik, Richard Wager Str. 31, 18119 Rostock, {dima.proefrock,

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Einführung in die mathematische Statistik

Einführung in die mathematische Statistik Kapitel 7 Eiführug i die mathematische Statistik 7.1 Statistische Modellierug Bei der Modellierug eies Zufallsexperimets besteht oft Usicherheit darüber, welche W-Verteilug auf der Ergebismege adäquat

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

Monte Carlo-Simulation

Monte Carlo-Simulation Mote Carlo-Simulatio Mote Carlo-Methode Der Begriff Mote Carlo-Methode etstad i de 1940er Jahre, als ma im Zusammehag mit dem Bau der Atombombe die Simulatio vo Zufallsprozesse erstmals i größerem Stil

Mehr

KUNDENPROFIL FÜR GELDANLAGEN

KUNDENPROFIL FÜR GELDANLAGEN KUNDENPROFIL FÜR GELDANLAGEN Geldalage ist icht ur eie Frage des Vertraues, soder auch das Ergebis eier eigehede Aalyse der Fiazsituatio! Um Ihre optimale Beratug zu gewährleiste, dokumetiere wir gemeisam

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur.

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur. PS - OPTIK P. Redulić 2007 LICHT STRAHLENOPTIK LICHT. Lichtquelle ud beleuchtete Körper Sichtbare Körper sede teilweise Licht aus, teilweise reflektiere sie aber auch das auf sie fallede Licht. Lichtquelle

Mehr

4 Punkt- und Intervallschätzung

4 Punkt- und Intervallschätzung W. Timischl, Agewadte Statistik - Formel (Agewadte Statistik Bachelor-Bioegieerig/Biotechologie) 4 Pukt- ud Itervallschätzug 4. Mittelwert ud Variaz Zufallsstichprobe der metrische Variable X vom Umfag

Mehr

Feldeffekttransistoren in Speicherbauelementen

Feldeffekttransistoren in Speicherbauelementen Feldeffekttrasistore i Speicherbauelemete DRAM Auch we die Versorgugsspaug aliegt, ist ei regelmäßiges (typischerweise eiige ms) Refresh des Speicherihaltes erforderlich (Kodesator verliert mit der Zeit

Mehr

beck-shop.de 2. Online-Marketing

beck-shop.de 2. Online-Marketing beck-shop.de 2. Olie-Marketig aa) Dateschutzrechtliche Eiwilligug immer erforderlich Ohe Eiwilligug des Nutzers ist eie Erhebug persoebezogeer Date icht zulässig. Eie derartige Eiwilligug ka auch icht

Mehr

Ein kleines Einmaleins über Mittelwertbildungen

Ein kleines Einmaleins über Mittelwertbildungen Vorlesugsergäzug zur Igeieurmathematik R.Brigola Ei kleies Eimaleis über Mittelwertbilduge Grudlage über arithmetische Mittel, geometrische Mittel, harmoische Mittel, quadratische Mittel ud das arithmetisch-geometrische

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Datenauswertung. Prof. Dr. Josef Brüderl Universität Mannheim. Frühjahrssemester 2007

Datenauswertung. Prof. Dr. Josef Brüderl Universität Mannheim. Frühjahrssemester 2007 Dateauswertug Prof. Dr. Josef Brüderl Uiversität Maheim Frühjahrssemester 007 Methode-Curriculum B.A. Soziologie Basismodul: Methode ud Statistik: VL Dateerhebug (): 5 ÜK (): 3 ----------------------------------------------------------

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Glücksspielverhalten in Bayern

Glücksspielverhalten in Bayern Glücksspielverhalte i Bayer 1 Zielsetzug Schätzuge aus Bevölkerugsstudie zu Glücksspiel i Deutschlad zu Folge habe um die 70% der Deutsche scho eimal gespielt (Bühriger, Kraus, Sotag, Pfeiffer-Gerschel,

Mehr

Versuch D3: Energiebilanz einer Verbrennung

Versuch D3: Energiebilanz einer Verbrennung Versuch D: Eergiebilaz eier Verbreug 1. Eiführug ud Grudlage 1.1 Eergiebilaz eier Verbreug Die Eergiebilaz eier Verbreug wird am eispiel eier kleie rekammer utersucht, i welcher die bei der Verbreug vo

Mehr

APPENDX 3 MPS Umfragebögen

APPENDX 3 MPS Umfragebögen APPENDX 3 MPS Umfrageböge Iformatio zur Mitarbeiterbefragug Liebe Mitarbeiteri, lieber Mitarbeiter, die Etwicklug eies eiheitliche Produktiossystems für Mercedes-Bez ist abgeschlosse ud seit Jauar 2000

Mehr

2. Gleichwertige Lösungen

2. Gleichwertige Lösungen 8. Gleichwertige Lösuge Für die Lösug jeder lösbare Aufgabe gibt es eie uedliche Azahl vo (abstrakte ud kokrete) Algorithme. Das folgede Problem illustriert, dass eie Aufgabe eifacher oder kompliziert,

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003 Credit Risk+ Itegratiossemiar zur BBL ud BWL Witersemester 2002/2003 Oksaa Obukhova lia Sirsikova Credit Risk+ 1 Ihalt. Eiführug i die Thematik B. Ökoomische Grudlage I. Ziele II. wedugsmöglichkeite 1.

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Afägerpraktikum Polarisatio vo Licht Gruppe, Team 5 Sebastia Korff Frerich Max 0.07.06 Ihaltsverzeichis. Eileitug -3-. Polarisatio -3-. Dichroismus -4-.3 BREWSTER Wikel -5-.4 Der FARADAY

Mehr

Abschlussprüfung 2014 an den Realschulen in Bayern

Abschlussprüfung 2014 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Name: Abschlussprüfug 014 a de Realschule i ayer Mathematik II Vorame: Klasse: Platzziffer: Pukte: Aufgabe A 1 Nachtermi A 10 Agler verwede sogeate Schwimmer, die a der Agelschur

Mehr