Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Größe: px
Ab Seite anzeigen:

Download "Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg"

Transkript

1 Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg

2 Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse Abstand zwischen Ursprung und Kamerazentrum Die unendliche Kamera Bewegung der Kamera in Richtung der Hauptachse Zoomen Hierarchie der affinen, unendlichen Kameras Affine Kamera 2 von 39

3 Endliche Kameras Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse Abstand zwischen Ursprung und Kamerazentrum Die unendliche Kamera Bewegung der Kamera in Richtung der Hauptachse Zoomen Hierarchie der affinen, unendlichen Kameras Affine Kamera 3 von 39

4 Endliche Kameras Die Lochkamera Y C camera centre X x p y x image plane X Z principal axis C Y f p f Y / Z Z Abbildung: Die Lochkamera. 4 von 39

5 Endliche Kameras Die Lochkamera Y C camera centre X y x p x image plane X Z principal axis C Y f p f Y / Z Z Die Lochkamera ist eine Abbildung des 3D-Raumes auf das 2D-Bildkoordinatensystem durch eine Zentralprojektion. Ein Weltpunkt X ( x y z 1 ) T wid dabei auf einen Punkt U E = f ( ) T z x y z auf der Bildebene abgebildet. Es entsteht der Bildpunkt u = f ( ) T z x y. 5 von 39

6 Endliche Kameras Die Lochkamera Y C camera centre X y x p x image plane X Z principal axis C Y f p f Y / Z Z Darstellung als Matrixmultiplikation mit homogenen Koordinaten: ( ) ( ) x x u = f fx f z y fy = 0 f 0 0 y 1 z 1 z von 39

7 Endliche Kameras Die Lochkamera Y C camera centre X y x p x image plane X Z principal axis C Y f p f Y / Z Z p ist der Hauptpunkt. Die Hauptebene ist die Ebene parallel zur Bildebene durch C. 0 f beschreibt die fokale Länge. p E = 0 f 7 von 39

8 Endliche Kameras Verschiebung des Kamerakoordinatensystems Verschiebt man das Koordinatensystem in der Kameraebene um ( hu h v ) T, so gilt für den Bildpunkt: u = f z und ( ) u = 1 ( x y ) ( ) ( f hu + = z x + h u h f v z y + h v f z x + h u f z y + h v 1 f 0 h u 0 f h v fx + h u z fy + h v z z x y z 1 ) h v y x p Abbildung: Verschiebung des Koordinatensystems h u 8 von 39

9 Endliche Kameras f 0 h u K 0 f h v Ergebnis Die 3 4 Kameramatrix P bildet einen Weltpunkt X (4 1)auf einen Bildpunkt U (3 1) ab. U PX U K [I 0] X (bisher) Die 3 3MatrixK wird Kalbibriermatrix genannt. 9 von 39

10 Endliche Kameras 3D-Translation und Rotation der Kamera Ycam Z C Zcam X cam R, t O Y Abbildung: Euklidische Transformation zwischen Welt und Kamerakoordinatensystem X 10 von 39

11 Endliche Kameras 3D-Translation und Rotation der Kamera Wird die Kamera im Raum bewegt, wird ein Weltpunkt im Weltkoordinatensystem durch ( ) R Rc X 0 T X 1 transformiert. ( ) c C ist das Kamerazentrum (Projektionszentrum) 1 einer projektiven Kamera im Weltkoordinatensystem. Es ist der einzige Punkt im Raum, der kein Bild hat: PC = 0. (Natürlich nur unter der theoretischen Annahme, dass die Kamera nach allen Seiten sieht.) 11 von 39

12 Endliche Kameras Für die Kameramatrix ergibt sich: ( R Rc u K (I 0) 0 T 1 ) X K(R Rc)X Ergebnis (Lochkamera) u KR(I ; c) X } {{ } P Die Kameramatrix P einer Lochkamera besitzt 9 Freiheitsgrade. 12 von 39

13 Endliche Kameras Die Projektive Kamera Projektive Kameras können aus nicht quadratischen Pixeln aufgebaut sein. Dies verändert die Kalibriermatrix K zu k u s h u K k v h v 1 Dabei bezeichnet s die Schiefe, die bei rechtwinkligen Pixeln Null ist. In der Regel ist der Parameter s nahe Null. k u /k v ist das Verhältnis zwischen den Seitenlängen der Pixel. k u = m x f, k v = m y f ist die fokale Länge in Pixel-Koordinaten in x- bzw. y-richtung. 13 von 39

14 Eigenschaften der Kameramatrix Die Kameramatrix P K 3 3 R 3 3 [I c] 3 4 [M 3 3 p 3 1 ] beschreibt die allgemeine projektive Kamera. Jede 3 4MatrixP beschreibt eine endliche projektive Kamera, falls die Submatrix M nicht singulär ist. Bei einer endlichen projektiven Kamera befindet sich das Kamerazentrum im Endlichen: C ( c T 1 ) T. P 3 4 hat 11 Freiheitsgrade. (= 12 Parameter 1 Skalenfaktor ) Für Kameras im Unendlichen ist M singulär und C ( c T 0 ) T. Zu diesem Kameratyp zählt die affine Kamera. Sie stellt eine Verallgemeinerung der Parallelprojektion dar.

15 Endliche Kameras Berechnung von P, K, R, C Sei P (M, p). M ist 3 3 Matrix und p ein 3 1Spaltenvektor. M KR MM T = KRR } {{ T } K T = KK T I K ist eine obere Dreiecksmatrix und kann aus KK T mittels Cholesky-Zerlegung berechnet werden. R K 1 M C ist Nullraum von P 15 von 39

16 Endliche Kameras Zerlegung von K k u s h u k u 0 0 KK T = 0 k v h v s k v h u h v 1 ku 2 + s2 + h 2 u sk v + h u h v h u = kv 2 + h2 v h v 1 16 von 39

17 DieprojektiveKamera Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse Abstand zwischen Ursprung und Kamerazentrum Die unendliche Kamera Bewegung der Kamera in Richtung der Hauptachse Zoomen Hierarchie der affinen, unendlichen Kameras Affine Kamera 17 von 39

18 DieprojektiveKamera Die projektive Kamera - Spalten von P Ziel dieses Abschnittes ist, die geometrische Bedeutung der verschiedenen Komponenten von P zu klären. p 3 Z C p 2 O Y p 1 Abbildung: Die Bildpunkte, die durch die ersten drei Spalten von P gegeben sind, sind die Fluchtpunkte der Richtungen der Weltachsen. X 18 von 39

19 DieprojektiveKamera Die projektive Kamera - Spalten von P Betrachten wir zunächst die Spalten von P ( p 1 p 2 p 3 p 4 ). Die Spaltenvektoren p 1, p 2, und p 3 sind die Bilder der Fluchtpunkte der x, y und z-richtung. p 1 P ( ) T p 2 P ( ) T p 3 P ( ) T p 4 P ( ) T p 4 ist das Bild des Weltkoordinatenursprungs. 19 von 39

20 DieprojektiveKamera Zeilen von P y x 2 P P 3 y x principal plane Abbildung: Die ersten zwei Zeilen von P charakterisieren die Ebenen, die als Rückprojektionen der Bildkoordinatenacsen entstehen. Die dritte Zeile ist die Hauptebene. 20 von 39

21 DieprojektiveKamera Zeilen von P Die Zeilen von P werden im folgenden mit π T i P ( π 1 π 2 π 3 ) T bezeichnet. Zur geometrischen Deutung der Zeilen π T i stellen wir zunächst fest: Eine Gerade l in der Bildebene wird durch die Rückprojektion auf eine Ebene im Raum abgebildet. L l π C 21 von 39

22 Zeilen von P Ergebnis (Rückprojektion einer Bildgeraden) Sei l eine Bildgerade, so stellt ihre Rückprojektion eine Ebene im Raum dar, mit π T l T P bzw. π P T l. Beweis. Sei x ein Punkt auf der Ebene π im Raum. π sei die Rückprojektion der Linie l in der Bildebene. Dann gilt: π T x = 0 und l T Px =0, da die Projektionen aller Punkte der Ebene auf der Geraden liegen. Also gilt π T x = l T Px π T l T P

23 DieprojektiveKamera Zeilen von P Es folgt für die Zeilen π T i der Matrix P: π T 1 ( ) P π 1 ist die Rückprojektion der y-achse l = ( ) T (x = 0) der Bildebene. π T 2 ( ) P π 2 ist die Rückprojektion der x-achse l = ( ) T (y = 0) der Bildebene. lt { }} { π T 3 ( ) P π3 ist die Rückprojektion der unendlich fernen Geraden der Bildebene. Dies ist die Hauptebene, die Ebene parallel zur Bildebene durch das Projektionszentrum C. 23 von 39

24 DieprojektiveKamera Hauptpunkt und Hauptachse P [M p 4 ] mit M = KR DadieletzteZeilevonK die Form k T 3 ( ) besitzt, gilt: k u s h u r T 1... M KR = 0 k v h v r2 T = r3 T r3 T r3 T ist die 3. Zeile der Rotationsmatrix R. M kann wie folgt geschrieben werden. m T 1 m T M m T 1 2 = m T m T 2 3 r3 T 24 von 39

25 Hauptpunkt und Hauptachse Normalisierung von M = ( m 1 m 2 ) T m 3 und damit auch von P durch m 3 =1unddet(M) > 0. (1) Dadurch ist m 3 ein Einheitsvektor in Richtung der Hauptachse. Diese Richtung wird auf den Hauptpunkt abgebildet: ( ) < r 1, r 3 > 0 h u m3 P = KRr 0 3 = K < r 2, r 3 > = K 0 = h v < r 3, r 3 > 1 1 Ergebnis (Hauptachse) m 3 gibt die Richtung ( der ) Hauptachse an, die auf den Hauptpunkt m3 projiziert wird. ist der Schnittpunkt der Hauptachse mit 0 der unendlich fernen Ebene.

26 DieprojektiveKamera Abstand zwischen Ursprung und Kamerazentrum X C m 3 X. m 3 Abbildung: Tiefe eines Punktes Bei normalisiertem M (Folie 25) stellt r 3 die Hauptachse dar (r 3 = m 3 ). r1 T r1 T c P = KR [I c] =K r2 T r2 T c r3 T c r T 3 P 3 4 = mt 3 c 26 von 39

27 DieprojektiveKamera Abstand zwischen Ursprung und Kamerazentrum Durch die Normalisierung gilt: m 3 T ist ein Einheitsvektor in Richtung der Hauptachse. Dies führt zu folgendem Ergebnis: Ergebnis (Abstand) d 0 ist der Abstand zwischen Ursprung und Kamerazentrum in Richtung der Hauptachse mit P 3 4 = mt 3 c = d von 39

28 Die unendliche Kamera Gliederung 6 Endliche Kameras Die Lochkamera Die Projektive Kamera Die projektive Kamera Spalten von P Zeilen von P Hauptpunkt und Hauptachse Abstand zwischen Ursprung und Kamerazentrum Die unendliche Kamera Bewegung der Kamera in Richtung der Hauptachse Zoomen Hierarchie der affinen, unendlichen Kameras Affine Kamera 28 von 39

29 Die unendliche Kamera Die unendliche Kamera Im folgenden soll die affine Kamera hergeleitet werden. Schritte: 1 Wegbewegen der Kamera in Richtung der Hauptachse 2 Heranzoomen, so dass ein Objekt seine Größe beibehält 29 von 39

30 Die unendliche Kamera Bewegung der Kamera in Richtung der Hauptachse Bei einer Bewegung des Kamerazentrums entlang der Hauptachse um den Parameter t gilt: c c tr 3 Somit verändert sich die Kameramatrix P wie folgt: r1 T r1 T (c tr 3) P KR [I c] K r2 T r2 T (c tr 3) K r3 T r3 T (c tr 3) r1 T r2 T r3 T r1 T c r2 T c t r3 T c (*) Der Übergang folgt auf Grund der { Orthogonalität zwischen 1, falls i = j den r i < r i, r j >= δ ij mit δ ij = 0sonst 30 von 39

31 Die unendliche Kamera Bewegung der Kamera in Richtung der Hauptachse Ergebnis (Verschiebung entlang der Hauptachse) Bei einer Verschiebung entlang der Hauptachse um t verändert sich P 3 4 auf d = t rt 3 c 31 von 39

32 Die unendliche Kamera Zoomen Falls t größer wird, wird das Bild kleiner. Um diesen Effekt auszugleichen erhöhen wir die Fokallänge. K K d d 0 d d 0 1, so dass die Größe des Bildes konstant bleibt. 1 r1 T c P K 1 R r2 T c K d d 0 d r T 1 r T 2 r T 1 c r T 2 c d 0 d r 3 T d 0 32 von 39

33 Die unendliche Kamera Abbildung: Wenn sich Fokallänge sowie Abstand der Kamera vergrößern, bleibt die Bildgröße gleich. Der perspektivische Effekt verschwindet perspective weak perspective increasing focal length increasing distance from camera 33 von 39

34 Die unendliche Kamera Weg zur affinen Kamera Mit d erhalten wir die affine Kamera (das Projektionszentrum liegt im Unendlichen) P K r T 1 r T 2 r T 1 c r T 2 c 0 T d 0 Punkte im Unendlichen werden auf Punkte im Unendlichen abgebildet (affine Eigenschaft). 34 von 39

35 Die unendliche Kamera Hierarchie der affinen, unendlichen Kameras Die affine Kamera kann in ( K2 2 0 P 0 T 1 zerlegt werden. )( R2 3 t 0 T 1 ) 35 von 39

36 Die unendliche Kamera Parallelprojektion Sei R 2 3 = ( ) und t = 0 dann erhält man für P die Matrix Die z Komponenten der Punkte fallen weg. 36 von 39

37 Orthographische Projektion Wählt man R 2 3 und t allgemein, erhält man eine allgemeine orthographische Projektion. Sie hat die Form: r T 1 t 1 P r2 T t 2 0 T 1 Diese hat 5 Freiheitsgrade. Kommt zusätzlich noch eine Skalierung hinzu, k r T 1 t 1 P k r2 T t 2, 1 0 T 1 spricht man von einer skalierten orthographischen Projektion. Diese hat 6Freiheitsgrade.

38 Die unendliche Kamera Schwach perspektivische Kamera - affine Kamera Ist die Skalierung in x und y Richtung verschieden, erhält man α x r T 1 t 1 P α y r2 T t 2, 1 0 T 1 und damit die schwach perspektivische Kamera. Bei der affinen Kamera kommt noch die Schiefe s hinzu: α x s r T 1 t 1 P A α y r2 T t 2, 1 0 T 1 Die affine Kamera hat 8Freiheitsgrade. 38 von 39

39 Die unendliche Kamera Affine Kamera - Eigenschaften Das Zentrum liegt im Unendlichen. Die Hauptebene ist die unendlich ferne Ebene Sie bildet die unendlich ferne Ebene auf die unendlich ferne Gerade der Bildebene ab. 39 von 39

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 7 Projektionen und Rückprojektionen Der Punkt Die Gerade Die Quadrik Die Ebene Zusammenhang Kalibriermatrix - Bild des absoluten

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

2.2 Projektionen und Kameramodelle

2.2 Projektionen und Kameramodelle Graphikprog. GRUNDLEGENDE VERFAHREN UND TECHNIKEN. Projektionen und Kameramodelle Nachdem alle Objekte einer Szenerie mittels der besprochenen Transformationen im D-Weltkoordinatensystem platziert sind,

Mehr

geschlossene Schachtel mit einem kleinen Loch

geschlossene Schachtel mit einem kleinen Loch Kameramodellierung Lochkamera Kamerakonstante Kamerazentrum geschlossene Schachtel mit einem kleinen Loch ideale Kamera: Loch hat keine Ausdehnung die Strahlen sind ein Büschel von Geraden Abbildung erfolgt

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 8 Projektive Invarianz und das kanonische Kamerapaar Kanonisches Kamerapaar aus gegebener Fundamentalmatrix Freiheitsgrade

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg,

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg, Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg, Literatur Richard Hartle and Andrew Zisserman. Multiple View Geometr in computer vision, Cambridge Universit Press, 2 nd Ed., 23. O.D.

Mehr

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation

Bildtransformationen. Geometrische Transformationen Grauwert-Interpolation Bildtransformationen Geometrische Transformationen Grauwert-Interpolation Transformation Transformation zwei Schritte geometrische Transformation (Trafo der Koordinaten) Neuberechnung der Pielwerte an

Mehr

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000)

Planare Projektionen und Betrachtungstransformation. Quelle: Angel (2000) Planare Projektionen und Betrachtungstransformation Quelle: Angel (2) Gliederung Einführung Parallelprojektionen Perspektivische Projektionen Kameramodell und Betrachtungstransformationen Mathematische

Mehr

3D-Model Reconstruction using Vanishing Points

3D-Model Reconstruction using Vanishing Points 3D-Model Reconstruction using Vanishing Points Seminar: Ausgewä hlte Themen zu "Bildverstehen und Mustererkennung" Dozenten: Prof. Dr. Xiaoyi Jiang, Dr. Da-Chuan Cheng, Steffen Wachenfeld, Kai Rothaus

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Thema: Kameramodelle und Kamerakalibrierung Proseminar: Grundlagen Bildverstehen/Bildgestaltung Michaela

Mehr

Praktikumsversuch. Kamerakalibrierung. S. Rahmann und H. Burkhardt

Praktikumsversuch. Kamerakalibrierung. S. Rahmann und H. Burkhardt Praktikumsversuch Kamerakalibrierung S. Rahmann und H. Burkhardt . Inhaltsverzeichnis 1 Kamerakalibrierung 5 1.1 Einleitung............................... 5 1.2 Projektive Geometrie.........................

Mehr

Grundregeln der Perspektive und ihre elementargeometrische Herleitung

Grundregeln der Perspektive und ihre elementargeometrische Herleitung Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.

Mehr

Computer Graphik. Mitschrift von www.kuertz.name

Computer Graphik. Mitschrift von www.kuertz.name Computer Graphik Mitschrift von www.kuertz.name Hinweis: Dies ist kein offizielles Script, sondern nur eine private Mitschrift. Die Mitschriften sind teweilse unvollständig, falsch oder inaktuell, da sie

Mehr

Internal Report 06 01. Inkrementelle Akquisition von 3D-Objektmodellen

Internal Report 06 01. Inkrementelle Akquisition von 3D-Objektmodellen Internal Report 06 01 Inkrementelle Akquisition von 3D-Objektmodellen by Lars Heyden Ruhr-Universität Bochum Institut für Neuroinformatik 44780 Bochum IR-INI 06 01 April 2006 ISSN 0943-2752 c 2006 Institut

Mehr

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht.

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht. 2 Ein wenig projektive Geometrie 2.1 Fernpunkte 2.1.1 Projektive Einführung von Fernpunkten Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden

Mehr

Projektive Geometrie in der Bildanalyse Dipl. Ing. (FH) Gerrit Bo lk

Projektive Geometrie in der Bildanalyse Dipl. Ing. (FH) Gerrit Bo lk Projektive Geometrie in der Bildanalyse Dipl. Ing. (FH) Gerrit Bo lk Übersicht 1. Notation / Das Kameramodell 2. Homogene Punkte und Transformationen 3. Bestimmen der Modellparameter mit 3D Punkten 4.

Mehr

Symplifying the Reconstruction of 3D Models using Parameter Elimination

Symplifying the Reconstruction of 3D Models using Parameter Elimination Seminar 3D Rekonstruktion, Priehn, Hannes Priehn, Jens Symplifying the Reconstruction of 3D Models using Parameter Elimination SS2011 Hannes Priehn Jens Priehn Koordinatensysteme Titel, Datum,... 2 Weltkoordinaten

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen IV. Koordinatensysteme und geometrische Transformationen Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Skalare Punkte und Vektoren 2.

Mehr

Augmented Reality - Grundlagen

Augmented Reality - Grundlagen Augmented Reality - Grundlagen Intelligente Mensch-Maschine-Interaktion - IMMI SS 2011 Prof. Didier Stricker Didier.Stricker@dfki.de Die Vorlesung am 07.06 findet im Raum Zuse am DFKI statt 2 Übersicht

Mehr

Computer-Graphik I Transformationen & Viewing

Computer-Graphik I Transformationen & Viewing lausthal Motivation omputer-raphik I Transformationen & Viewing Man möchte die virtuelle 3D Welt auf einem 2D Display darstellen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann

Mehr

Technische Universität

Technische Universität Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Stereo Vision: Epipolargeometrie Proseminar: Grundlagen Bildverarbeitung/Bildverstehen Alexander Sahm Betreuer:

Mehr

4. Kapitel 3D Engine Geometry

4. Kapitel 3D Engine Geometry 15.11.2007 Mathematics for 3D Game Programming & Computer Graphics 4. Kapitel 3D Engine Geometry Anne Adams & Katharina Schmitt Universität Trier Fachbereich IV Proseminar Numerik Wintersemester 2007/08

Mehr

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz

Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Dokumentation zum Projekt Multimediale Lehre Fluidmechanik an der Technischen Universität Graz Andreas Aigner email: andreasa@sbox.tu-graz.ac.at. Januar 00 Inhaltsverzeichnis Theorie. Stromfunktion...........................

Mehr

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung

2D-Transformationen. Kapitel 6. 6.1 Translation. 6.2 Skalierung Kapitel 6 2D-Transformationen Mit Hilfe von Transformationen ist es möglich, die Position, die Orientierung, die Form und die Größe der grafischen Objekte zu manipulieren. Transformationen eines Objekts

Mehr

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 16. Dezember 2003

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 16. Dezember 2003 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis 5. Sichtsysteme in der Robotik....................307 Industrielle

Mehr

Inhaltsverzeichnis. 1 Hardwaregrundlagen

Inhaltsverzeichnis. 1 Hardwaregrundlagen Inhaltsverzeichnis 1 Hardwaregrundlagen 2.4 2.5 Perspektivische 2.6 Parallele 2.7 Umsetzung der Zentralprojektion 2.8 Weitere 2.9 Koordinatensysteme, Frts. 2.10 Window to Viewport 2.11 Clipping 3 Repräsentation

Mehr

Computergraphik Grundlagen

Computergraphik Grundlagen Computergraphik Grundlagen V. Die Rendering-Pipeline Prof. Stefan Schlechtweg Hochschule Anhalt Fachbereich Informatik Inhalt Lernziele 1. Der Begriff Rendering 2. Die Rendering-Pipeline Geometrische Modellierung

Mehr

Hintergrundsubtraktion mit PTZ-Kameras

Hintergrundsubtraktion mit PTZ-Kameras Institut für Visualisierung und Interaktive Systeme Universität Stuttgart Universitätsstraße 38 D 70569 Stuttgart Diplomarbeit Nr. 3114 Hintergrundsubtraktion mit PTZ-Kameras Davaadorj Tsendragchaa Studiengang:

Mehr

Bestimmung der relativen Kameraorientierung aus Bildpaaren

Bestimmung der relativen Kameraorientierung aus Bildpaaren Bestimmung der relativen Kameraorientierung aus Bildpaaren Bachelorarbeit an der Fakultät für Informations-, Medien und Elektrotechnik der Fachhochschule Köln im Institut für Medien- und Phototechnik Autor

Mehr

Fitting 3D Models to Images

Fitting 3D Models to Images Proseminar "Aufgabenstellungen der Bildanalyse und Mustererkennung" Fitting 3D Models to Images WS 08/09 Gliederung Einleitung Pose Consistency perspective Camera affine/projective Camera Linearkombinationen

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

3D-Rekonstruktion mit Kamera und Spiegel

3D-Rekonstruktion mit Kamera und Spiegel 3D-Rekonstruktion mit Kamera und Spiegel Bachelor-Thesis 31. März 2014 JULIAN STIER Prof. Dr. Tomas Sauer Abstract Schnellere Computer, bessere Optimierungsalgorithmen und über 20 Jahre Forschung im Bereich

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

Vorgehen zur Kalibrierung von Kamerabildern

Vorgehen zur Kalibrierung von Kamerabildern Vorgehen r Kalibrierng von Kamerabildern Prof. Dr.-Ing. Bernhard Lang, 06.04.2013 3 Kalibrierng von Kamerabildern 3.1 Hintergrnd Eine reale Kamera lässt sich geometrisch drch eine Lochkamera modellieren.

Mehr

4.1. Aufgaben zu linearen Funktionen

4.1. Aufgaben zu linearen Funktionen .. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes

Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes Über den Zusammenhang zwischen geometrischer Parallaxe und der Entfernung des Mondes U. Backhaus Universität Duisburg-Essen Wenn man ein entferntes Objekt von verschiedenen Orten aus anpeilt, dann unterscheiden

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung

Mehr

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 6. Januar 2004

Prof. J. Zhang zhang@informatik.uni-hamburg.de. Universität Hamburg. AB Technische Aspekte Multimodaler Systeme. 6. Januar 2004 zhang@informatik.uni-hamburg.de Universität Hamburg AB Technische Aspekte Multimodaler Systeme zhang@informatik.uni-hamburg.de Inhaltsverzeichnis Kalibrierung einer Kamera: Grundkonzept...............344

Mehr

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung

Erinnerung. Arbeitsschritte der Computergraphik. Modellierung. Animation. Rendering. Ausgabemedium. Generierung Erinnerung Arbeitsschritte der Computergraphik Modellierung Animation Generierung Ausgabemedium Graphik/-Pipeline Wandelt die Beschreibung einer Szene im dreidimensionalen Raum in eine zweidimensionale

Mehr

VHDL - Grundlagen des Pointrenderings

VHDL - Grundlagen des Pointrenderings VHDL - Grundlagen des Pointrenderings Marc Reichenbach, Timo Nieszner Informatik 3 / Rechnerarchitektur Universität Erlangen Nürnberg 2013 1 / 25 Rendern von Dreiecksnetzen Quelle: Inf9, CG-Slides grobmaschiges

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

8. Übungsblatt zur Mathematik I für Maschinenbau

8. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 8. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS / 6..-.. Aufgabe G (Matrixinversion mit Gauß-Algorithmus

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Grundlagen der digitalen Bildverarbeitung / Fortsetzung

Grundlagen der digitalen Bildverarbeitung / Fortsetzung Grundlagen der digitalen Bildverarbeitung / Fortsetzung Wir haben bereits zwei Beispiele digitaler Bildfilter gesehen. Es gibt eine große Menge von Filtern mit ganz unterschiedlicher Auswirkung auf das

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Zwei Aufgaben, die auf windschiefe Regelflächen führen,

Zwei Aufgaben, die auf windschiefe Regelflächen führen, Zwei Aufgaben, die auf windschiefe Regelflächen führen, von À. KIEFER (Zürich). (Als Manuskript eingegangen am 25. Januar 1926.) I. Gesucht im Raum der Ort des Punktes, von dem aus die Zentralprojektionen

Mehr

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar?

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar? MATHEMATISCHER FITNESSTEST - LÖSUNGEN DR. ROGER ROBYR Die Aufgaben sollten alle ohne Unterlagen und ohne programmierbare oder graphikfähige Rechner gelöst werden können. Lösung. ) Gegeben sind die Mengen

Mehr

1 Anregung von Oberflächenwellen (30 Punkte)

1 Anregung von Oberflächenwellen (30 Punkte) 1 Anregung von Oberflächenwellen (30 Punkte) Eine ebene p-polarisierte Welle mit Frequenz ω und Amplitude E 0 trifft aus einem dielektrischen Medium 1 mit Permittivität ε 1 auf eine Grenzfläche, die mit

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

'Visual Hull' mit Hilfe von Spiegeln

'Visual Hull' mit Hilfe von Spiegeln 'Visual Hull' mit Hilfe von Spiegeln hwww.dip.ee.uct.ac.za/~kforbes/doublemirror/doublemirror.html Dreidimensionales Computersehen Dr.-Ing. Simon Winkelbach www.rob.cs.tu-bs.de/teaching/courses/cs 1 Zur

Mehr

Mathematische Grundlagen der. Computergeometrie

Mathematische Grundlagen der. Computergeometrie Technische Universität Chemnitz Fakultät für Mathematik TECHNISCHE UNIVERSITÄT C H E M N I T Z Mathematische Grundlagen der Computergeometrie (Vorlesung: Dr. M. Pester) Inhalt: Grundlagen der analtischen

Mehr

Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie

Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie Geometrie Klasse 5 Basiswissen und Grundbegriffe der Geometrie Skript Beispiele Musteraufgaben Seite 1 Impressum Mathefritz Verlag Jörg Christmann Pfaffenkopfstr. 21E 66125 Saarbrücken verlag@mathefritz.de

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Bachelorarbeit. Peter Oltmann. 3D-Lagebestimmung von Objekten für Assistenzroboter. Fakultät Technik und Informatik Studiendepartment Informatik

Bachelorarbeit. Peter Oltmann. 3D-Lagebestimmung von Objekten für Assistenzroboter. Fakultät Technik und Informatik Studiendepartment Informatik Bachelorarbeit Peter Oltmann 3D-Lagebestimmung von Objekten für Assistenzroboter Fakultät Technik und Informatik Studiendepartment Informatik Faculty of Engineering and Computer Science Department of Computer

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 4 Aufgabe 1: IS-Kurve Leiten Sie graphisch mit Hilfe

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, 2013-05-08

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, 2013-05-08 Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 2013-05-08 Aufräumen Ressourcen in umgekehrter Abhängigkeitsreihenfolge freigeben Objekte haben Reference-Count (RC), initial 1 clrelease

Mehr

Computer Vision SS 2011. Skript

Computer Vision SS 2011. Skript Computer Vision SS 211 Skript (Work in Progress) Simon Hawe & Martin Kleinsteuber Skript: Manuel Wolf Inhaltsverzeichnis 1 Einführung 1 1.1 Was ist ein Bild?................................. 1 1.2 Wie

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU

(7) Normal Mapping. Vorlesung Computergraphik II S. Müller. Dank an Stefan Rilling U N I V E R S I T Ä T KOBLENZ LANDAU (7) Normal Mapping Vorlesung Computergraphik II S. Müller Dank an Stefan Rilling Einleitung Die Welt ist voller Details Viele Details treten in Form von Oberflächendetails auf S. Müller - 3 - Darstellung

Mehr

Optische Abbildung (OPA)

Optische Abbildung (OPA) Seite 1 Themengebiet: Optik Autor: unbekannt geändert: M. Saß (30.03.06) 1 Stichworte Geometrische Optik, Lichtstrahl, dünne und dicke Linsen, Linsensysteme, Abbildungsgleichung, Bildkonstruktion 2 Literatur

Mehr

Thüringer Kultusministerium

Thüringer Kultusministerium Prüfungstag: Mittwoch, den 07. Juni 2000 Prüfungsbeginn: 8.00 Uhr Thüringer Kultusministerium Realschulabschluss Schuljahr 1999/2000 Mathematik Hinweise für die Prüfungsteilnehmerinnen und -teilnehmer

Mehr

4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute

4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute 4.1 Grundlagen 4 Produktspezifische Ausfallwahrscheinlichkeit und Ausbeute 4.1 Grundlagen In den bisherigen Ausführungen wurden die Grundlagen der Ausbeuteberechnung behandelt. So wurde bereits im Abschnitt

Mehr

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren

KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren Beispiel 3.2. Gesucht u(x), das eine Differentialgleichung vom Typ u (x) + λ(x)u(x) = f(x), x [0,], mit den Randbedingungen u(0) = u() = 0

Mehr

Computergrafik 1 3D Rendering

Computergrafik 1 3D Rendering Computergrafik 3D Rendering Hearn/Baker 5.9-6,7.-9,7. Based on material b Werner Purgathofer and Dieter Schmalstieg Creating an Illusion The environment The imaging process = rendering The camera 2 Rendering

Mehr

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer".

Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie Träger oder Fahrer. Was ist ein Vektor? Das Wort Vektor kommt aus dem lateinischen und heißt so viel wie "Träger" oder "Fahrer". Vektoren sind Listen von Zahlen. Man kann einen Vektor darstellen, indem man seine Komponenten

Mehr

Kurs zur Ergänzungsprüfung Darstellende Geometrie CAD. Ebenes Zeichnen (2D-CAD) und die ersten Befehle

Kurs zur Ergänzungsprüfung Darstellende Geometrie CAD. Ebenes Zeichnen (2D-CAD) und die ersten Befehle CAD Ebenes Zeichnen (2D-CAD) und die ersten Befehle Schnellzugriff-Werkzeugkasten (Quick Access Toolbar) Registerkarten (Tabs) Gruppenfenster (Panels) Zeichenfläche Befehlszeile: für schriftl. Eingabe

Mehr

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren

Vektoren. Kapitel 3. 3.1 Skalare, Vektoren, Tensoren. 3.2 Vektoren Kapitel 3 Vektoren 31 Skalare, Vektoren, Tensoren Viele physikalische Größen lassen sich bei bekannter Maßeinheit durch Angabe ihres Betrages als reelle Zahl vollständig angeben Solche Größen nennt man

Mehr

Diplomarbeit. Untersuchung und Evaluierung von Methoden zur Kalibrierung optischer Sensoren in Verbindung mit Lagesensoren

Diplomarbeit. Untersuchung und Evaluierung von Methoden zur Kalibrierung optischer Sensoren in Verbindung mit Lagesensoren Technische Universität Berlin Fakultät für Elektrotechnik und Informatik Institut für Technische Informatik und Mikroelektronik Diplomarbeit Untersuchung und Evaluierung von Methoden zur Kalibrierung optischer

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector

Mehr

Fusion von 3D-Laserscanner-Daten mit 2D-Bilddaten

Fusion von 3D-Laserscanner-Daten mit 2D-Bilddaten EBERHARD-KARLS-UNIVERSITÄT TÜBINGEN Wilhelm-Schickard-Institut für Informatik Lehrstuhl Kognitive Systeme Bachelorarbeit Fusion von 3D-Laserscanner-Daten mit 2D-Bilddaten Richard Hanten Gutachter: Betreuer:

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Stereo Vision Anwendungen 2 / Sommersemester 2010 Fakultät Technik und Informatik Department Informatik Gregory Föll

Stereo Vision Anwendungen 2 / Sommersemester 2010 Fakultät Technik und Informatik Department Informatik Gregory Föll Anwendungen 2 / Sommersemester 2010 Fakultät Technik und Informatik Department Informatik Übersicht Rückblick 3D-Bildaufnahme Kamerakalibrierung Triangulation durch Active Vision Korrespondenzproblem /

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal.

Computergraphik I. Scan Conversion: Lines & Co. Einordnung in die Pipeline. G. Zachmann Clausthal University, Germany zach@tu-clausthal. 11/4/10 lausthal omputergraphik I Scan onversion of Lines. Zachmann lausthal University, ermany zach@tu-clausthal.de Einordnung in die Pipeline Rasterisierung der Objekte in Pixel Ecken-Werte interpolieren

Mehr

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik

MATHEMATIK. Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an. Fachoberschulen und Berufsoberschulen. Ausbildungsrichtung Technik Fachabiturprüfung 2009 zum Erwerb der Fachhochschulreife an Fachoberschulen und Berufsoberschulen MATHEMATIK Ausbildungsrichtung Technik Freitag, 29. Mai 2009, 9.00-12.00 Uhr Die Schülerinnen und Schüler

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Abitur 2011, Analysis I

Abitur 2011, Analysis I Abitur, Analysis I Teil. f(x) = x + 4x + 5 Maximale Definitionsmenge: D = R \ {,5} Ableitung: f (4x + 5) (x + ) 4 8x + 8x (x) = (4x + 5) = (4x + 5) = (4x + 5). F(x) = 4 x (ln x ); D F = R + F (x) = 4 x

Mehr

5 - CAMERA - RIG ADOBE AFTER EFFECTS. von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar

5 - CAMERA - RIG ADOBE AFTER EFFECTS. von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar ADOBE AFTER EFFECTS 5 - CAMERA - RIG von Christoph Schreiber und Stefan Bernhardt Fulldome - Fachmodul WS 2010 / 11 Bauhaus - Universität Weimar Beim 5 - Camera - Rig wird mit Hilfe von 5 Kameras ein Fulldome

Mehr

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64

Vektoralgebra Anwendungen der Vektorrechnung VEKTORRECHNUNG. Prof. Dr. Dan Eugen Ulmet. Hochschule Esslingen 1/64 1/64 VEKTORRECHNUNG Prof. Dr. Dan Eugen Ulmet Hochschule Esslingen März 2011 2/64 Overview Vektoralgebra 1 Vektoralgebra 2 Was sind Vektoren? 3/64 Vektoren werden geometrisch definiert als Pfeilklassen:

Mehr

Bericht vom 1. Leipziger Seminar am 25. November 2006

Bericht vom 1. Leipziger Seminar am 25. November 2006 Bericht vom 1. Leipziger Seminar am 25. November 2006 Das Wythoff-Nim-Spiel Wir wollen uns ein Spiel für zwei Personen ansehen, welches sich W.A.Wythoff 1907 ausgedacht hat: Vor den Spielern liegen zwei

Mehr