5 Eigenwerte und die Jordansche Normalform

Größe: px
Ab Seite anzeigen:

Download "5 Eigenwerte und die Jordansche Normalform"

Transkript

1 Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n Matrix im Normalfall n verschiedene komplexe Eigenwerte hat und über den komplexen Zahlen diagonalisierbar ist. Leider kommen einen durchaus auch Matrizen unter, die nicht zu diesem Normalfall gehören und auch nicht diagonalisierbar sind. Für solche Matrizen kann man trotzdem noch eine Basis finden, bezüglich derer die transformierte Matrix fast in Diagonalform ist, es tritt nur eine zusätzliche Nebendiagonale mit Nullen und Einsen auf. Definition 5.6: Das n n Jordankästchen zum Eigenwert λ C ist die n n Matrix J := λ λ λ λ, wobei die leeren Einträge wie immer für Nullen stehen. Eine Matrix A ist in Jordan Normalform, wenn sie die Gestalt A = J... J r mit Jordankästchen J,..., J r hat. Beispiele für Matrizen in Jordan Normalform sind 5 5 und 3. 6-

2 Mathematik für Physiker II, SS Mittwoch 8.6 Im ersten Beispiel haben wir zwei Jordankästchen 5 5 ein 3 3 Kästchen zum Eigenwert und ein Kästchen zum Eigenwert. Im zweiten Beispiel haben wir sogar vier einzelne Jordan Kästchen A = zwei Kästchen zum Eigenwert, dann ein Kästchen wieder zum Eigenwert und schließlich ein Kästchen zum Eigenwert 3. Beachte das in der Diagonale jedes einzelnen Kästchens immer derselbe Eigenwert stehen muss, zum Beispiel ist die Matrix 3 nicht in Jordan Normalform. Über den komplexen Zahlen läßt sich jede Matrix auf Jordansche Normalform transformieren, im reellen Fall müssen wir verlangen das sämtliche Eigenwerte reell sind. Satz 5.7 (Existenz der Jordanschen Normalform) Seien K {R, C}, n N mit n und A eine n n-matrix deren charakteristisches Polynom über K in Linearfaktoren zerfällt. Dann gibt es eine invertierbare n n Matrix S über K so, dass die transformierte Matrix S AS in Jordan Normalform ist. Den recht komplizierten Beweis dieses Satzes wollen wir hier nicht vorführen. Woran wir interessiert sind ist die praktische Durchführung der Transformation auf Jordan Normalform. Wir denken uns also wir hätten eine n n Matrix A vorgegeben, und wir suchen eine Basis u,..., u n des C n bezüglich derer die Matrix A in Jordanscher Normalform ist. Gleichwertig hierzu ist es eine invertierbare n n Matrix A zu suchen 6-3

3 Mathematik für Physiker II, SS Mittwoch 8.6 so, dass die transformierte Matrix S AS in Jordanscher Normalform ist. Dies ist genau dasselbe rechnerische Problem, die Spalten einer solchen Matrix S bilden die gesuchte Basis des C n und umgekehrt. Den reellen Fall muss man nicht gesondert behandeln, ist A eine reelle Matrix die keine nicht reellen Eigenwerte in C hat, so wird unser Verfahren auch eine reelle Basis des R n beziehungsweise eine reelle Transformationsmatrix S liefern. Wir werden eine Folge immer komplizierter werdender Beispiele durchrechnen, und das Rechenverfahren so nach und nach kennenlernen, ehe wir es dann einmal formal beschreiben. Wir beginnen mit dem Beispiel der folgenden Matrix ( ) 5 8 A :=. 3 Die Jordan Normalform von A besteht entweder aus einem Kästchen oder aus zwei Kästchen, und in beiden Fällen sind die auftretenden komplexen Zahlen auf den Diagonalen der Jordankästchen gerade die Eigenwerte von A. Um diese zu berechnen, bestimmen wir erst einmal das charakteristische Polynom von A χ A (x) = x 5 8 x + 3 = (x 5)(x + 3) + 6 = x x + = (x ). Wir haben also nur einen einzigen Eigenwert λ =. Da A keine Streckung ist, muss die gesuchte Jordan Normalform damit ein Jordankästchen zum Eigenwert sein. Nennen wir die gesuchte Basis des C jetzt u, u, so muss die Matrix der linearen Abbildung A bezüglich der Basis u, u gerade das Kästchen ( ) B := sein d.h. die Bedingungen an u und u sind Au = u und Au = u +u. Insbesondere soll u einfach ein Eigenvektor von A zum Eigenwert λ = sein, und diese können wir durch Lösen des homogenen linearen Gleichungssystems (A )x = berechnen. Wie wir gleich sehen werden, ist es nützlich das Gaußsche Eliminationsverfahren gleich mit einer unbestimmten, allgemeinen rechten Seite durchzuführen. Wegen ( ) 4 8 N := A =, 4 haben wir die Rechnung 4 8 y 4 8 y 4 y y + y, ( ) x und die Lösung der Eigenvektorgleichung N = berechnet sich durch y 4x + 8y = = x = y. 6-3

4 Mathematik für Physiker II, SS Mittwoch 8.6 Als Eigenvektor verwenden wir die Lösung mit y =, also ( ) 4 u :=. Wie kommen wir jetzt an den zweiten Basisvektor u? Wir haben die Bedingung Au = u + u, und diese schreiben wir zu Nu = (A )u = Au u = u um, d.h. der zweite Basisvektor u ergibt sich als Lösung des linearen Gleichungssystems Nu = u. Die linke Seite dieses Gleichungssystems ist wieder die Matrix N = A, die auch schon bei der Berechnung von u aufgetreten ist. Da wir dieses Gleichungssystem schon mit allgemeiner rechter Seite (y, y ) umgeformt haben, müssen wir nur noch y = 4 und y = einsetzen, und erhalten N ( x y )! = ( 4 ) = ( y y und setzen wir etwa y = ein, so ergibt sich eine Lösung ( ) 3 u :=. ) = 4x+8y = y = 4 = x = ( 4 8y) = y, 4 Zum Abschluß wollen wir nun noch verifizieren, dass unsere Rechnung tatsächlich ein korrektes Ergebnis geliefert hat. Wir haben ( ) ( ) ( ) Au = = = u 3, ( ) ( ) ( ) ( ) ( ) Au = = = + = u u, d.h. bezüglich der Basis u, u ist A tatsächlich das Jordankästchen B. Die Transformationsmatrix S von der Basis u, u zur kanonischen Basis e, e ist jetzt die Matrix ( ) 4 3 S = mit der Inversen S = ( ) 3. 4 Es muss jetzt S AS = B gelten, und tatsächlich ist S AS = ( ) ( ) ( ) = ( ) ( ) 4 3 = 4 ( ) = B. Nachdem wir im Beispiel einer Matrix die Jordansche Normalform noch aus dem Stand heraus berechnet haben, ist es für die Behandlung größerer Matrizen hilfreich, sich vorher einen ersten Rechenplan zu überlegen. Zu diesem Zweck halten wir zunächst 6-4

5 Mathematik für Physiker II, SS Mittwoch 8.6 einige Kleinigkeiten über Matrizen in Jordanscher Normalform fest. Ist J ein n n Jordankästchen zum Eigenwert λ C, so ist x λ χ J (x) = x λ x λ x λ = (x λ) n d.h. λ ist der einzige Eigenwert von J und λ hat die algebraische Vielfachheit n. Der Eigenraum zum Eigenwert λ ist dagegen E λ (J) = e der vom ersten kanonischen Basisvektor erzeugte Teilraum, und insbesondere hat λ die geometrische Vielfachheit. Ist A eine allgemeine Matrix in Jordan Normalform A = J... J r mit Jordankästchen J,..., J r, so sei J i für i r das n i n i Jordankästchen zum Eigenwert λ i C, und dann ist χ A (x) = (x λ ) n... (x λ r ) nr, und ist λ {λ,..., λ r } einer der Eigenwerte von A, so hat λ die algebraische Vielfachheit a λ = und die geometrische Vielfachheit i r λ i =λ n i d λ = { i r : λ i = λ}. Die ersten Rechenschritte zur Bestimmung der Jordanschen Normalform einer Matrix A sind damit:. Bestimme die komplexen Eigenwerte λ,..., λ r von A. Dies sind dann genau die in den verschiedenen Jordankästchen zu A auftretenden Eigenwerte.. Für jeden Eigenwert λ von A ist die Gesamtgröße aller Jordankästchen zum Eigenwert λ gleich der algebraischen Vielfachheit des Eigenwerts λ von A. 3. Ist λ ein Eigenwert von A, so ist die Anzahl der Jordankästchen zum Eigenwert λ gleich der geometrischen Vielfachheit des Eigenwerts λ von A. 6-5

6 Mathematik für Physiker II, SS Mittwoch 8.6 Wir wollen jetzt das Beispiel der 3 3 Matrix 3 A := 4 behandeln. Zuerst brauchen wir dann die Eigenwerte von A und ihre algebraischen Vielfachheiten, wir rechnen also das charakteristische Polynom von A aus x 3 χ A (x) = x = (x ) x x 4 x 4 3 x 4 = (x ) (x 4) + 3(x ) = (x x + )(x 4) + 3x 4 = x 3 6x + x 8. Hier ist x = eine Nullstelle. Die Ableitung ist 3x x + und x = ist auch eine Nullstelle der Ableitung. Die zweite Ableitung wird 6x erneut mit der Nullstelle x =, d.h. der Eigenwert λ = hat die algebraische Vielfachheit 3. Damit gilt χ A (x) = (x ) 3 und die Jordansche Normalform von A wird nur Jordankästchen zum Eigenwert haben. Um ihre Anzahl zu bestimmen berechnen wir den Eigenraum E (A) und damit insbesondere die geometrische Vielfachheit des Eigenwerts. Hierzu müssen wir das homogene lineare Gleichungssystem N x = mit der Koeffizientenmatrix N := A = 3 lösen. Wie im Beispiel lösen wir das lineare Gleichungssystem gleich mit allgemeiner rechter Seite, also Nx = y, dies wird sich als nützlich erweisen. Wir führen wieder das Gaußsche Eliminationsverfahren durch 3 y y y 3 3 y y y + y 3 3 y y y + y + y 3. Für unsere Eigenvektoren haben wir damit die Gleichung y = z, x = y 3z = z, d.h. die geometrische Vielfachheit von λ = ist d =, und der Eigenraum E (A) wird erzeugt vom Eigenvektor u :=. Insbesondere besteht die Jordansche Normalform zu A nur aus einem einzelnen 3 3 Kästchen mit Eigenwert. Als den ersten Vektor der zugehörigen Basis können wir 6-6

7 Mathematik für Physiker II, SS Mittwoch 8.6 unseren Eigenvektor u verwenden, aber wie finden wir die anderen beiden Basisvektoren? Dass die transformierte Matrix zu A bezüglich der gesuchten Basis u, u, u 3 ein 3 3 Jordankästchen mit Eigenwert ist, bedeutet das die Matrix der linearen Abbildung f(x) = A x bezüglich der Basis u, u, u 3 gleich B = ist. Die Spalten der Matrix B sind die Koeffizienten der Bilder f(u i ) = Au i (i =,, 3) geschrieben als Linearkombinationen in u, u, u 3, d.h. wir haben die folgenden drei Bedingungen an die gesuchte Basis u, u, u 3 : Au = u, Au = u + u und Au 3 = u 3 + u. Die Bedingung Au = u besagt einfach das u ein Eigenvektor zum Eigenwert λ = sein soll. Die Bedingung für u schreiben wir noch etwas um Au = u + u Au u = u (A )u = u Nu = u, und dies ist einfach ein lineares Gleichungssystem für u dessen rechte Seite der schon berechnete Eigenvektor u ist. Die Koeffizientenmatrix ist die Matrix N, also genau dieselbe die schon bei der Berechnung des Eigenraums E (A) auftrat. Aus diesem Grund haben wir die Gauß Elimination oben mit einer unbestimmten rechten Seite durchgeführt, wir können jetzt einfach die Komponenten von u für die Unbekannten y, y, y 3 einsetzen. Für unser lineares Gleichungssystem Nu = N x y z =! u = müssen wir oben y =, y = und y 3 = einsetzen. Die Gleichungen werden zu mit den Lösungen 3, y = + z und x = ( y + 3z) = + y 3z = z, und wir verwenden die Lösung mit z =, also u =. 6-7

8 Mathematik für Physiker II, SS Mittwoch 8.6 Für den dritten Basisvektor u 3 können wir die Bedingung Au 3 = u 3 + u völlig analog zu Nu 3 = u umschreiben, und da wir u schon berechnet haben können wir in der obigen Stufenform y =, y = und y 3 = einsetzen, und erhalten y = + z, x = ( y + 3z) = y 3z = 4z. Wählen wir wieder die Lösung mit z =, so haben wir u 3 =. Damit sind wir eigentlich fertig, aber vorsichtshalber wollen wir das Ergebnis noch einmal überprüfen, also nachrechnen das bezüglich der Basis u, u, u 3 tatsächlich ein Jordankästchen vorliegt. Au = Au = Au 3 = = = = 4 = u, = = = u + u, = u 3 + u. Die Rechnung hat also wirklich funktioniert, bezüglich der Basis u, u, u 3 ist A in Jordan Normalform. Testen wir auch noch einmal die Transformationsmatrix, d.h. die Matrix deren Spalten unsere drei Basisvektoren sind S = mit der Inversen S = Die transformierte Matrix ist dann wie erwartet 3 S AS = 4 = = Die gesuchte Basis ist bei weitem nicht eindeutig, es gibt normalerweise sehr viele Basen bezüglich derer die Matrix A auf Jordan Normalform transformiert wird. Dementsprechend tauchen in der Rechnung sehr viele lineare Gleichungssysteme mit nicht eindeutigen Lösungen auf, und in diesen Situationen können wir uns immer völlig willkürlich 6-8.

9 Mathematik für Physiker II, SS Mittwoch 8.6 irgendeine Lösung herausgreifen. Im eben gerechneten Beispiel ist die Rechnung im wesentlichen wie in unseren vorigen Beispiel abgelaufen. Im allgemeinen Fall treten aber noch einige zusätzliche Probleme auf, die in diesen beiden Beispielen noch nicht vorgekommen sind. Ein einfaches Beispiel hierfür ist die 3 3 Matrix A = 3 Zunächst läuft alles wie im vorigen Beispiel ab χ A (x) = und 3. = (x ) x x 3 = (x )((x )(x 3) + ) N = A = und das Eliminationsverfahren wird zu = (x )(x 4x + 4) = (x ) 3, y y y 3 y y + y y 3 + y Der Eigenraum zum Eigenwert ist diesmal also zweidimensional und ist gegeben durch die Gleichung y = z. Die geometrische Vielfachheit ist hier also d = und als eine Basis des Eigenraums erhalten wir die beiden Vektoren v :=, v := Diesmal gibt es also zwei Jordankästchen, und da die Gesamtgröße 3 ist, muss es sich um ein und ein Kästchen handeln. Wir suchen also eine Basis u, u, u 3 so, dass die Matrix A sich zu B = transformiert, d.h.. Au = u, Au = u + u Nu = u und Au 3 = u 3. Die Vektoren u und u 3 sollen also im Eigenraum E (A) liegen, d.h. wir haben u, u 3 v, v, aber wir können keine beliebigen Eigenvektoren für u, u verwenden. Wir 6-9

10 Mathematik für Physiker II, SS Mittwoch 8.6 müssen dafür sorgen, dass die Gleichung Nu = u lösbar bleibt. Machen wir für u den Ansatz t u = t v + t v = t, t mit t, t C, so ist die rechte Seite der Gleichung Nu = u gegeben durch y = t, y = y 3 = t, und setzen wir dies in die oben hergeleitete allgemeine Stufenform ein, so erhalten wir eine Bedingung t + t =. Dies lösen wir mit t = und t =, d.h. es wird u = v v = und für u 3 haben wir weitgehend freie Wahl, wir müssen nur irgendeinen von u linear unabhängigen Eigenvektor nehmen, etwa u 3 := v =. Den letzten Basisvektor u erhalten wir als Lösung von N x y z =! u = In unserer obigen Stufenform haben wir also y =, y = y 3 = und die Gleichung wird zu,. y z = y = + z. Wir wählen die Lösung mit x = z =, also u := 6-.

11 Mathematik für Physiker II, SS Mittwoch 8.6 Damit haben wir die gesuchte Basis u, u, u 3 gefunden. Machen wir noch ein letztes Mal den Test Au = Au = Au 3 = = = = 4 = u, = = u 3. + = u + u, Die Matrix bezüglich der Basis u, u, u 3 ist also wirklich B =. Die nächstkompliziertere Situation tritt bei 3 3 Matrizen schon nicht mehr auf, und wir betrachten als ein Beispiel die folgende 4 4 Matrix A := Zum charakteristischen Polynom haben wir inzwischen genug Beispiele gerechnet, und daher wollen wir hier einfach das Ergebnis χ A (x) = (x ) 4 notieren. Wir müssen also wieder die Matrix N := A =

12 Mathematik für Physiker II, SS Mittwoch 8.6 betrachten, und führen die Gauß Elimination durch 8 8 y y 4 y y y 5 5 y y 3 4 y 3 + y 3 y 4 + y 8 8 y 5 5 y y 3 4 y 3 + y 3 y 4 + y 8 8 y 5 5 y y y y y y 4 5 y y 8 8 y 5 y y 5y 3 + y + 4y 5y 4 y + 3y Für den Eigenraum haben wir die Gleichungen y = (5u v) = 3 u+v und x = (8y +u 8v) = ( u v) = u v, d.h. der Eigenraum, hat die Basis v = 3, v = Die geometrische Vielfachheit des Eigenwerts ist also d = und wir haben zwei Jordankästchen. Im Gegensatz zum vorigen Beispiel wissen wir aber noch nicht wie groß diese Jordankästchen sind, es handelt sich entweder um zwei Kästchen oder um ein 3 3 und ein Kästchen. Wir müssen also eines der beiden Ziele Au = u, Au = u + u, Au 3 = u 3, Au 4 = u 4 + u 3 oder. Au = u, Au = u + u, Au 3 = u 3 + u, Au 4 = u 4 ansteuern. Es stellt sich heraus, dass wir einfach so weiter rechnen können wie im vorigen Beispiel, welcher der beiden Fälle hier vorliegt wird sich ganz automatisch ergeben. Wir betrachten also einen allgemeinen Eigenvektor u := y y y 3 y 4 := t v + t v = 6- t t t 3t t t

13 Mathematik für Physiker II, SS Mittwoch 8.6 mit t, t C, und fragen wann Nx = u lösbar ist. In unser oben hergeleiteten Stufenform 8 8 y 5 y y 5y 3 + y + 4y 5y 4 y + 3y müssen also die rechten Seiten der beiden unteren, nur aus Nullen bestehenden, Zeilen ebenfalls gleich Null sein. Wegen 5y 3 + y + 4y = t + 4t 6t 4t 4t =, 5y 4 y + 3y = 5t t + 3t 3t 3t = ist dies unabhängig von t und t immer der Fall, die Gleichung Nx = u ist also für überhaupt jeden Eigenvektor u lösbar. Der Teilraum aller u E (A) für die Nx = u lösbar ist, hat damit die Dimension, und hieraus folgt das unsere Jordan Normalform aus zwei Kästchen besteht, wie wir gleich sehen werden. Die gesuchte Basis u, u, u 3, u 4 erhalten wir, indem wir als u, u 3 irgendeine Basis des Eigenraums nehmen und u, u 4 durch Lösen der linearen Gleichungssysteme Nu = u und Nu 4 = u 3 festlegen. Wir können einfach u := v = 3, u 3 := v = verwenden. Der Vektor u ergibt sich als Lösung von Nu = u, wir haben also = y = ( 5 + 5u v) = 3u + v, x = ( + 8y + u 8v) = 3 u v und verwenden die Lösung mit u = v =, also u =. Der Vektor u 4 ergibt sich ebenso durch Lösen von Nu 4 = u = y = (5 + 5u v) = 3u + v, x = ( + 8y + u 8v) = 5 u v und verwenden wir wieder u = v =, so wird u 4 =

14 Mathematik für Physiker II, SS Mittwoch 8.6 Bezüglich der Basis u, u, u 3, u 4 ist A jetzt in der Jordan Normalform B =. Auf den Test wollen wir diesmal verzichten. Damit haben wir alle Phänomene, die überhaupt auftreten können, bereits gesehen, und werden als nächstes den allgemeinen Algorithmus zum Auffinden der Transformation auf Jordan Normalform beschreiben. Dabei werden keine neuen Rechenschritte auftreten, wir müssen nur alles zusammenfassen, was wir in den Beispielen bereits gesehen haben. Gegeben: Eine komplexe n n Matrix A (die Einträge von A dürfen natürlich auch alle reell sein). Gesucht: Eine Basis u,..., u n des C n bezüglich derer A in Jordan Normalform ist, beziehungsweise äquivalent eine invertierbare, komplexe n n Matrix S so, dass S AS in Jordan Normalform ist. Die Spalten solch einer Matrix sind gerade die Basis u,..., u n und ungekehrt. Ist A reell und hat nur reelle Eigenwerte, so wird das Verfahren eine Basis des R n und entsprechend eine reelle Transformationsmatrix S liefern. Verfahren: Wir führen die folgenden Rechenschritte durch: () Berechne die verschiedenen komplexen Eigenwerte λ,..., λ t von A und ihre algebraischen Vielfachheiten a,..., a t. Dies kann man beispielsweise durch Berechnung des charakteristischen Polynoms mit anschließender Nullstellensuche tun. () Gehe der Reihe nach die Eigenwerte λ = λ i (i =,..., t) durch, und führe für jeden von diesen die folgenden Schritte (3.) bis (3.3) durch. Dabei wird der i-te Eigenwert λ i stets a i viele Vektoren zur Basis beitragen. (3.) Bilde die Matrix N = A λ, und führe auf ihr das Gaußsche Eliminationsverfahren mit unbestimmter rechter Seite (y,..., y n ) durch. (3.) Verwende die nicht verschwindenden r oberen Zeilen der in Schritt (3.) erhaltenen Stufenform um die allgemeine Lösung der Gleichung Nx = y zu berechnen. Die unteren Zeilen bei denen alle Matrixeinträge Null sind und wir nur eine rechte Seite haben werden dabei ignoriert. (3.3) Verwende das Ergebnis von (3.) um eine Basis v,..., v di des Eigenraums E λ (A) zu berechnen, dieser ist ja der Lösungsraum des homogenen linearen Gleichungssystems Nx =. Die Zahl d i ist dabei die geometrische Vielfachheit des Eigenwerts λ = λ i. (3.4) Ist die in (3.3) berechnete geometrische Vielfachheit d i von λ gleich der algebraischen Vielfachheit a i, so nehme die Vektoren v,..., v di als Ergebnis von Schritt (3). 6-4

15 Mathematik für Physiker II, SS Mittwoch 8.6 (3.5) Andernfalls bilde den Vektor u := t v + + t di v di und bezeichne seine Einträge als y,..., y n. Setze diese Werte in die rechten Seiten der unteren n r Zeilen der in (3.) erhaltenen Stufenform ein. Dies gibt ein homogenes lineares Gleichungssystem mit n r Gleichungen für die d i Unbekannten t,..., t di. (3.6) Löse das Gleichungssystem aus (3.5). Ist dann T,..., T s eine Basis des Lösungsraums, so bilde für jedes T j = (t,..., t n ) den zugehörigen Vektor u j = t v + +t di v di. Weiter wähle unter den v,..., v di genau l := d i s Vektoren aus, so dass keine von Null verschiedene Linearkombination der ausgewählten Vektoren eine Lösung des Gleichungssystem aus (3.5) ist. Dies ist immer möglich. (3.7) Die in (3.6) gewählten Vektoren sind dann genau die Basiselemente die den Jordankästchen zum Eigenwert λ entsprechen. Die restlichen s Jordankästchen zu λ haben alle eine Größe mindestens. Für jedes j s benutze jetzt das Ergebnis von (3.) um einen Vektor v j mit Nv j = u j zu berechnen. (3.8) Haben wir jetzt genug Vektoren beisammen, ist also s + l = a i, so füge die Vektoren v, u,..., v s, u s zu den in (3.6) gewählten Vektoren hinzu, und diese alle sind dann das Ergebnis von Schritt (3). (3.9) Andernfalls bilde wie in (3.5) den Vektor u := t v + + t s v s und bezeichne seine Einträge als y,..., y n. Einsetzen in die unteren n r rechten Seiten in (3.) gibt ein homogenes lineares Gleichungssystem mit n r Gleichungen für die s Unbekannten t,..., t s. (3.) Löse das Gleichungssystem aus (3.9) und berechne eine Basis T,..., T s seines Lösungsraums. Für jedes T j = (t,..., t s ) bilde den Vektor u j = t v + + t s v s. Weiter wähle unter den Vektoren v,..., v s genau l := s s Vektoren aus so, dass keine von Null verschiedene Linearkombination der ausgewählten Vektoren eine Lösung des Gleichungssystems aus (3.9) ist. (3.) Für jeden der in (3.) gewählten l Vektoren v k füge v k und Nv k zu den bisher in (3.7) zusammengestellten Basisvektoren hinzu. Diese entsprechen dann den l Jordankästchen der Größe. Die restlichen s Jordankästchen zu λ haben alle eine Größe mindestens 3. Für jedes j s benutze jetzt das Ergebnis von (3.) um einen Vektor v 3j mit Nv 3j = u j zu berechnen. (3.) Haben wir jetzt genug Vektoren beisammen, ist also 3s + l + l = a i, so füge die Vektoren v 3, u, Nu,..., v 3s, u s, Nu s zu den bisher gewählten Basisvektoren hinzu, und dies ist das Ergebnis von Schritt (3). 6-5

16 Mathematik für Physiker II, SS Mittwoch 8.6 (3.3) Andernfalls wiederhole die Schritte (3.9) bis (3.) entsprechend bis wir a i Vektoren beisammen haben. Die in (3.) und (3.) hinzuzufügenden Ketten werden dabei bei jedem Schritt um eins länger, da wir ja die Basiselemente zu immer größeren Jordankästchen zusammenstellen. Die Abbruchbedingung in (3.) hat auf Stufe q die Form qs q + (q )l q + + l + l = a i. (4) Fasse alle in Schritt (3) für i =,..., t gefundenen Vektoren zu einer Basis zusammen, und ordne diese noch nach Eigenwerten und Größe der jeweiligen Jordankästchen. 6-6

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag 9.6 $Id: quadrat.tex,v. 9/6/9 4:6:48 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6. Symmetrische Matrizen Eine n n Matrix heißt symmetrisch wenn

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016,

Klausur zur Vorlesung Lineare Algebra II, SoSe 2016, Klausur zur Vorlesung Lineare Algebra II, SoSe 6, 6.7.6 Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen und Sätze aus der Vorlesung korrekt zu formulieren

Mehr

Rückblick auf die letzte Vorlesung

Rückblick auf die letzte Vorlesung Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

5.2 Charakteristisches Polynom und Eigenräume

5.2 Charakteristisches Polynom und Eigenräume 5 Charakteristisches Polynom und Eigenräume Wie bestimmt man die Eigenwerte und Eigenräume einer Matrix? Den ersten Schritt beschreibt der folgende einfache Satz : Die Eigenwerte einer Matrix A aus K (

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Lineare Gleichungssysteme und Gauß'scher Algorithmus

Lineare Gleichungssysteme und Gauß'scher Algorithmus Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Lineare Algebra II 12. Übungsblatt

Lineare Algebra II 12. Übungsblatt Lineare Algebra II 12. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 13. / 14. Juli 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Probeklausur) Sprechen Sie über die Probeklausur

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Lineare Algebra: Determinanten und Eigenwerte

Lineare Algebra: Determinanten und Eigenwerte : und Eigenwerte 16. Dezember 2011 der Ordnung 2 I Im Folgenden: quadratische Matrizen Sei ( a b A = c d eine 2 2-Matrix. Die Determinante D(A (bzw. det(a oder Det(A von A ist gleich ad bc. Det(A = a b

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik

Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Universität Karlsruhe (TH) Institut für Algebra und Geometrie Dr. Klaus Spitzmüller Dipl.-Inform. Wolfgang Globke Lineare Algebra und Analytische Geometrie I für die Fachrichtung Informatik Lösungen zum

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

6 Symmetrische und hermitesche Matrizen

6 Symmetrische und hermitesche Matrizen $Id: quadrat.tex,v.0 0/06/9 :47:4 hk Exp $ $Id: orthogonal.tex,v.4 0/06/9 3:46:46 hk Exp $ 6 Symmetrische und hermitesche Matrizen 6.3 Quadratische Funktionen und die Hauptachsentransformation Wir sind

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung

Lineare Algebra 2 (SS 13) Blatt 13: Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra 2 (SS ) Blatt : Musterlösung Aufgabe. Es sei C (R) der R-Vektorraum der unendlich oft differenzierbaren Funktionen auf R und : C (R) C (R), f f die Abbildung,

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Musterlösungen zur Linearen Algebra II Übungsklausur

Musterlösungen zur Linearen Algebra II Übungsklausur Musterlösungen zur Linearen Algebra II Übungsklausur Aufgabe. Sei A R 3 3. Welche der folgenden Aussagen sind richtig? a Ist det(a =, dann ist A eine orthogonale Matrix. b Ist A eine orthogonale Matrix,

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr