5 Eigenwerte und die Jordansche Normalform

Größe: px
Ab Seite anzeigen:

Download "5 Eigenwerte und die Jordansche Normalform"

Transkript

1 Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n Matrix im Normalfall n verschiedene komplexe Eigenwerte hat und über den komplexen Zahlen diagonalisierbar ist. Leider kommen einen durchaus auch Matrizen unter, die nicht zu diesem Normalfall gehören und auch nicht diagonalisierbar sind. Für solche Matrizen kann man trotzdem noch eine Basis finden, bezüglich derer die transformierte Matrix fast in Diagonalform ist, es tritt nur eine zusätzliche Nebendiagonale mit Nullen und Einsen auf. Definition 5.6: Das n n Jordankästchen zum Eigenwert λ C ist die n n Matrix J := λ λ λ λ, wobei die leeren Einträge wie immer für Nullen stehen. Eine Matrix A ist in Jordan Normalform, wenn sie die Gestalt A = J... J r mit Jordankästchen J,..., J r hat. Beispiele für Matrizen in Jordan Normalform sind 5 5 und 3. 6-

2 Mathematik für Physiker II, SS Mittwoch 8.6 Im ersten Beispiel haben wir zwei Jordankästchen 5 5 ein 3 3 Kästchen zum Eigenwert und ein Kästchen zum Eigenwert. Im zweiten Beispiel haben wir sogar vier einzelne Jordan Kästchen A = zwei Kästchen zum Eigenwert, dann ein Kästchen wieder zum Eigenwert und schließlich ein Kästchen zum Eigenwert 3. Beachte das in der Diagonale jedes einzelnen Kästchens immer derselbe Eigenwert stehen muss, zum Beispiel ist die Matrix 3 nicht in Jordan Normalform. Über den komplexen Zahlen läßt sich jede Matrix auf Jordansche Normalform transformieren, im reellen Fall müssen wir verlangen das sämtliche Eigenwerte reell sind. Satz 5.7 (Existenz der Jordanschen Normalform) Seien K {R, C}, n N mit n und A eine n n-matrix deren charakteristisches Polynom über K in Linearfaktoren zerfällt. Dann gibt es eine invertierbare n n Matrix S über K so, dass die transformierte Matrix S AS in Jordan Normalform ist. Den recht komplizierten Beweis dieses Satzes wollen wir hier nicht vorführen. Woran wir interessiert sind ist die praktische Durchführung der Transformation auf Jordan Normalform. Wir denken uns also wir hätten eine n n Matrix A vorgegeben, und wir suchen eine Basis u,..., u n des C n bezüglich derer die Matrix A in Jordanscher Normalform ist. Gleichwertig hierzu ist es eine invertierbare n n Matrix A zu suchen 6-3

3 Mathematik für Physiker II, SS Mittwoch 8.6 so, dass die transformierte Matrix S AS in Jordanscher Normalform ist. Dies ist genau dasselbe rechnerische Problem, die Spalten einer solchen Matrix S bilden die gesuchte Basis des C n und umgekehrt. Den reellen Fall muss man nicht gesondert behandeln, ist A eine reelle Matrix die keine nicht reellen Eigenwerte in C hat, so wird unser Verfahren auch eine reelle Basis des R n beziehungsweise eine reelle Transformationsmatrix S liefern. Wir werden eine Folge immer komplizierter werdender Beispiele durchrechnen, und das Rechenverfahren so nach und nach kennenlernen, ehe wir es dann einmal formal beschreiben. Wir beginnen mit dem Beispiel der folgenden Matrix ( ) 5 8 A :=. 3 Die Jordan Normalform von A besteht entweder aus einem Kästchen oder aus zwei Kästchen, und in beiden Fällen sind die auftretenden komplexen Zahlen auf den Diagonalen der Jordankästchen gerade die Eigenwerte von A. Um diese zu berechnen, bestimmen wir erst einmal das charakteristische Polynom von A χ A (x) = x 5 8 x + 3 = (x 5)(x + 3) + 6 = x x + = (x ). Wir haben also nur einen einzigen Eigenwert λ =. Da A keine Streckung ist, muss die gesuchte Jordan Normalform damit ein Jordankästchen zum Eigenwert sein. Nennen wir die gesuchte Basis des C jetzt u, u, so muss die Matrix der linearen Abbildung A bezüglich der Basis u, u gerade das Kästchen ( ) B := sein d.h. die Bedingungen an u und u sind Au = u und Au = u +u. Insbesondere soll u einfach ein Eigenvektor von A zum Eigenwert λ = sein, und diese können wir durch Lösen des homogenen linearen Gleichungssystems (A )x = berechnen. Wie wir gleich sehen werden, ist es nützlich das Gaußsche Eliminationsverfahren gleich mit einer unbestimmten, allgemeinen rechten Seite durchzuführen. Wegen ( ) 4 8 N := A =, 4 haben wir die Rechnung 4 8 y 4 8 y 4 y y + y, ( ) x und die Lösung der Eigenvektorgleichung N = berechnet sich durch y 4x + 8y = = x = y. 6-3

4 Mathematik für Physiker II, SS Mittwoch 8.6 Als Eigenvektor verwenden wir die Lösung mit y =, also ( ) 4 u :=. Wie kommen wir jetzt an den zweiten Basisvektor u? Wir haben die Bedingung Au = u + u, und diese schreiben wir zu Nu = (A )u = Au u = u um, d.h. der zweite Basisvektor u ergibt sich als Lösung des linearen Gleichungssystems Nu = u. Die linke Seite dieses Gleichungssystems ist wieder die Matrix N = A, die auch schon bei der Berechnung von u aufgetreten ist. Da wir dieses Gleichungssystem schon mit allgemeiner rechter Seite (y, y ) umgeformt haben, müssen wir nur noch y = 4 und y = einsetzen, und erhalten N ( x y )! = ( 4 ) = ( y y und setzen wir etwa y = ein, so ergibt sich eine Lösung ( ) 3 u :=. ) = 4x+8y = y = 4 = x = ( 4 8y) = y, 4 Zum Abschluß wollen wir nun noch verifizieren, dass unsere Rechnung tatsächlich ein korrektes Ergebnis geliefert hat. Wir haben ( ) ( ) ( ) Au = = = u 3, ( ) ( ) ( ) ( ) ( ) Au = = = + = u u, d.h. bezüglich der Basis u, u ist A tatsächlich das Jordankästchen B. Die Transformationsmatrix S von der Basis u, u zur kanonischen Basis e, e ist jetzt die Matrix ( ) 4 3 S = mit der Inversen S = ( ) 3. 4 Es muss jetzt S AS = B gelten, und tatsächlich ist S AS = ( ) ( ) ( ) = ( ) ( ) 4 3 = 4 ( ) = B. Nachdem wir im Beispiel einer Matrix die Jordansche Normalform noch aus dem Stand heraus berechnet haben, ist es für die Behandlung größerer Matrizen hilfreich, sich vorher einen ersten Rechenplan zu überlegen. Zu diesem Zweck halten wir zunächst 6-4

5 Mathematik für Physiker II, SS Mittwoch 8.6 einige Kleinigkeiten über Matrizen in Jordanscher Normalform fest. Ist J ein n n Jordankästchen zum Eigenwert λ C, so ist x λ χ J (x) = x λ x λ x λ = (x λ) n d.h. λ ist der einzige Eigenwert von J und λ hat die algebraische Vielfachheit n. Der Eigenraum zum Eigenwert λ ist dagegen E λ (J) = e der vom ersten kanonischen Basisvektor erzeugte Teilraum, und insbesondere hat λ die geometrische Vielfachheit. Ist A eine allgemeine Matrix in Jordan Normalform A = J... J r mit Jordankästchen J,..., J r, so sei J i für i r das n i n i Jordankästchen zum Eigenwert λ i C, und dann ist χ A (x) = (x λ ) n... (x λ r ) nr, und ist λ {λ,..., λ r } einer der Eigenwerte von A, so hat λ die algebraische Vielfachheit a λ = und die geometrische Vielfachheit i r λ i =λ n i d λ = { i r : λ i = λ}. Die ersten Rechenschritte zur Bestimmung der Jordanschen Normalform einer Matrix A sind damit:. Bestimme die komplexen Eigenwerte λ,..., λ r von A. Dies sind dann genau die in den verschiedenen Jordankästchen zu A auftretenden Eigenwerte.. Für jeden Eigenwert λ von A ist die Gesamtgröße aller Jordankästchen zum Eigenwert λ gleich der algebraischen Vielfachheit des Eigenwerts λ von A. 3. Ist λ ein Eigenwert von A, so ist die Anzahl der Jordankästchen zum Eigenwert λ gleich der geometrischen Vielfachheit des Eigenwerts λ von A. 6-5

6 Mathematik für Physiker II, SS Mittwoch 8.6 Wir wollen jetzt das Beispiel der 3 3 Matrix 3 A := 4 behandeln. Zuerst brauchen wir dann die Eigenwerte von A und ihre algebraischen Vielfachheiten, wir rechnen also das charakteristische Polynom von A aus x 3 χ A (x) = x = (x ) x x 4 x 4 3 x 4 = (x ) (x 4) + 3(x ) = (x x + )(x 4) + 3x 4 = x 3 6x + x 8. Hier ist x = eine Nullstelle. Die Ableitung ist 3x x + und x = ist auch eine Nullstelle der Ableitung. Die zweite Ableitung wird 6x erneut mit der Nullstelle x =, d.h. der Eigenwert λ = hat die algebraische Vielfachheit 3. Damit gilt χ A (x) = (x ) 3 und die Jordansche Normalform von A wird nur Jordankästchen zum Eigenwert haben. Um ihre Anzahl zu bestimmen berechnen wir den Eigenraum E (A) und damit insbesondere die geometrische Vielfachheit des Eigenwerts. Hierzu müssen wir das homogene lineare Gleichungssystem N x = mit der Koeffizientenmatrix N := A = 3 lösen. Wie im Beispiel lösen wir das lineare Gleichungssystem gleich mit allgemeiner rechter Seite, also Nx = y, dies wird sich als nützlich erweisen. Wir führen wieder das Gaußsche Eliminationsverfahren durch 3 y y y 3 3 y y y + y 3 3 y y y + y + y 3. Für unsere Eigenvektoren haben wir damit die Gleichung y = z, x = y 3z = z, d.h. die geometrische Vielfachheit von λ = ist d =, und der Eigenraum E (A) wird erzeugt vom Eigenvektor u :=. Insbesondere besteht die Jordansche Normalform zu A nur aus einem einzelnen 3 3 Kästchen mit Eigenwert. Als den ersten Vektor der zugehörigen Basis können wir 6-6

7 Mathematik für Physiker II, SS Mittwoch 8.6 unseren Eigenvektor u verwenden, aber wie finden wir die anderen beiden Basisvektoren? Dass die transformierte Matrix zu A bezüglich der gesuchten Basis u, u, u 3 ein 3 3 Jordankästchen mit Eigenwert ist, bedeutet das die Matrix der linearen Abbildung f(x) = A x bezüglich der Basis u, u, u 3 gleich B = ist. Die Spalten der Matrix B sind die Koeffizienten der Bilder f(u i ) = Au i (i =,, 3) geschrieben als Linearkombinationen in u, u, u 3, d.h. wir haben die folgenden drei Bedingungen an die gesuchte Basis u, u, u 3 : Au = u, Au = u + u und Au 3 = u 3 + u. Die Bedingung Au = u besagt einfach das u ein Eigenvektor zum Eigenwert λ = sein soll. Die Bedingung für u schreiben wir noch etwas um Au = u + u Au u = u (A )u = u Nu = u, und dies ist einfach ein lineares Gleichungssystem für u dessen rechte Seite der schon berechnete Eigenvektor u ist. Die Koeffizientenmatrix ist die Matrix N, also genau dieselbe die schon bei der Berechnung des Eigenraums E (A) auftrat. Aus diesem Grund haben wir die Gauß Elimination oben mit einer unbestimmten rechten Seite durchgeführt, wir können jetzt einfach die Komponenten von u für die Unbekannten y, y, y 3 einsetzen. Für unser lineares Gleichungssystem Nu = N x y z =! u = müssen wir oben y =, y = und y 3 = einsetzen. Die Gleichungen werden zu mit den Lösungen 3, y = + z und x = ( y + 3z) = + y 3z = z, und wir verwenden die Lösung mit z =, also u =. 6-7

8 Mathematik für Physiker II, SS Mittwoch 8.6 Für den dritten Basisvektor u 3 können wir die Bedingung Au 3 = u 3 + u völlig analog zu Nu 3 = u umschreiben, und da wir u schon berechnet haben können wir in der obigen Stufenform y =, y = und y 3 = einsetzen, und erhalten y = + z, x = ( y + 3z) = y 3z = 4z. Wählen wir wieder die Lösung mit z =, so haben wir u 3 =. Damit sind wir eigentlich fertig, aber vorsichtshalber wollen wir das Ergebnis noch einmal überprüfen, also nachrechnen das bezüglich der Basis u, u, u 3 tatsächlich ein Jordankästchen vorliegt. Au = Au = Au 3 = = = = 4 = u, = = = u + u, = u 3 + u. Die Rechnung hat also wirklich funktioniert, bezüglich der Basis u, u, u 3 ist A in Jordan Normalform. Testen wir auch noch einmal die Transformationsmatrix, d.h. die Matrix deren Spalten unsere drei Basisvektoren sind S = mit der Inversen S = Die transformierte Matrix ist dann wie erwartet 3 S AS = 4 = = Die gesuchte Basis ist bei weitem nicht eindeutig, es gibt normalerweise sehr viele Basen bezüglich derer die Matrix A auf Jordan Normalform transformiert wird. Dementsprechend tauchen in der Rechnung sehr viele lineare Gleichungssysteme mit nicht eindeutigen Lösungen auf, und in diesen Situationen können wir uns immer völlig willkürlich 6-8.

9 Mathematik für Physiker II, SS Mittwoch 8.6 irgendeine Lösung herausgreifen. Im eben gerechneten Beispiel ist die Rechnung im wesentlichen wie in unseren vorigen Beispiel abgelaufen. Im allgemeinen Fall treten aber noch einige zusätzliche Probleme auf, die in diesen beiden Beispielen noch nicht vorgekommen sind. Ein einfaches Beispiel hierfür ist die 3 3 Matrix A = 3 Zunächst läuft alles wie im vorigen Beispiel ab χ A (x) = und 3. = (x ) x x 3 = (x )((x )(x 3) + ) N = A = und das Eliminationsverfahren wird zu = (x )(x 4x + 4) = (x ) 3, y y y 3 y y + y y 3 + y Der Eigenraum zum Eigenwert ist diesmal also zweidimensional und ist gegeben durch die Gleichung y = z. Die geometrische Vielfachheit ist hier also d = und als eine Basis des Eigenraums erhalten wir die beiden Vektoren v :=, v := Diesmal gibt es also zwei Jordankästchen, und da die Gesamtgröße 3 ist, muss es sich um ein und ein Kästchen handeln. Wir suchen also eine Basis u, u, u 3 so, dass die Matrix A sich zu B = transformiert, d.h.. Au = u, Au = u + u Nu = u und Au 3 = u 3. Die Vektoren u und u 3 sollen also im Eigenraum E (A) liegen, d.h. wir haben u, u 3 v, v, aber wir können keine beliebigen Eigenvektoren für u, u verwenden. Wir 6-9

10 Mathematik für Physiker II, SS Mittwoch 8.6 müssen dafür sorgen, dass die Gleichung Nu = u lösbar bleibt. Machen wir für u den Ansatz t u = t v + t v = t, t mit t, t C, so ist die rechte Seite der Gleichung Nu = u gegeben durch y = t, y = y 3 = t, und setzen wir dies in die oben hergeleitete allgemeine Stufenform ein, so erhalten wir eine Bedingung t + t =. Dies lösen wir mit t = und t =, d.h. es wird u = v v = und für u 3 haben wir weitgehend freie Wahl, wir müssen nur irgendeinen von u linear unabhängigen Eigenvektor nehmen, etwa u 3 := v =. Den letzten Basisvektor u erhalten wir als Lösung von N x y z =! u = In unserer obigen Stufenform haben wir also y =, y = y 3 = und die Gleichung wird zu,. y z = y = + z. Wir wählen die Lösung mit x = z =, also u := 6-.

11 Mathematik für Physiker II, SS Mittwoch 8.6 Damit haben wir die gesuchte Basis u, u, u 3 gefunden. Machen wir noch ein letztes Mal den Test Au = Au = Au 3 = = = = 4 = u, = = u 3. + = u + u, Die Matrix bezüglich der Basis u, u, u 3 ist also wirklich B =. Die nächstkompliziertere Situation tritt bei 3 3 Matrizen schon nicht mehr auf, und wir betrachten als ein Beispiel die folgende 4 4 Matrix A := Zum charakteristischen Polynom haben wir inzwischen genug Beispiele gerechnet, und daher wollen wir hier einfach das Ergebnis χ A (x) = (x ) 4 notieren. Wir müssen also wieder die Matrix N := A =

12 Mathematik für Physiker II, SS Mittwoch 8.6 betrachten, und führen die Gauß Elimination durch 8 8 y y 4 y y y 5 5 y y 3 4 y 3 + y 3 y 4 + y 8 8 y 5 5 y y 3 4 y 3 + y 3 y 4 + y 8 8 y 5 5 y y y y y y 4 5 y y 8 8 y 5 y y 5y 3 + y + 4y 5y 4 y + 3y Für den Eigenraum haben wir die Gleichungen y = (5u v) = 3 u+v und x = (8y +u 8v) = ( u v) = u v, d.h. der Eigenraum, hat die Basis v = 3, v = Die geometrische Vielfachheit des Eigenwerts ist also d = und wir haben zwei Jordankästchen. Im Gegensatz zum vorigen Beispiel wissen wir aber noch nicht wie groß diese Jordankästchen sind, es handelt sich entweder um zwei Kästchen oder um ein 3 3 und ein Kästchen. Wir müssen also eines der beiden Ziele Au = u, Au = u + u, Au 3 = u 3, Au 4 = u 4 + u 3 oder. Au = u, Au = u + u, Au 3 = u 3 + u, Au 4 = u 4 ansteuern. Es stellt sich heraus, dass wir einfach so weiter rechnen können wie im vorigen Beispiel, welcher der beiden Fälle hier vorliegt wird sich ganz automatisch ergeben. Wir betrachten also einen allgemeinen Eigenvektor u := y y y 3 y 4 := t v + t v = 6- t t t 3t t t

13 Mathematik für Physiker II, SS Mittwoch 8.6 mit t, t C, und fragen wann Nx = u lösbar ist. In unser oben hergeleiteten Stufenform 8 8 y 5 y y 5y 3 + y + 4y 5y 4 y + 3y müssen also die rechten Seiten der beiden unteren, nur aus Nullen bestehenden, Zeilen ebenfalls gleich Null sein. Wegen 5y 3 + y + 4y = t + 4t 6t 4t 4t =, 5y 4 y + 3y = 5t t + 3t 3t 3t = ist dies unabhängig von t und t immer der Fall, die Gleichung Nx = u ist also für überhaupt jeden Eigenvektor u lösbar. Der Teilraum aller u E (A) für die Nx = u lösbar ist, hat damit die Dimension, und hieraus folgt das unsere Jordan Normalform aus zwei Kästchen besteht, wie wir gleich sehen werden. Die gesuchte Basis u, u, u 3, u 4 erhalten wir, indem wir als u, u 3 irgendeine Basis des Eigenraums nehmen und u, u 4 durch Lösen der linearen Gleichungssysteme Nu = u und Nu 4 = u 3 festlegen. Wir können einfach u := v = 3, u 3 := v = verwenden. Der Vektor u ergibt sich als Lösung von Nu = u, wir haben also = y = ( 5 + 5u v) = 3u + v, x = ( + 8y + u 8v) = 3 u v und verwenden die Lösung mit u = v =, also u =. Der Vektor u 4 ergibt sich ebenso durch Lösen von Nu 4 = u = y = (5 + 5u v) = 3u + v, x = ( + 8y + u 8v) = 5 u v und verwenden wir wieder u = v =, so wird u 4 =

14 Mathematik für Physiker II, SS Mittwoch 8.6 Bezüglich der Basis u, u, u 3, u 4 ist A jetzt in der Jordan Normalform B =. Auf den Test wollen wir diesmal verzichten. Damit haben wir alle Phänomene, die überhaupt auftreten können, bereits gesehen, und werden als nächstes den allgemeinen Algorithmus zum Auffinden der Transformation auf Jordan Normalform beschreiben. Dabei werden keine neuen Rechenschritte auftreten, wir müssen nur alles zusammenfassen, was wir in den Beispielen bereits gesehen haben. Gegeben: Eine komplexe n n Matrix A (die Einträge von A dürfen natürlich auch alle reell sein). Gesucht: Eine Basis u,..., u n des C n bezüglich derer A in Jordan Normalform ist, beziehungsweise äquivalent eine invertierbare, komplexe n n Matrix S so, dass S AS in Jordan Normalform ist. Die Spalten solch einer Matrix sind gerade die Basis u,..., u n und ungekehrt. Ist A reell und hat nur reelle Eigenwerte, so wird das Verfahren eine Basis des R n und entsprechend eine reelle Transformationsmatrix S liefern. Verfahren: Wir führen die folgenden Rechenschritte durch: () Berechne die verschiedenen komplexen Eigenwerte λ,..., λ t von A und ihre algebraischen Vielfachheiten a,..., a t. Dies kann man beispielsweise durch Berechnung des charakteristischen Polynoms mit anschließender Nullstellensuche tun. () Gehe der Reihe nach die Eigenwerte λ = λ i (i =,..., t) durch, und führe für jeden von diesen die folgenden Schritte (3.) bis (3.3) durch. Dabei wird der i-te Eigenwert λ i stets a i viele Vektoren zur Basis beitragen. (3.) Bilde die Matrix N = A λ, und führe auf ihr das Gaußsche Eliminationsverfahren mit unbestimmter rechter Seite (y,..., y n ) durch. (3.) Verwende die nicht verschwindenden r oberen Zeilen der in Schritt (3.) erhaltenen Stufenform um die allgemeine Lösung der Gleichung Nx = y zu berechnen. Die unteren Zeilen bei denen alle Matrixeinträge Null sind und wir nur eine rechte Seite haben werden dabei ignoriert. (3.3) Verwende das Ergebnis von (3.) um eine Basis v,..., v di des Eigenraums E λ (A) zu berechnen, dieser ist ja der Lösungsraum des homogenen linearen Gleichungssystems Nx =. Die Zahl d i ist dabei die geometrische Vielfachheit des Eigenwerts λ = λ i. (3.4) Ist die in (3.3) berechnete geometrische Vielfachheit d i von λ gleich der algebraischen Vielfachheit a i, so nehme die Vektoren v,..., v di als Ergebnis von Schritt (3). 6-4

15 Mathematik für Physiker II, SS Mittwoch 8.6 (3.5) Andernfalls bilde den Vektor u := t v + + t di v di und bezeichne seine Einträge als y,..., y n. Setze diese Werte in die rechten Seiten der unteren n r Zeilen der in (3.) erhaltenen Stufenform ein. Dies gibt ein homogenes lineares Gleichungssystem mit n r Gleichungen für die d i Unbekannten t,..., t di. (3.6) Löse das Gleichungssystem aus (3.5). Ist dann T,..., T s eine Basis des Lösungsraums, so bilde für jedes T j = (t,..., t n ) den zugehörigen Vektor u j = t v + +t di v di. Weiter wähle unter den v,..., v di genau l := d i s Vektoren aus, so dass keine von Null verschiedene Linearkombination der ausgewählten Vektoren eine Lösung des Gleichungssystem aus (3.5) ist. Dies ist immer möglich. (3.7) Die in (3.6) gewählten Vektoren sind dann genau die Basiselemente die den Jordankästchen zum Eigenwert λ entsprechen. Die restlichen s Jordankästchen zu λ haben alle eine Größe mindestens. Für jedes j s benutze jetzt das Ergebnis von (3.) um einen Vektor v j mit Nv j = u j zu berechnen. (3.8) Haben wir jetzt genug Vektoren beisammen, ist also s + l = a i, so füge die Vektoren v, u,..., v s, u s zu den in (3.6) gewählten Vektoren hinzu, und diese alle sind dann das Ergebnis von Schritt (3). (3.9) Andernfalls bilde wie in (3.5) den Vektor u := t v + + t s v s und bezeichne seine Einträge als y,..., y n. Einsetzen in die unteren n r rechten Seiten in (3.) gibt ein homogenes lineares Gleichungssystem mit n r Gleichungen für die s Unbekannten t,..., t s. (3.) Löse das Gleichungssystem aus (3.9) und berechne eine Basis T,..., T s seines Lösungsraums. Für jedes T j = (t,..., t s ) bilde den Vektor u j = t v + + t s v s. Weiter wähle unter den Vektoren v,..., v s genau l := s s Vektoren aus so, dass keine von Null verschiedene Linearkombination der ausgewählten Vektoren eine Lösung des Gleichungssystems aus (3.9) ist. (3.) Für jeden der in (3.) gewählten l Vektoren v k füge v k und Nv k zu den bisher in (3.7) zusammengestellten Basisvektoren hinzu. Diese entsprechen dann den l Jordankästchen der Größe. Die restlichen s Jordankästchen zu λ haben alle eine Größe mindestens 3. Für jedes j s benutze jetzt das Ergebnis von (3.) um einen Vektor v 3j mit Nv 3j = u j zu berechnen. (3.) Haben wir jetzt genug Vektoren beisammen, ist also 3s + l + l = a i, so füge die Vektoren v 3, u, Nu,..., v 3s, u s, Nu s zu den bisher gewählten Basisvektoren hinzu, und dies ist das Ergebnis von Schritt (3). 6-5

16 Mathematik für Physiker II, SS Mittwoch 8.6 (3.3) Andernfalls wiederhole die Schritte (3.9) bis (3.) entsprechend bis wir a i Vektoren beisammen haben. Die in (3.) und (3.) hinzuzufügenden Ketten werden dabei bei jedem Schritt um eins länger, da wir ja die Basiselemente zu immer größeren Jordankästchen zusammenstellen. Die Abbruchbedingung in (3.) hat auf Stufe q die Form qs q + (q )l q + + l + l = a i. (4) Fasse alle in Schritt (3) für i =,..., t gefundenen Vektoren zu einer Basis zusammen, und ordne diese noch nach Eigenwerten und Größe der jeweiligen Jordankästchen. 6-6

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

1.9 Eigenwerte und Eigenvektoren

1.9 Eigenwerte und Eigenvektoren .9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01

Komplexe Zahlen. Kapitel 1. 1.1 Definitionen 18.4.01 Kapitel Komplexe Zahlen Motivation: die Gleichung x = hat offensichtlich keine reellen Lösungen, da x 0 für jedes reelle x gilt Um auch diese Gleichung lösen zu können, muß man neue Zahlen einführen: die

Mehr

11 Normalformen von Matrizen

11 Normalformen von Matrizen 11 Normalformen von Matrizen Wir wenden uns in diesem Kapitel noch einmal der Untersuchung linearer Abbildungen auf endlichdimensionalen Vektorräumen und deren Darstellung mittels Matrizen zu Speziell

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 9 Freitag. $Id: quadrat.tex,v.5 9//5 ::59 hk Exp $ $Id: orthogonal.tex,v.4 9// ::54 hk Exp $ $Id: fourier.tex,v. 9// :: hk Exp $ Symmetrische Matrizen und quadratische

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf

Kochen mit Jordan. Vorbereitungen. Schnellzubereitung. JNF für Genießer wenn s noch etwas mehr sein darf Kochen mit Jordan Vorbereitungen Man nehme eine Matrix A R n n und bestimme ihr charakteristisches Polynom p(λ) = (λ c ) r (λ c j ) rj C[X] Dabei gilt: algebraische Vielfachheit r j ˆ= Länge des Jordanblocks

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter

Vorwort. Günter M. Gramlich. Lineare Algebra. Eine Einführung ISBN: 978-3-446-43035-8. Weitere Informationen oder Bestellungen unter Vorwort Günter M. Gramlich Lineare Algebra Eine Einführung ISBN: 978-3-446-43035-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-43035-8 sowie im Buchhandel. Carl Hanser

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Erinnerung/Zusammenfassung zu Abbildungsmatrizen

Erinnerung/Zusammenfassung zu Abbildungsmatrizen Erinnerung/Zusammenfassung zu Abbildungsmatrizen Thomas Coutandin (cthomas@student.ethz.ch) 7. November 2 Abbildungsmatrizen Im Folgenden betrachten wir stets endlich dimensionale K-Vektorräume (K irgend

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1

Mat(2 2, R) Wir bestimmen das charakterische Polynom 1 f A (t) = t 2 t 2 = (t 2)(t + ( 1). ) 2 2. Eigenvektor zu EW 2 ist v 2 = 1 1 Aufgabe. Bestimmen Sie das Exponential expa) der Matrix ) 5 6 A = Mat, R). 4. Wir bestimmen das charakterische Polynom f A t) = t t = t )t + ). ). Eigenvektor zu EW ist v = ). Eigenvektor zu EW ist v =

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

A Matrix-Algebra. A.1 Definition und elementare Operationen

A Matrix-Algebra. A.1 Definition und elementare Operationen A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010

Aufgabensammlung aus Mathematik 2 UMIT, SS 2010, Version vom 7. Mai 2010 Aufgabensammlung aus Mathematik 2 UMIT, SS 2, Version vom 7. Mai 2 I Aufgabe I Teschl / K 3 Zerlegen Sie die Zahl 8 N in ihre Primfaktoren. Aufgabe II Teschl / K 3 Gegeben sind die natürliche Zahl 7 und

Mehr

Lineare Gleichungssysteme und Gauß'scher Algorithmus

Lineare Gleichungssysteme und Gauß'scher Algorithmus Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier

Mehr

Numerische Behandlung des Eigenwertproblems

Numerische Behandlung des Eigenwertproblems Numerische Behandlung des Eigenwertproblems Zusammenfassung Das Ziel dieses Vortrages ist, zwei gute Methoden für die numerische Bestimmung der Eigenwerte zu zeigen und wie man diese mit Matlab anwenden

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

7 Lineare Abbildungen und Lineare Gleichungssysteme

7 Lineare Abbildungen und Lineare Gleichungssysteme 7 LINEARE ABBILDUNGEN UND LINEARE GLEICHUNGSSYSTEME 5 7 Lineare Abbildungen und Lineare Gleichungssysteme 7 Lineare Abbildungen 7 Abbildungen: Eine Verallgemeinerungen des Funktionsbegriffs Bemerkung:

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

2 Die Darstellung linearer Abbildungen durch Matrizen

2 Die Darstellung linearer Abbildungen durch Matrizen 2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Hans Walser, [20090509a] Wurzeln aus Matrizen

Hans Walser, [20090509a] Wurzeln aus Matrizen Hans Walser, [0090509a] Wurzeln aus Matrizen 1 Worum es geht Zu einer gegebenen,-matri A suchen wir,-matrizen B mit der Eigenschaft: BB = B = A. Wir suchen also Quadratwurzeln der Matri A. Quadrieren Wenn

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011

Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011 Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

6. Rechnen mit Matrizen.

6. Rechnen mit Matrizen. 6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Vektorräume und Rang einer Matrix

Vektorräume und Rang einer Matrix Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung

Mehr

Satz 25 A sei eine (n n)-matrix über K

Satz 25 A sei eine (n n)-matrix über K Satz 25 Satz 25 A sei eine (n n)-matrix über K Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen Eigenwerten λ 1,...,λ m. Satz 25 A sei eine (n n)-matrix über K mit paarweise verschiedenen

Mehr

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel.

Übungsaufgaben zur Linearen Algebra II. 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. Blatt 1 21.4.97 1.) Lösen Sie das folgende lineare Gleichungssystem mit der Cramerschen Regel. 3x 1 x 2 + 5x 3 = 1 x 1 + 2x 2 + x 3 = 1 2x 1 + 4x 2 + 3x 3 = 1 2.) Zeigen Sie: det 1 1 0 0.......... 0 1

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung

Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare

Mehr

Gleichungen - Aufgabenstellung und Lösungsstrategien

Gleichungen - Aufgabenstellung und Lösungsstrategien Gleichungen - Aufgabenstellung und Lösungsstrategien Franz Pauer Institut für Mathematik, Universität Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Österreich. Franz.Pauer@uibk.ac.at 18. Juli 2006 1 Einleitung

Mehr

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form Gaußscher Algorithmus zur Lösung linearer Gleichungssysteme Wir gehen aus vom Gleichungssystem A=b. Dabei ist A M m n K, b K m. Gesucht werden ein oder alle Elemente K n, so daß obige Gleichung erfüllt

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG

ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG ¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr