Literatur. [1] Cerbe, G. / Hoffmann, H.-J. Einführung in die Thermodynamik Carl Hanser Verlag 2002 Preis ca. 29,90

Größe: px
Ab Seite anzeigen:

Download "Literatur. [1] Cerbe, G. / Hoffmann, H.-J. Einführung in die Thermodynamik Carl Hanser Verlag 2002 Preis ca. 29,90"

Transkript

1 Literatur [1] Cerbe, G. / Hoffmann, H.-J. Einführung in die Thermodynamik Carl Hanser Verlag 2002 Preis ca. 29,90 [2] Grigull, U. (Hrsg.) Wasserdampftafeln Springer Verlag 1990 [3] Merker, G.P. / Stiesch, G. Technische Verbrennung, Motorische Verbrennung Teubner Verlag 1999 [4] Günther, R. Verbrennung und Feuerung, Springer Verlag [5] Wagner, W. Wärmetauscher, 1. Auflage Vogel Buchverlag 1993 Seite 1

2 Gliederung 1. Phasenübergänge und seine Anwendung in Maschinen und Anlagen 1.1 Zustandsänderungen und Zustandsgleichungen Phase Change Materials 1.2 Thermische Zustandsgrößen p, v, T - Diagramme 1.3 Das Nassdampfgebiet 1.4 Bestimmung von Enthalpie und Entropie 1.5 Die Wasserdampftafeln Zustandsänderungen T - s Diagramm und h - s Diagramm 1.6 Die einfache Dampfkraftanlage Clausius-Rankine Vergleichsprozess Die Speisewasserpumpe Der Dampferzeuger Exergetischer Wirkungsgrad 1.7 Überkritische Zustände bei CO Kältemaschinenprozesse mit CO 2 für PKW Klimatisierung 2. Verbrennung 2.1 Grundgleichungen der Verbrennung Heizwerte 2.2 Sauerstoff- und Luftbedarf bei vollständiger Verbrennung Menge und Zusammensetzung der Verbrennungsgase 2.3 Theoretische Verbrennungstemperatur 2.4 Technische Verbrennung Unvollkommene Verbrennung Flammentypen 2.5 Gemischaufbereitung flüssiger Brennstoffe 2.6 Stickoxid - Bildung 2.7 Bildung von Kohlenwasserstoffen und Ruß Seite 2

3 Gliederung 3. Wärmeübertragung 3.1 Wärmeleitung Temperaturfeld Stationäre, eindimensionale Wärmeleitung 3.2 Konvektiver Wärmeübergang Wärmeübergangskoeffizient Kenngrößen des Wärmeübergangs Nusseltzahlen für die wichtigsten Anwendungen Wärmeübergang bei Phasenänderung 3.3 Wärmestrahlung Einleitung Strahlungsaustausch Gasstrahlung 3.4 Wärmedurchgang 3.5 Wärmetauscher Gleich-/Gegen-/Kreuzstromwärmetauscher Austauschgrad und Number of Transfer Units Exergieverluste im Wärmetauscher 4. Technische Anwendungen 4.1 Kombiniertes Gas-Dampf-Kraftwerk (GUD-Prozess) 4.2 Wärmeübertragung im Verbrennungsmotor 4.3 Katalysatoren für motorische Verbrennung 4.4 Wärmerohr Seite 3

4 Zustandsänderung beim Erwärmen und Verdampfen Ein homogener Stoff im Gebiet des festen, flüssigen und gasförmigen Zustandes ändert seine physikalischen Eigenschaften innerhalb seines Volumens nicht: Einphasengebiet Ein heterogener Stoff besteht aus (mindestens) zwei Phasen. Im Nassdampfgebiet aus gasförmigen und flüssigen Stoff, im Schmelzgebiet aus flüssigen und festen Stoff und im Sublimationsgebiet aus festen und gasförmigen Stoff. Zweiphasengebiet Erwärmen und Verdampfen von Wasser bei konstantem Druck p = 1 bar Schematische Darstellung des Verdampfungsvorganges Seite 4

5 Dampfdruckkurve: p-t Diagramm von Wasser Seite 5

6 Druck spez. Volumen (p v) Diagramm K kritischer Punkt: keine Grenze zwischen Flüssigkeit und Gas Bei p = p k und T = T k v = v T Tripelpunkt: Gleichgewichtszustand aller drei Phasen flüssig, gasförmig, fest z.b. Wasser, Wasserdampf, Eis p - v Diagramm mit Isothermen und Grenzkurven der Zweiphasengebiete. Das spez. Volumen ist logarithmisch aufgetragen. Seite 6

7 Zustandsgleichung realer Gase Realgasfaktor Z Z = p v R T i B( T) C( T) D( T) = v 2 3 v v Realgasfaktor Z für trockene Luft Seite 7

8 Nassdampf Nassdampf ist ein Gemisch aus siedender Flüssigkeit und gesättigtem Dampf (Gas), die miteinander im thermodynamischen Gleichgewicht stehen, also denselben Druck p und dieselbe Temperatur T haben. Zustandsgröße mit zwei Strichen: gasförmige Phase Z Zustandsgrößen mit einem Strich: flüssige Phase Z Abgeschlossenes Zweiphasen-System Dampfgehalt x x = Masse des gesättigten Dampfes Masse des nassen Dampfes m x = m + m Seite 8

9 Enthalpie Entropie (h s) Diagramm für Wasserdampf Seite 9

10 Temperatur Entropie (T s) Diagramm für Wasser und Wasserdampf C.P bedeutet Kritischer Punkt Seite 10

11 Druck Enthalpie (log p h) Diagramm für Wasser und Wasserdampf C.P bedeutet Kritischer Punkt Seite 11

12 Thermodynamische und Transportgrößen von gesättigtem Wasser und Dampf 0 Verwendung der Wasserdampftafeln (Auszug der Drucktafel von 0,05 bis 0,75 bar entsprechend 0,005 bis 0,075 MPa) Seite 12

13 Thermodynamische und Transportgrößen von gesättigtem Wasser und Dampf 1 Verwendung der Wasserdampftafeln (Auszug der Drucktafel von 0,8 bis 22,0 bar entsprechend 0,08 bis 2,20 MPa) Seite 13

14 Thermodynamische und Transportgrößen von gesättigtem Wasser und Dampf 2 Verwendung der Wasserdampftafeln (Auszug der Drucktafel von 24,0 bis 220,55 bar entsprechend 2,40 bis 22,055 MPa) Seite 14

15 Thermodynamische Größen von überhitztem Dampf Verwendung der Wasserdampftafeln (Auszug der Drucktafel von 24,0 bis 220,55 bar entsprechend 2,40 bis 22,055 MPa) Seite 15

16 Wärmegrundschaltplan eines Dampfkraftwerkes Mit einer Zwischenüberhitzung und 6 Entnahmen zur Speisewasservorwärmung Seite 16

17 Kombiniertes Gas-Dampf-Kraftwerk (GUD-Prozess) Schema eines GUD-Prozesses Seite 17

18 Selected Values of Chemical Thermodynamics Properties for Combustion Calculations Seite 18

19 Eigenschaften gasförmiger Brennstoffe Wobbe-Index H s = Brennwert in kj/kg Hi = Heizwert in kj/kg d v = relative Dichte d V = ρ ρ Gas Luft trocken Wobbe-Index W i bzw. W s in MJ/m³ oder kwh/m³ W s = H d s V W i = H d i V Gase mit nahezu gleichem Wobbe-Index ergeben bei gleichen Zustandsgrößen die gleiche Wärmebelastung eines Brenners, d.h. gleiche zugeführte Wärmemenge in kw. Seite 19

20 Heizwert und Brennwert H s = Brennwert in kj/kg : der durch die Verbrennung entstandene Wasserdampf wurde vollständig kondensiert H i = Heizwert in kj/kg : nach der Verbrennung bleibt das Wasser dampfförmig H s = H i (9h + w) Verdampfungswärme des Wassers im Abgas bei 25 C = 2442 kj/kg Massenanteil von Wasserstoff h in kg / kg Brennstoff Massenanteil von Wasserdampf w in kg / kg Brennstoff H = H V s i H2O V H 2 O : Wasserdampfvolumen im Normzustand in kg/m³ oder m³/m³ Seite 20

21 Heizwerte und Eigenschaften von Brennstoffen flüssige Dichte hs hi Brennstoffe kg/dm³ bei 20 C MJ/kg Benzin 0,72...0,80 46,7 42,5 Heizöl EL 0,82...0,86 45,4 42,7 gasförmige Dichte- hs hi Brennstoffe verhältnis MJ/mn ³ ρ gas d v = ρluft Propan 1, ,89 92,89 Erdgas, trocken 0,60 37,25 33,49 feste VH 2 O Lmin hi Brennstoffe mn ³ /kg mn ³ /kg MJ/kg Steinkohle Anthrazit 0,4 8,3 31,4 Braunkohle Briketts 0,7 5,6 19,25 Seite 21

22 Verbrennungsgas-Berechnung Verbrennungsgas-Berechnung bei festen und flüssigen Brennstoffen V f = VCO + VH O( h) + VSO + VN + VH O( Br. ) + VH O( Luft) + VO ( Luft) + VN ( Luft) a, m n Va,f in feuchte Verbrennungsgasmenge kg Verbrennungsgas-Berechnung für gasförmige Brennstoffe V = V + V + V + V a,f CO 2 H2O O2 N2 3 m feuchte Verbrennungsgasmenge V a,f in 3 m B b 1 CO + H 2 m b b 3 L min = + n + CnHm O m 2 n Luft in 0, mn Brennstoff Abgas-Zusammensetzung: Abgasbestandteil Zeichen Abgase in m³ / m³ Kohlendioxyd CO 2 CO 2 +CO+ n (C n H m ) Wasserdampf H 2 O H 2 + m/2 (C n H m ) Sauerstoff O 2 0,21 (λ-1) L min Stickstoff N 2 N2+0,79 λ L min Seite 22

23 Enthalpie-Temperatur (h t) Diagramm für Abgase nach Rosin und Fehling Seite 23

24 Unvollkommene Verbrennung und Verbrennungsdreiecke Seite 24

25 Flammentypen Laminare Vormischflammen an den Beispielen Brenner mit Sinterplatte Bunsenbrenner Laminare Diffusionsflammen an den Beispielen Gegenstromdiffusionsbrenner Gleichstromdiffusionsbrenner Seite 25

26 Verbrennungsdiagramm für Vormischflammen-Gasbrenner nach van den Linden Seite 26

27 Einfluss der Gas-/Luft-Austrittsgeschwindigkeit auf Flammenlänge und Flammenströmung Seite 27

28 Brennstoff Zerstäubung Diesel - Einspritzung Koaxial-Zerstäubung Dralldüse für Heizöl in Raketenmotoren Transienter Vorgang Oberflächenwellen Massen- / Impulsverteilung beim Strahl beim Film Seite 28

29 Gemischaufbereitung bei der Verbrennung flüssiger Brennstoffe, Verdampfungsvorgang am Methanol-Tropfen Tropfenausgangsdurchmesser d 50 µm Starttemperatur des Tropfens T 350 K Quelle: Warnatz, J. / Maas, U., 1993 Seite 29

30 Wärme und Stofftransport am Heizöltropfen Flammenfront und Phasengrenze Brennzeit von Heizöltropfen Relativgeschwindigkeit Luft/Tropfen 75 m/s Tropfenanfangstemperatur 300 K Seite 30

31 Qualitative Darstellung der NOx-Bildung Quelle: Benz, P Seite 31

32 Ozon-Bildung durch Stickstoffdioxid Seite 32

33 Motorklopfen Ausbreitung der Flammenfront im Zylinderraum Druckverlauf bei Motorklopfen Seite 33

34 Flammenlöschung an der Wand und in Spalten Löschung einer zur Wand parallelen Flammenfront Löschung einer zur Wand senkrechten Flammenfront Löschung einer Flammenfront in einem engen Spalt Seite 34

35 Wärmetransportmechanismen an der Rohrwand eines Dampferzeugers Seite 35

36 Stationäre Wärmeleitung und Temperaturprofil Seite 36

37 Wärmeleitung in Rippenwänden Kreisrippen-Geometrie Seite 37

38 Natürliche und erzwungene Strömung Wärmeübergang zwischen festem Körper und Fluid Darstellung der Konvektion an einem Versuch mit beheizten und gekühlten Wänden Seite 38

39 Verdampfungsvorgang mit Blasensieden Phasengleichgewicht bei Flüssigkeit und Dampf Geringe Wärmezufuhr und natürliche Konvektion Blasenverdampfung Seite 39

40 Wärmeübergangsbereiche bei der Verdampfung Seite 40

41 Räumliche Verteilung der zeitlich mittleren Wärmestromdichte Seite 41

42 Wärmedurchgang durch ein Zylinderrohr / Verbrennungsmotor Seite 42

43 Temperaturen an einem Dieselmotor Seite 43

44 Massenmittel-Temperatur für Otto- und Dieselmotor Seite 44

45 Wärmestromdichte eines 4-Takt-Ottomotors Seite 45

46 Wärmeübergangskoeffizient eines 4-Takt-Ottomotors Übung: Ergänzen Sie den Kurvenverlauf nach einer in der Vorlesung entwickelten Gleichung Wärmeübergangskoeffizient α i W m 2 K α m i Seite 46

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6. Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gernot Wilhelms Übungsaufgaben Technische Thermodynamik ISBN: 978-3-446-41512-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41512-6 sowie im Buchhandel.

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 3., erweiterte Auflage Fachbuchverlag

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN-10: 3-446-22882-9 ISBN-13: 978-3-446-22882-5 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-22882-5

Mehr

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Inhaltsverzeichnis Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41781-6

Mehr

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436 Inhaltsverzeichnis 1 Allgemeine Grundlagen... 1 1.1 Thermodynamik... 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 WasistThermodynamik?... 9 1.2 SystemundZustand... 11 1.2.1 SystemundSystemgrenzen...

Mehr

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l Inhaltsverzeichnis Häufig verwendete Formelzeichen XVII 1 Allgemeine Grundlagen l 1.1 Thermodynamik 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 Was ist Thermodynamik? 9 1.2 System

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

Ergänzung im Web www.thermodynamik-formelsammlung.de

Ergänzung im Web www.thermodynamik-formelsammlung.de Ergänzung im Web www.thermodynamik-formelsammlung.de Kapitel 13 Ideale Gasgemische Anhang B Zustandsdiagramme B5 B6 lg p,h-diagramm für Propan h 1+x,x w -Diagramm für feuchte Luft (farbig) AnhangC Stoffwert-Bibliotheken

Mehr

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple

Übungssunterlagen. Energiesysteme I. Prof. Dr.-Ing. Bernd Epple Übungssunterlagen Energiesysteme I Prof. Dr.-Ing. Bernd Epple 1 1. Allgemeine Informationen Zum Bearbeiten der Übungen können die Formelsammlungen aus den Fächern Technische Thermodynamik 1, Technische

Mehr

Lehrabschlussprüfungs Vorbereitungskurs Rauchfangkehrer. Brennstoffe. Wir Unterscheiden grundsätzlich Brennstoffe in:

Lehrabschlussprüfungs Vorbereitungskurs Rauchfangkehrer. Brennstoffe. Wir Unterscheiden grundsätzlich Brennstoffe in: Lehrabschlussprüfungs Vorbereitungskurs Rauchfangkehrer Wir Unterscheiden grundsätzlich in: Feste Flüssige Gasförmige Biomasse Feste Torf Holz Kohle Brikett Koks Anthrazit Holz: Anwendung: Kachelofen,

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 2., aktualisierte Auflage Fachbuchverlag

Mehr

Dampfkraftprozess Dampfturbine

Dampfkraftprozess Dampfturbine Fachgebiet für Energiesysteme und Energietechnik Prof. Dr.-Ing. B. Epple Musterlösung Übung Energie und Klimaschutz Sommersemester 0 Dampfkraftprozess Dampfturbine Aufgabe : Stellen Sie den Dampfkraftprozess

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 2, Teil 2. Prof. Dr. Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 2, Teil 2 Prof. Dr. Ing. Heinz Pitsch Kapitel 2, Teil 2: Übersicht 2 Zustandsgrößen 2.3 Bestimmung von Zustandsgrößen 2.3.1 Bestimmung der Phase 2.3.2 Der Sättigungszustand

Mehr

Verbrennungstechnik. 1. Brennstoffe. 1.Brennstoffe. 2.Heizwert. 2.1 Oberer Heizwert 2.2 Unterer Heizwert. 3.Verbrennungsvorgang

Verbrennungstechnik. 1. Brennstoffe. 1.Brennstoffe. 2.Heizwert. 2.1 Oberer Heizwert 2.2 Unterer Heizwert. 3.Verbrennungsvorgang Verbrennungstechnik 1.Brennstoffe.Heizwert.1 Oberer Heizwert. Unterer Heizwert.Verbrennungsvorgang.1 Verbrennungsgleichungen 4.Ermittlung von Sauerstoff-, Luftbedarf u. Rauchgasmenge 5.Verbrennungskontrolle

Mehr

Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung

Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung Klausuraufgaben Thermodynamik (F 0 A) BRAUNKOHLE-KRAFTWERK Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung und Anzapf-Vorwärmung. Dabei wird der Wassermassenstrom

Mehr

Übungen. Vorlesung. Energietechnik

Übungen. Vorlesung. Energietechnik Fachhochschule Münster Fachbereich Maschinenbau Motoren- und Energietechnik-Labor Prof. Dr. R. Ullrich Übungen zur Vorlesung Energietechnik Version 1/99 - 2 - Übung 1 1.) Die wirtschaftlich gewinnbaren

Mehr

Thermodynamik II WS 2005/2006

Thermodynamik II WS 2005/2006 Thermodynamik II WS 2005/2006 Prof. Dr.-Ing. G. Wilhelms Aufgabensammlung Exergie/Anergie (EA) EA 1 - Exergie und Anergie der Enthalpie EA 2 - Exergie und Anergie der inneren Energie EA 3 - Exergie der

Mehr

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol

Molzahl: n = N/N A [n] = mol N ist die Anzahl der Atome oder Moleküle des Stoffes. Molmasse oder Molekularmasse: M [M ]= kg/kmol 2. Zustandsgrößen 2.1 Die thermischen Zustandsgrößen 2.1.1. Masse und Molzahl Reine Stoffe: Ein Mol eines reinen Stoffes enthält N A = 6,02214. 10 23 Atome oder Moleküle, N A heißt Avogadro-Zahl. Molzahl:

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Gasbeschaffenheit. Siegfried Bajohr. Engler-Bunte-Institut Bereich Gas, Erdöl, Kohle

Gasbeschaffenheit. Siegfried Bajohr. Engler-Bunte-Institut Bereich Gas, Erdöl, Kohle Gasbeschaffenheit Siegfried Bajohr 1 Inhalt Brenntechnische Kenndaten Brennwert H S und Heizwert H i Wobbe-Index W Anwendungsdaten Abgasvolumen Sicherheitskennwerte Zündgrenze Z 2 Brenntechnische Kenndaten

Mehr

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64

Thermodynamik II. für den Studiengang Computational Engineering Science. H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Thermodynamik II für den Studiengang Computational Engineering Science H. Pitsch, B. Binninger Institut für Technische Verbrennung Templergraben 64 Inhalt von Thermodynamik II 6. Beziehungen zwischen Zustandsgrößen

Mehr

-10% -5% -3% -2% -1% -0,5% -0,1% 0,1% Temperatur [ C]

-10% -5% -3% -2% -1% -0,5% -0,1% 0,1% Temperatur [ C] Berechnung der thermodynamischen Zustandsgrößen und Transporteigenschaften von feuchten Verbrennungsgasen, feuchter Luft und Absorptionskältemittelgemischen in fortschrittlichen Energieumwandlungsprozessen

Mehr

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O

Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Klausur H2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) Stellen Sie für die folgenden Reaktionen die Gleichgewichtskonstante K p auf: 1/2O 2 + 1/2H 2 OH H 2 + 1/2O 2 H 2 O Wie wirkt sich eine

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Thermodynamik. Grundlagen und technische Anwendungen

Thermodynamik. Grundlagen und technische Anwendungen Springer-Lehrbuch Thermodynamik. Grundlagen und technische Anwendungen Band 2: Mehrstoffsysteme und chemische Reaktionen Bearbeitet von Peter Stephan, Karlheinz Schaber, Karl Stephan, Franz Mayinger Neuausgabe

Mehr

a.) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung!

a.) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung! Klausur F2004 (Grundlagen der motorischen Verbrennung) 2 Aufgabe 1.) ( 2 Punkte) Wie beeinflussen in einer Verbrennungsreaktion Brennstoffe in fester bzw. flüssiger Phase das chemische Gleichgewicht? Begründung!

Mehr

Brennstoffverbrennung

Brennstoffverbrennung Brennstoffverbrennung Typologisierung der Verbrennungen Verbrennungsreaktionen Globalreaktionen Elementarschritte Reaktion und Dissoziation, Reaktionsrichtung Einführung in die Brennerkonstruktion Flammentemperatur,

Mehr

Vorlesung #7. M.Büscher, Physik für Mediziner

Vorlesung #7. M.Büscher, Physik für Mediziner Vorlesung #7 Zustandsänderungen Ideale Gase Luftfeuchtigkeit Reale Gase Phasenumwandlungen Schmelzwärme Verdampfungswärme Dampfdruck van-der-waals Gleichung Zustandsdiagramme realer Gase Allgem. Gasgleichung

Mehr

Technische Thermodynamik

Technische Thermodynamik Hans-Joachim Kretzschmar Ingo Kraft Kleine Formelsammlung Technische Thermodynamik 4., aktualisierte Auflage Ergänzung im Web www.thermodynamik-formelsammlung.de Kapitel 13 Ideale Gasgemische Anhang B

Mehr

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft.

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft. 7. Chemische Stoffumwandlungen 7.1 Massenbilanz bei chemischen Stoffumwandlungen Bruttoreaktionen, z. B. die Knallgasreaktion H 2 + ½ O 2 = H 2 O, beschreiben die Mengenverhätnisse beim Umsatz H 2 zu O

Mehr

Energietechnische Arbeitsmappe

Energietechnische Arbeitsmappe VDI-Buch Energietechnische Arbeitsmappe Bearbeitet von VDI-Gesellschaft Energietechnik VDI-Gesellschaft Energietechnik erweitert, überarbeitet 2000. Buch. XII, 391 S. Hardcover ISBN 978 3 540 66704 9 Gewicht:

Mehr

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C?

A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? A 1.1 a Wie groß ist das Molvolumen von Helium, flüssigem Wasser, Kupfer, Stickstoff und Sauerstoff bei 1 bar und 25 C? (-> Tabelle p) A 1.1 b Wie groß ist der Auftrieb eines Helium (Wasserstoff) gefüllten

Mehr

Betriebsfeld und Energiebilanz eines Ottomotors

Betriebsfeld und Energiebilanz eines Ottomotors Fachbereich Maschinenbau Fachgebiet Kraft- u. Arbeitsmaschinen Fachgebietsleiter Prof. Dr.-Ing. B. Spessert März 2013 Praktikum Kraft- und Arbeitsmaschinen Versuch 1 Betriebsfeld und Energiebilanz eines

Mehr

Chemische Thermodynamik

Chemische Thermodynamik Walter Schreiter Chemische Thermodynamik Grundlagen, Übungen, Lösungen 2. überarbeitete und ergänzte Auflage De Gruyter Energie Verwendete Symbole und Größen XIII 1 Theoretische Grundlagen 1 1.1 Nullter

Mehr

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach Übungsaufgabe Bestien Sie das olare Voluen für Aoniak bei eine Druck von 1 MPa und einer Teperatur von 100 C nach a) de idealen Gasgesetz b) der Van der Waals-Gleichung c) der Redlich-Kwong- Gleichung

Mehr

Kavitation, Volumensieden, Ausgasung - Vergleich neuer Modellierungsansätze

Kavitation, Volumensieden, Ausgasung - Vergleich neuer Modellierungsansätze Technologietag des ERCOFTAC Pilot Center Germany South Stuttgart, 30. Sept. 2005 Kavitation, Volumensieden, Ausgasung - Vergleich neuer Modellierungsansätze University of Stuttgart Eckart Laurien Institut

Mehr

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig

Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig Physikalisches Anfängerpraktikum, Fakultät für Physik und Geowissenschaften, Universität Leipzig W 10 Wärmepumpe Aufgaben 1 Nehmen Sie die Temperatur- und Druckverläufe einer Wasser-Wasser-Wärmepumpe auf!

Mehr

Thermische Verfahrenstechnik I. Prof. Dr.-Ing. B. Platzer Folie 1 University of Applied Sciences Kaiserslautern

Thermische Verfahrenstechnik I. Prof. Dr.-Ing. B. Platzer Folie 1 University of Applied Sciences Kaiserslautern Thermische Verfahrenstechnik I Prof. Dr.-Ing. B. Platzer Folie 1 Gliederung 1. Einführung 2. Thermodynamische h Grundlagen 3. Thermische Trennverfahren / Apparative Gestaltung 3.1 Destillation/Rektifikation

Mehr

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +... Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 25. August 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Projekt Aufgabensammlung Thermodynamik

Projekt Aufgabensammlung Thermodynamik Projekt Aufgabensammlung Thermodynamik Nr. Quelle Lösungssicherheit Lösung durch abgetippt durch 1 Klausur 1 (1) OK Navid Matthes 2 Probekl. WS06 (1) / Kl.SS04 (1) 100% Prof. Seidel. (Nav.) Matthes (Nav)

Mehr

Grundlagen der Energie- und Kraftwerkstechnik

Grundlagen der Energie- und Kraftwerkstechnik Professor Dr. Thomas Bohn Dr.-Ing. Walter Bitterlich Grundlagen der Energie- und Kraftwerkstechnik Technischer Verlag Resch Verlag TÜV Rheinland Inhaltsübersicht Seite 1 Einfuhrung 1 1.1 Energie- und Kraftwerkstechnik

Mehr

Inhaltsverzeichnis Allgemeine Grundlagen Fluide Phasen

Inhaltsverzeichnis Allgemeine Grundlagen Fluide Phasen 1. Allgemeine Grundlagen... 1 1.1 Energie-undStoffumwandlungen... 1 1.1.1 Energieumwandlungen... 2 1.1.2 Stoffumwandlungen... 6 1.1.3 Energie- und Stoffumwandlungen in technischen Prozessen... 9 1.1.4

Mehr

Zur exergetischen Systematik von Brennstoffen

Zur exergetischen Systematik von Brennstoffen Dieser Aufsatz ist Basis für den Vortrag Zur exergetischen Systematik von Brennstoffen am 8. 1. 3 in Lahnstein (VDI-Thermodynamikkolloquium Zur exergetischen Systematik von Brennstoffen Prof. Dr.-Ing.

Mehr

SI-Handbuch Naturwissenschaftliche Grundlagen

SI-Handbuch Naturwissenschaftliche Grundlagen .1 Physikalische Eigenschaften 3.2 Wasserdichte 6.3 Viskosität 7.4 h, x-diagramm für feuchte Luft 8 Dieses Kapitel wurde erstellt unter Mitwirkung von: 5. Auflage: Otto Fux, Masch. Ing. SIA, dipl. Sanitärplaner,

Mehr

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 05. Wärmeübergang in Gaswirbelschichten

Praktikum. Technische Chemie. Europa Fachhochschule Fresenius, Idstein. Versuch 05. Wärmeübergang in Gaswirbelschichten Praktikum Technische Chemie Europa Fachhochschule Fresenius, Idstein SS 2010 Versuch 05 Wärmeübergang in Gaswirbelschichten Betreuer: Michael Jusek (jusek@dechema.de, Tel: +49-69-7564-339) Symbolverzeichnis

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

5.1 Ladungswechsel. 5.2 Gemischaufbereitung und Motorsteuerung. Kolbenmaschinen 5 Ladungswechsel und Gemischaufbereitung Herzog

5.1 Ladungswechsel. 5.2 Gemischaufbereitung und Motorsteuerung. Kolbenmaschinen 5 Ladungswechsel und Gemischaufbereitung Herzog 5 Ladungswechsel und Gemischaufbereitung 5.1 Ladungswechsel 5.2 Gemischaufbereitung und Motorsteuerung 5.1 Ladungswechsel Ventiltrieb Ladungswechselverluste Steuerzeiten Nockenkraft Ventiltrieb eines 4-Ventil-Motors

Mehr

2.3.4 Bereiche für Zustandsberechnung im h,s-diagramm...23. 2.3.3 Bereiche für Zustandsberechnung im T,s-Diagramm...22

2.3.4 Bereiche für Zustandsberechnung im h,s-diagramm...23. 2.3.3 Bereiche für Zustandsberechnung im T,s-Diagramm...22 Inhaltsverzeichnis 1 Thermodynamische Größen...11 1.1 Größenarten...11 1.2 Größen und Einheiten...12 1.3 Umrechnung von Einheiten...14 2 Zustandsverhalten reiner Stoffe...15 2.1 Einphasengebiete und Phasenübergänge...15

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Technische Thermodynamik

Technische Thermodynamik Günter Cerbe Gernot Wilhelms 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Technische Thermodynamik Theoretische

Mehr

Der Dampfdruck von Wasser

Der Dampfdruck von Wasser Physikalisches Grundpraktikum Versuch 8 Der Dampfdruck von Wasser Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor:

Mehr

Forschungsgruppe Reaktive Strömung

Forschungsgruppe Reaktive Strömung Seite 1 von 7 Forschungsgruppe Reaktive Strömung Chemisch reaktive Strömungen - "Heiße" Anwendungen der Chemie Forschungsgruppe Reaktive Strömung Interdisziplinäres Zentrum für Wissenschaftliches Rechnen

Mehr

Übung Nummer 1.0. Schätzen Sie den ca. Strom- und Gasverbrauch eines Ein- Zwei-, Dreiund Vierpersonenhaushaltes ab.

Übung Nummer 1.0. Schätzen Sie den ca. Strom- und Gasverbrauch eines Ein- Zwei-, Dreiund Vierpersonenhaushaltes ab. Übung Nummer 1.0 Schätzen Sie den ca. Strom- und Gasverbrauch eines Ein- Zwei-, Dreiund Vierpersonenhaushaltes ab. Übung Nummer 1.0 Haushalt Jahresstrombedarf Jahresgasbedarf Personen kwh/a kwh/a 1 1.500

Mehr

2.11 Innere Energie und Enthalpie für Gasgemische

2.11 Innere Energie und Enthalpie für Gasgemische 2.11 Innere Energie und Enthalpie für Gasgemische Komponenten: Partielle spezifische und partielle molare innere Energie der Komponente: u i, u i,m Partielle spezifische und partielle molare innere Enthalpie

Mehr

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. EHRMITTEL EUROPA-FACHBUCHREIHE für Chemieberufe Physikalische Chemie

Mehr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr

wobei L die Länge der Wärmeübertragung und U der Umfang des Rohres oder Kanals Temperaturverläufe bei einem elektrisch beheizten Rohr 5 5 Wärmeübertrager Wärmeübertrager sind Apparate, in denen ein Fluid erwärmt oder abgekühlt wird Das Heiz- oder Kühlmedium ist in der Regel ein anderes Fluid Verdampft oder kondensiert ein Fluid dabei,

Mehr

Berechnung der thermodynamischen Zustandsgrößen und Transporteigenschaften von Arbeitsfluiden in fortschrittlichen Energieumwandlungsprozessen

Berechnung der thermodynamischen Zustandsgrößen und Transporteigenschaften von Arbeitsfluiden in fortschrittlichen Energieumwandlungsprozessen Hochschule Zittau/Görlitz (FH) Fachgebiet Technische Thermodynamik http://thermodynamik.hs-zigr.de H.-J. Kretzschmar, I. Stöcker, I. Jähne, D. Seibt, M. Kunick Berechnung der thermodynamischen Zustandsgrößen

Mehr

Herborn-Burg. Brennbare Stoffe

Herborn-Burg. Brennbare Stoffe Freiwillige Feuerwehr Herborn-Burg Interne Ausbildungsgrundlagen auf Basis der gültigen FwDV und UVV Brennbare Stoffe - 1 - Brennbare Stoffe sind feste, flüssige oder gasförmige Stoffe einschließlich Dämpfe,

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe

Die Wärmepumpe. Abb. 1: Energiefluss-Diagramme für Ofen, Wärmekraftmaschine und Wärmepumpe Die Stichworte: Thermische Maschinen; 1. und. Hauptsatz; Wirkungsgrad und Leistungsziffer 1 Einführung und Themenstellung Mit einer wird - entgegen der natürlichen Richtung eines Wärmestroms - Wärme von

Mehr

Methanverluste beim Einsatz von LNG als Kraftstoff für Otto-Gas und Dual Fuel Motoren auf Schiffen

Methanverluste beim Einsatz von LNG als Kraftstoff für Otto-Gas und Dual Fuel Motoren auf Schiffen Methanverluste beim Einsatz von LNG als Kraftstoff für Otto-Gas und Dual Fuel Motoren auf Schiffen Workshop am 16. 12. 2013 im MARIKO, Leer LNG- Initiative Nordwest Professor Dipl.-Ing. Freerk Meyer ochschule

Mehr

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie

Allgemeine Chemie. SS 2014 Thomas Loerting. Thomas Loerting Allgemeine Chemie Allgemeine Chemie SS 2014 Thomas Loerting 1 Inhalt 1 Der Aufbau der Materie (Teil 1) 2 Die chemische Bindung (Teil 2) 3 Die chemische Reaktion (Teil 3) 2 Definitionen von den an einer chemischen Reaktion

Mehr

Wärmetechnik 2 SS 2006

Wärmetechnik 2 SS 2006 Wärmetechnik SS 006 Prof. Dr.-Ing. G. Wilhelms Aufgabensammlung Wärmeleitung (WL) WL 1 - Wärmeleitung durch ebene Wand WL - Wärmeleitung durch zylindrische Wand WL 3 - Wärmeleitung durch Hohlkugel Konvektiver

Mehr

Allgemeine Information zur Vergasung von Biomasse

Allgemeine Information zur Vergasung von Biomasse Allgemeine Information zur Vergasung von Biomasse Grundlagen des Vergasungsprozesses Die Vergasung von Biomasse ist ein komplexer Prozess. Feste Brennstoffe werden durch einen thermochemischen Prozess

Mehr

Aufgabe 1 : (10 + 6 + 4 = 20 Punkte)

Aufgabe 1 : (10 + 6 + 4 = 20 Punkte) Aufgabe 1 : (10 + 6 + 4 = 20 Punkte) Wirtschaftlichkeitsbetrachtung Als Jungingenieur arbeiten Sie in einer mittleren Firma an der Auslegung eines neuen Produktionsprozesses. Bei der Planung haben Sie

Mehr

Thermodynamik. oder Website der Fachhochschule Osnabrück

Thermodynamik.  oder Website der Fachhochschule Osnabrück Thermodynamik Prof. Dr.-Ing. Matthias Reckzügel Vorlesung, Übung und Praktikum im 3. Semester für die Studiengänge: Maschinenbau Fahrzeugtechnik Maschinenbauinformatik Integrierte Produktentwicklung EMS

Mehr

CFD Modellierung von Verbrennung und Strahlungswärmeübergang in stationären Flammen

CFD Modellierung von Verbrennung und Strahlungswärmeübergang in stationären Flammen 14. DVV Kolloquium Kleinindustrielle Feuerungsanlagen: Aktueller Stand und Zukünftige Herausforderungen CFD Modellierung von Verbrennung und Strahlungswärmeübergang in stationären Flammen R. Tatschl,,

Mehr

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung Institut für Energiesysteme und Energietechnik Vorlesungsübung 1 Musterlösung 3.1 Kohlekraftwerk Aufgabe 1 Gesucht: Aufgrund der Vernachlässigung des Temperaturunterschiedes des Luft-, Rauchgas- und Brennstoffstromes

Mehr

VTG (Verfahrenstechnik Grundlagen)

VTG (Verfahrenstechnik Grundlagen) Modulhandbuch Modulbezeichnung: ggf. Kürzel 313 Naturwissenschaftliche Grundlagen verfahrenstechnischer Prozesse: VTG (Verfahrenstechnik Grundlagen) ggf. Untertitel ggf. Lehrveranstaltungen: Grundlagen

Mehr

Chemische Verbrennung

Chemische Verbrennung Christopher Rank Sommerakademie Salem 2008 Gliederung Die chemische Definition Voraussetzungen sgeschwindigkeit Exotherme Reaktion Reaktionsenthalpie Heizwert Redoxreaktionen Bohrsches Atommodell s Elektrochemie:

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

TIPP alle Rechenaufgaben mit Einheit, Ergebnis und Antwortsatz!

TIPP alle Rechenaufgaben mit Einheit, Ergebnis und Antwortsatz! 1 Klassenarbeit Chemie 1/5 TIPP alle Rechenaufgaben mit Einheit, Ergebnis und Antwortsatz! 1 Stoffe und Stoffgemische 1.1 Ordne die Begriffe Verbindung, Element, Stoff, Mischung, Reinstoff, Metall, Nichtmetall,

Mehr

Thermodynamik 2 Klausur 17. Februar 2015

Thermodynamik 2 Klausur 17. Februar 2015 Thermodynamik 2 Klausur 17. Februar 2015 Bearbeitungszeit: Umfang der Aufgabenstellung: 120 Minuten 5 nummerierte Seiten 2 Diagramme Alle Unterlagen zu Vorlesung und Übung sowie Lehrbücher und Taschenrechner

Mehr

Die wissenschaftlichen Grundlagen der Trocknungstechnik

Die wissenschaftlichen Grundlagen der Trocknungstechnik Trocknungstechnik Erster Band 0. Krischer Die wissenschaftlichen Grundlagen der Trocknungstechnik Dritte, neubearbeitete Auflage von WKast Springer-Verlag Berlin Heidelberg New York 1978 Inhaltsverzeichnis

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Thermodynamik II. Themenbereich: Gemische idealer Gase

Thermodynamik II. Themenbereich: Gemische idealer Gase Thermodynamik II Themenbereich: Gemische idealer Gase Übungsbeispiel l Ein Gasgemisch hat folgende Zusammensetzung in Raumanteilen (Volumenanteilen) bei einem Gesamtdruck p = 1010 mbar und 0 C: O 2 0,21

Mehr

Autogas (LPG) in Pkw-Ottomotoren

Autogas (LPG) in Pkw-Ottomotoren Autogas (LPG) in Pkw-Ottomotoren Erfahrungen mit zwei unterschiedlichen Motorregelungskonzepten auf dem Motorprüfstand Fachhochschule Osnabrück Arbeitskreis Fahrzeug- und Verkehrstechnik (FVT) des VDI

Mehr

Physikalisch Technische Bundesanstalt

Physikalisch Technische Bundesanstalt Physikalisch Technische Bundesanstalt Technische Richtlinien Messgeräte für Gas Ausgabe: 11/11 Ersatz für: -- G 15 Herausgegeben von der Physikalisch-Technischen Bundesanstalt im Einvernehmen mit den Eichaufsichtsbehörden.

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

DEUTSCHE NORM DIN EN ISO 6976

DEUTSCHE NORM DIN EN ISO 6976 DEUTSCHE NORM DIN EN ISO 6976 September 2005 X ICS 75.060 Erdgas Berechnung von Brenn- und Heizwert, Dichte, relativer Dichte und Wobbeindex aus der Zusammensetzung (ISO 6976:1995 + Corrigendum 1:1997

Mehr

Energieoptimierung für Gebäude Vorlesung

Energieoptimierung für Gebäude Vorlesung Energieoptimierung Vorlesung Doppelschalige Fassade, reishaus Segeberg S anierung mit Do ppelfassa de, Bayer. Umweltministerium, München Temperaturvert eilung in Doppelfassaden 0. 1 2. Innere Einflüsse

Mehr

Technische Thermodynamik

Technische Thermodynamik Hans-Joachim Kretzschmar Ingo Kraft Kleine Formelsammlung Technische Thermodynamik 4., aktualisierte Auflage Inhaltsverzeichnis 1 ThermodynamischeGrößen...11 1.1 Größenarten...11 1.2 Größen und Einheiten...12

Mehr

Thermodynamik Formelsammlung

Thermodynamik Formelsammlung RH-öln Thermoynamik ormelsammlung 2006 Thermoynamik ormelsammlung - I 1 Grunlagen Boltzmannkonstante: 1.3 Größen un Einheitensysteme Umrechnung ahrenheit nach Celsius: Umrechnung Celsius nach elvin: abgeschlossenes

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Vergleich zwischen Heizwert Brennwert ErP-Richtlinie

Vergleich zwischen Heizwert Brennwert ErP-Richtlinie Vergleich zwischen Heizwert Brennwert ErP-Richtlinie Übersicht Heizwert Nachteile gegenüber Brennwert Brennwert Vorteile gegenüber Heizwert Preisvergleich Ökodesign-Richtlinie (ErP) Heizwert Der Heizwert

Mehr

Inhaltsverzeichnis VII

Inhaltsverzeichnis VII Inhaltsverzeichnis 1 Grundlagen........................................................... 1 1.1 Historie.......................................................... 1 1.2 Weltweite Klimate.................................................

Mehr

Manuel Kühner und Veit Hammerstingl. SS 2008 Stand: 24.05.2009

Manuel Kühner und Veit Hammerstingl. SS 2008 Stand: 24.05.2009 Private Formelsammlung für Thermodynamik 1 TU München und Veit Hammerstingl SS 2008 Stand: 24.05.2009 Internetseite: www.bipede.de 1 cm3 10 6 m3 1 Hektoliter 1 hl 100 l 100 dm3 0, 1 m3 Druck in Pascal

Mehr

Grundlagen der Technischen Thermodynamik

Grundlagen der Technischen Thermodynamik Grundlagen der Technischen Thermodynamik Lehrbuch für Studierende der Ingenieurwissenschaften Bearbeitet von Ernst Doering, Herbert Schedwill, Martin Dehli 1. Auflage 2012. Taschenbuch. xii, 494 S. Paperback

Mehr

Verantwortliche Redakteure: Berit Franz, Hans Hiller, Dr. Hartwig Müller, Hartmut Öhmen, Sarina Peters

Verantwortliche Redakteure: Berit Franz, Hans Hiller, Dr. Hartwig Müller, Hartmut Öhmen, Sarina Peters 1x1 der Gase 1x1 der Gase, 1. Auflage, 2005 Herausgeber AIR LIQUIDE Deutschland GmbH Hans-Günther-Sohl-Str. 5 40235 Düsseldorf Fon: +49 (0) 211-66 99-0 Fax: +49 (0) 211-66 99-222 www.airliquide.de Verantwortliche

Mehr

Modulpaket TANK Beispielausdruck

Modulpaket TANK Beispielausdruck Inhaltsverzeichnis Inhaltsverzeichnis... 1 Aufgabenstellung:... 2 Ermittlung von Wärmeverlusten an Tanks... 3 Stoffwerte Lagermedium... 6 Stoffwerte Gasraum... 7 Wärmeübergang aussen, Dach... 8 Wärmeübergang

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Thermodynamik 2. Peter Junglas 27. 6. 2013

Thermodynamik 2. Peter Junglas 27. 6. 2013 Thermodynamik 2 Irreversible Prozesse Kreisprozesse des idealen Gases in der Anwendung Thermodynamisches Verhalten realer Stoffe Dampfkraftanlagen Aufgaben Anhang Peter Junglas 27. 6. 2013 1 Inhaltsverzeichnis

Mehr

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2)

Themengebiet: Thermodynamik. mol K. mol. ] eines Stoffes bestehend aus n Mol mit der Masse m gilt. M = m n. (2) Seite 1 Themengebiet: Thermodynamik 1 Literatur D. Meschede, Gerthsen Physik, Springer F. Kohlrausch, Praktische Physik, Band 2, Teubner R.P. Feynman, R.B. Leighton und M. Sands, Feynman-Vorlesungen über

Mehr

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind:

Was ist Physikalische Chemie? Die klassischen Teilgebiete der Physikalischen Chemie sind: Was ist Physikalische Chemie? Die klassischen eilgebiete der Physikalischen Chemie sind: 1) hermodynamik (z. B. Energetik chemischer Reaktionen, Lage von Gleichgewichten). 2) Kinetik chemischer Reaktionen

Mehr

Zustandsbeschreibungen

Zustandsbeschreibungen Siedediagramme Beispiel: System Stickstoff Sauerstoff - Das Siedeverhalten des Systems Stickstoff Sauerstoff Der Übergang vom flüssigen in den gasförmigen Aggregatzustand. - Stickstoff und Sauerstoff bilden

Mehr

Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der Pkw- Klimatisierung

Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der Pkw- Klimatisierung Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der Pkw- Klimatisierung Fehlermöglichkeiten bei der Auswertung thermodynamischer Messungen an Wärmeaustauschern der

Mehr