Dampfkühlung. spiraxsarco.de. Grundlagen. Die bessere Anlage. Spirax Sarco GmbH Reichenaustraße 210 D Konstanz

Größe: px
Ab Seite anzeigen:

Download "Dampfkühlung. spiraxsarco.de. Grundlagen. Die bessere Anlage. Spirax Sarco GmbH Reichenaustraße 210 D 78467 Konstanz"

Transkript

1 spiraxsarco.de Grundlagen Dampfkühlung Spirax Sarco GmbH Reichenaustraße 210 D Konstanz Spirax Sarco GmbH, Nl. Österreich Dückegasse 7/2/8 A 1220 Wien T +49 (0) F +49 (0) E Vertrieb@de.spiraxsarco.com T +43 (0) F +43 (0) E Vertrieb@at.spiraxsarco.com Die bessere Anlage. Copyright 2012 Spirax Sarco ist eine eingetragene Marke der Spirax-Sarco Limited D A M P F T E C H N O L O G I E M I T Z U K U N F T

2 Grundlagen Dampfkühlung

3 Vorwort In vielen Kraftwerken und Industrien wird überhitzter Dampf erzeugt und für den Betrieb ausgekoppelt. Dieser überhitzte Dampf ist für die Verrichtung von mechanischer Arbeit, wie z. B. bei einer Turbine ideal, ist aber für sonstige wärmetechnische Prozesse eher ungeeignet. Ein zusätzliches Problem ist, dass der ausgekoppelte, überhitzte Dampf lastabhängig stark in der Temperatur schwanken kann, was für viele Prozesse in den Industrien nicht akzep tabel ist. Der Dampf ist nur brauchbar, wenn seine Parameter auf den benötigten Druck und die erforderliche Temperatur reduziert werden. In sehr vielen Industrien, wie z. B. der Nahrungsmittel-, Getränke-, Textil-, Gummi- und Papierindustrie, wird für viele unterschiedliche Prozesse Sattdampf benötigt. In wärmetechnischen Anlagen wird ebenfalls oft Sattdampf gebraucht. Bei diesen Prozessen, bei denen Sattdampf benötigt wird, besteht oft die Forderung, dass Dampftemperaturen und Dampfdrücke exakt eingehalten werden. Dies kann mit einer geeigneten Dampfkühlung gewährleistet werden. Mit diesem Buch möchten wir Ihnen die Theorie des überhitzen Dampfes und der Dampfkühlung mit einigen einfachen, praxisnahen Beispielen vermitteln. Weiterhin erklären wir wichtige Begriffe und Zusammenhänge und stellen Ihnen die gängigen Verfahren der Dampfkühlung mit ihren jeweiligen Vor- und Nachteilen vor. Wir hoffen, dass Sie von unseren Erfahrungen profitieren und diesem Buch Interessantes entnehmen können. Rainer Fiebelmann, Diplom-Physiker Frühjahr 2012 Weitere Dokumentationen von Spirax Sarco: Leitfaden für die Praxis von Dampf- und Kondensatanlagen Arbeitsblätter (Auslegungsdiagramme) für die Dampf- und Kondensattechnologie Grundlagen der Dampf- und Kondensattechnologie Grundlagen des Einsatzes von Wärmetauschern in Dampfanlagen Lebensmittel und Getränke Best-Practice-Leitfaden für das Dampfqualitätsmanagement Grundlagen Dampfkühlung der SPIRAX SARCO GmbH Konstanz. Nachdruck, auch auszugsweise, Kopie, Vervielfältigung und Verbreitung gleich welcher Art nur nach ausdrücklicher Genehmigung von SPIRAX SARCO. 2 Spirax Sarco

4 Inhaltsverzeichnis 1. Überhitzter Dampf Dampftabelle für überhitzten Dampf Das Mollier-Diagramm Fragebogen zu Kapitel Dampfkühlung Grundlagen der Dampfkühlung Dampfkühlung Fragebogen zu Kapitel Verfahren der Dampfkühlung Dampfkühlungen Indirekte Dampfkühler Direkte Dampfkühler Dampfkühlung mittels Einspritzung Einspritz-Dampfkühler Fragebogen zu Kapitel Weitere Verfahren der Dampfkühlung Venturi-Dampfkühler Treibdampfkühler Einspritzkühler mit variabler Düse Dampfkühlung mit einem Dampfumformventil Übersicht und Vergleich der Eigenschaften von Dampfkühlern Fragebogen zu Kapitel Typische Installationen der Dampfkühlung Aufbau einer Dampfkühlanlage Auswahl Dampfkühler Typische Anwendungen Fragebogen zu Kapitel Spirax Sarco 3

5 1 Überhitzter Dampf Kapitel 1: Überhitzter Dampf Wenn in einem Kessel erzeugter Sattdampf über Flächen geleitet wird, die heißer sind als der vorliegende Dampf, so wird die Temperatur des Dampfes über die zum Dampfdruck gehörende Sattdampftemperatur erhitzt. Bei diesem Dampf spricht man nun von überhitztem Dampf. Der Grad der Überhitzung ist mit einem Temperaturfühler messbar. Meist spricht man von einem zum Beispiel um 50 C überhitzten Dampf. Man kann überhitzten Dampf nicht erzeugen solange noch Wasser vorhanden ist, weil eine zusätzliche Energiezufuhr lediglich zu einer weiteren Verdampfung von Wasser führen würde, jedoch nicht zu einer Steigerung der Temperatur. Um Sattdampf zu überhitzen, ist es also erforderlich, dass der Dampf über einen zusätzlichen Wärmetauscher geführt wird. Dies kann ein zweiter Wärmetauscher am Dampfkessel sein oder aber ein separater Wärmetauscher. Das primäre Heizmedium dieses separaten Wärmetauschers können heiße Abgase oder sonstige Abhitze sein. Dieser Wärmetauscher kann aber auch direkt feuerbeheizt werden. Überhitzter Dampf wird gerne zur Verrichtung von mechanischer Arbeit eingesetzt, zum Beispiel in einer Turbinenanlage, bei welcher der Dampf durch Düsen geleitet wird, die ihrerseits auf die Rotorblätter der Turbine gerichtet sind. Dies veranlasst die Rotoren dazu, sich zu drehen. Ein Teil der im Dampf enthaltenen Energie wird in Bewegungsenergie umgewandelt. Turbinen haben üblicherweise mehrere Stufen. In jeder Stufe wird ein Teil der Energie abgegeben. Würde man Sattdampf in die Turbine leiten, so könnte sie nur Energie abgeben, indem ein Teil des Dampfes kondensiert. Bei Turbinen mit mehreren Stufen würde dies bedeuten, dass der Dampf mehr und mehr Kondensat enthalten würde. Dies würde einerseits die Gefahr von Wasserschlag begünstigen und zum anderen würden die Wassertröpfchen Erosionsschäden an den Rotoren der Turbine hervorrufen. Um diese Probleme zu vermeiden, beaufschlagt man die Turbine mit überhitztem Dampf und zieht in jeder Stufe so viel Energie aus dem Dampf bis er fast Sattdampfbedingungen erreicht hat. Danach wird er ausgeschleust. Dampf Turbinenschaufel Bild 2.3.1: Turbinenschaufel Kraft Ein weiterer Grund, überhitzten Dampf in einer Turbine zu verwenden, ist die Verbesserung des thermischen Wirkungsgrades. Der thermodynanische Wirkungsgrad einer Wärmemaschine, wie z. B. einer Turbine, kann mit Hilfe zweier Theorien festgestellt werden: Der Carnot sche Zyklus, bei dem die Differenz der Ein- und Austrittstemperatur der Turbine ins Verhältnis zur Eintrittstemperatur gesetzt wird. Der Rankine Zyklus, bei dem die Differenz der Ein- und Austrittsdampfenthalpie der Turbine ins Verhältnis zur entnommenen Gesamtenthalpie gesetzt wird. Beispiel 1.1 Eine Turbine wird mit überhitztem Dampf mit 90 bar abs und 450 C versorgt. Der Restdruck nach der Turbine beträgt 0,06 bar abs (Vakuum) und enthält 10 % Feuchtigkeit. Die Sattdampftemperatur beträgt 36,2 C. Hinweis: Die Zahlenwerte für Energie und Temperatur wurden Dampftafeln entnommen. 4 Spirax Sarco

6 1 Überhitzter Dampf Den Carnot schen Wirkungsgrad errechnen: Carnot scher Wirkungsgrad η C = T i - T e T i Formel 1.1 Carnotscher Wirkungsgrad T i = Temperatur am Eingang der Turbine (450 C) = 723,0 K T e = Temperatur am Ausgang der Turbine (36,2 C) = 309,2 K 723,0-309,2 η C = 723,0 Canot scher Wirkungsgrad η C = 0,572 (57,2 %) Den Rankine Wirkungsgrad errechnen: Rankiner Wirkungsgrad η R = H i - H e H i - h e Formel 1.2 Rankine Wirkungsgrad H i = Enthalpie am Eingang der Turbine (450 C) = 3256 kj/kg H e = Enthalpie am Ausgang der Turbine (36,2 C) = 2188,7 kj/kg = Enthalpie Dampf + Enthalpie des enthaltenen Wassers Enthalpie bei 0,06 bar abs = 2415 kj/kg Enthalpie Wasser bei 0,06 bar abs = 152 kj/hg Dampf 90% = 0, kj/kg Enthaltenes Wasser 10% = 0,1 152 kj/kg H e = (0, kj/kg) + (0,1 152 kj/kg) H e = 2188,7 kj/kg h e = Enthalpie im Kondensat = 152 kj/kg η R = , Rankine Wirkungsgrad η R = 0,344 (34,4 %) Ein hoher Wirkungsgrad kann durch die Analyse der Daten und Formeln durch folgende Maßnahmen erreicht oder verbessert werden: Die Temperatur am Eingang der Turbine soll so hoch wie möglich sein. Mit überhitztem Dampf kann diese Forderung am leichtesten erfüllt werden. Die Turbinenaustrittstemperatur sollte so gering wie möglich sein. Dies wird in der Regel durch eine Kondensationsanlage erreicht. Hinweise: Die Berechungen in den Beispielen 1.1 und 1.2 sind für den thermodynamischen Wirkungsgrad und enthalten keine Berechnungen für den mechanischen Wirkungsgrad. Auch wenn der Wirkungsgrad gering erscheint, muss er im Vergleich mit anderen Verfahren, wie Gas-Turbinen, Dampfmaschinen/-motoren und Dieselaggregaten gesehen werden. Spirax Sarco 5

7 1 Überhitzter Dampf Dampftabelle für überhitzten Dampf In Dampftabellen für überhitzten Dampf sind die Eigenschaften von Dampf in Abhängigkeit von Druck und diversen Temperaturen aufgeführt, ähnlich wie in den Tabellen für Sattdampf. Es sind jedoch mehr Spalten für Temperatur angegeben, weil die Überhitzung verschieden hoch über der Sattdampftemperatur liegen kann. Zwischenwerte kann man durch Interpolation ermitteln. In Tabelle 1.1 finden Sie ein Beispiel für Eigenschaften von Dampf bei Umgebungsdruck. Tabelle 1.1 Auszug einer Tabelle für überhitzten Dampf Druck Temperatur ( C) Einheiten bar abs V g (m³/kg) 1,912 2,145 2,375 2,604 3,062 3,519 u 1,013 g (kj/kg) h g (kj/kg) s g (kj/kg) 7,608 7,828 8,027 8,209 8,537 8,828 Beispiel 1.2 Wieviel mehr Energie enthält Dampf bei 1,013 bar abs und einer Temperatur von 400 C als Sattdampf mit demselben Druck? h g für Sattdampf bei 1,013 bar abs = 2676 kj/kg (aus einer Sattdampftabelle) h g für Dampf mit 1,013 bar abs und 400 C = 3278 kj/kg (aus Tabelle 1.1.1) Nur die Überhitzungsenthalpie = 3278 kj/kg kj/kg Nur die Überhitzungsenthalpie = 602 kj/kg Dies hört sich im ersten Moment so an, wie eine sinnvolle Erhöhung der Energie. In der Praxis erschwert es aber den Einsatz in Anwendungen mit Wärmeübertragung. Aus dem aufgeführten Beispiel kann die spezifische Wärmekapazität recht einfach ermittelt werden, indem man den ermittelten Wert durch die Temperaturdifferenz teilt. spezifische Wärmekapazität = 602 kj/kg / (400 C -100 C) spezifische Wärmekapazität = 2,0 kj/kg C Im Gegensatz zur spezifischen Wärmekapazität für Wasser ist die spezifische Wärmekapazität für überhitzten Dampf nicht konstant. Sie schwankt sogar recht stark. Tendenziell wird sie bei zunehmenden Druck und kleiner werdender Überhitzung höher, aber dies ist nicht immer der Fall. Typische Werte: 2,0 kj/kg C bei 125 C und 1,013 bar abs 3,5 kj/kg C bei 400 C und 120 bar abs Kann man überhitzten Dampf in wärmetechnischen Prozessen einsetzen? Obgleich überhitzter Dampf nicht das ideale Medium für einen Wärmeübergang ist, wird er doch sehr häufig in verschiedenen Industrien angetroffen, insbesondere in der HPI Industrie (Hydrocarbon Processing Industry), die Öl und Erdöl verarbeitet und herstellt. Der überhitzte Dampf liegt oft in erster Linie deshalb vor, weil er für die Turbinen benötigt wird. Für Anwendungen mit Wärmeübergang ist Sattdampf besser geeignet. Aus diesem Grund werden häufig Dampfkühlungen unterschiedlichen Typs eingesetzt. Häufig ist eine Kühlung des Dampfes auf eine Temperatur, die bis ca. 10 K über der erwünschten Sattdampftemperatur T s für Anwendungen mit Wärmeübergang mehr als zulässig. Die geringe Überhitzung baut sich dann bei Eintritt in einen Wärmeübertrager recht schnell ab. Eine Überhitzung, die höher als 10 K über der erwünschten Sattdampftemperatur T s liegt, sollte für Anwendungen mit Wärmeübergang vermieden werden. Es gibt einige Gründe, warum überhitzter Dampf für eine Reihe von Prozessen ungeeignet ist: Überhitzter Dampf muss erst auf Sattdampftemperatur abkühlen, bevor er kondensieren kann. Der in der Überhitzung enthaltene Energieanteil ist vergleichsweise gering zu dem bei der Kondensation freiwerdenden Energieanteil. 6 Spirax Sarco

8 1 Überhitzter Dampf Wenn Dampf nur wenige Grad Überhitzung mit sich führt, wird er diese Überhitzungsenergie recht schnell abgeben können. Ist Dampf aber stark überhitzt, kann es relativ lange dauern, bis die Überhitzungsenergie vollständig abgebaut wird. Während dieser Zeit gibt der Dampf relativ wenig Energie ab. Anders als bei Sattdampf kann die Temperatur der Überhitzung an verschiedenen Stellen recht unterschiedlich sein. Überhitzter Dampf kann nur Energie durch Abkühlen abgeben. Das bedeutet, dass sich ein Temperaturgradient über die Wärmetauscherfläche einstellen wird. Bei Sattdampf ist diese Temperatur sehr konstant, weil die Energieabgabe an eine Zustandsänderung gekoppelt ist. In einem Wärmetauscher kann der überhitzte Dampf bestimmte Bereiche stärker erwärmen, an denen sich dann bevorzugt Ablagerungen (Fouling) bilden, was wiederum zu einer stärkeren Belastung und gegebenfalls Beschädigung der entsprechenden Bereiche führt. Bei Anwendungen mit Wärmeübertragung ist überhitzter Dampf nicht die erste Wahl, weil: er wenig Wärme abgibt bis er kondensieren kann. es entstehen Temperaturgradienten auf der Wärmetauscherfläche, während der überhitzte Dampf abkühlt. d er Wärmeübergang ist schlecht, solange der Dampf überhitzt ist. die erforderliche Wärmetauschfläche größer ist als dies bei Sattdampf der Fall wäre! Überhitzter Dampf ist bei Anwendungen mit Wärmeübergang nicht so effektiv wie Sattdampf. Dies mag seltsam erscheinen, denn meist ist der Wärmeübergang proportional zur Temperaturdifferenz. Die Ursache hierfür schauen wir nun hier an. In der Formel 1.3 sehen wir, dass die Temperaturdifferenz proportional zum Wärmeübergang ist. Q = U A T Formel 1.3 Q = Leistung (W) U = Wärmeübergangskoeffizient (W/m² C) A = Wärmetauschfläche (m²) T = Temperaturdifferenz zwischen Primär- und Selkundärfluid ( C) Die Formel 1.3 zeigt auch, dass die Leistung direkt proportional zum Wärmeübergangskoeffizient U und der Wärmetauschfläche A ist. Für einen dampfseitig beheizten Wärmetauscher ist die Wärmetauschfläche A normalerweise konstant. Dies kann aber nicht vom Wärmeübergangskoeffizient U gesagt werden. Dies ist der Hauptunterschied zwischen Sattdampf und überhitztem Dampf. Der Wert U ändert sich bei Verwendung von überhitztem Dampf während des Prozesses und ist stets tiefer als der Wert U bei Sattdampf. Der Wert U kann bei Verwendung von überhitztem Dampf nur schwer vorausgesagt werden, weil dieser von vielen Faktoren abhängt, aber generell gilt, je höher die Überhitzung desto geringer der U-Wert. Typisch für ein mit überhitztem Dampf beheiztes, im Wasser liegendes Rohrbündel sind U-Werte im Bereich von 50 bis 100 W/m² C. Bei Sattdampf liegen die U-Werte typischerweise bei ca W/m² C. Siehe hierzu Bild 1.2. Bei einem dampfbeheizten Wärmetauscher zur Erwärmung von Öl liegen die U-Werte um 20 W/m² C für überhitzten Dampf. Bei Sattdampf liegen die U-Werte typischerweise bei ca. 150 W/m² C. Typisch für einen dampfbeheizten Rohrbündel-Wärmetauscher sind U-Werte im Bereich um 100 W/m² C für überhitzten Dampf. Bei Sattdampf kann man U-Werte um ca. 500 W/m² C erwarten. Dies sind typische Erfahrungswerte. Sie können je nach Konstruktion und Betriebsweise unterschiedlich sein. Spirax Sarco 7

9 1 Überhitzter Dampf Sattdampf; Eintritt Kondensatableiter überhitzter Dampf; Eintritt 1200 W/m² C dampfbeheiztes, im Wasser liegendes Rohrbündel überhitzter Dampf; Austritt 50 W/m² C Kondensat; Austritt Bild 1.2. Typische Wärmeübergangskoeffizienten U bei Sattdampf bzw. bei überhitztem Dampf Obwohl die Temperatur von überhitztem Dampf stets höher ist als die zum Druck zugehörige Sattdampftemperatur T s, kann überhitzter Dampf Wärme schlechter abgeben. Das Resultat ist, dass überhitzter Dampf für den Wärmeübergang weniger geeignet ist als Sattdampf mit gleichem Druck. Zum anderen haben wir gesehen, dass es schwierig ist, die Formel 1.3 Q = U A T korrekt zu berechnen, weil der Wärmeübergangskoeffizient U und die Temperatur sich während des Prozesses ändern. Dies bedeutet, dass es schwierig ist, die erforderliche Wärmetauscherfläche exakt zu berechnen. In der Praxis werden hierfür benötigte Erfahrungswerte oft empirisch ermittelt. Da überhitzter Dampf also stets einen schlechteren Wärmeübergang als Sattdampf hat, kann man sagen, dass eine mit überhitztem Dampf beheizte Wärmetauscherfläche auf jeden Fall größer sein muss. Steht nur überhitzter Dampf zur Verfügung, so wird er zunächst an den Flächen abkühlen, bis er kondensieren kann. Erst bei der Kondensation gibt er schlagartig seine Kondensationsenergie ab. Es ist von Vorteil, wenn der überhitzte Dampf seine Überhitzungsenergie möglichst bald nach Eintritt in den Wärmetauscher abgibt, damit er sobald wie möglich seine Kondensationsenergie abgeben kann. Siehe hierzu auch Bild 1.3. Um eine schnelle Kondensation zu begünstigen empfehlen wir, überhitzten Dampf mit maximal 10 K oberhalb der Sattdampftemperatur T s, für Anwendungen mit Wärmeübergang zu verwenden. überhitzter Dampf im Eintritt 50 W/m² C Sattdampfzustand erreicht Sattdampf überhitzter Dampf; Eintritt dampfbeheiztes, im Wasser liegendes Rohrbündel 1200 W/m² C Kondensatableiter Durchschnittlicher U-Wert entspricht in etwa dem 90 %-Wert bei Sattdampf Kondensat; Austritt Bild 1.3 Wärmetausch mit wenig überhitztem Dampf Wenn man überhitzten Dampf mit geringer Überhitzung (maximal 10 K oberhalb der Sattdampftemperatur T s ) verwendet, ist die Auslegung der Fläche eines Wärmetauschers relativ einfach. Die Fläche wird wie für den zugehörigen Sattdampfdruck ausgelegt, zusätzlich sieht man eine gewisse Fläche für die Abgabe der Überhitzung vor. Im Bild 1.3. ist dies dargestellt. Im Eintrittsbereich des Wärmetauschers (rot gekennzeichnet) wird die Überhitzung abgebaut und 8 Spirax Sarco

10 1 Überhitzter Dampf dabei ein wenig Wärme abgegeben. Danach werden Sattdampfbedingungen erreicht (orange gekennzeichnet) und der Dampf kann kondensieren und dadurch den größten Teil der Wärme abgeben. Für die zusätzliche Fläche bei Beheizung mit überhitztem Dampf gibt es eine Faustformel: Pro 2 C Überhitzung wird ca. 1 % mehr Fläche benötigt. Diese Regel gilt bis zu einer Überhitzung von maximal 10 C und bei Rohrbündeln, die von Wasser umgeben sind. Wie schon zuvor erwähnt, raten wir davon ab, überhitzten Dampf mit einer Überhitzung von mehr als 10 C auf einen Wärmetauscher zu leiten, weil einerseits die notwendige Fläche zum Abbau der Überhitzung zu groß werden würde, was den Wärmetauscher größer und teurer machen würde. Zum anderen neigen die der Überhitzung ausgesetzten Flächen zum Fouling und die thermischen Belastungen werden durch die ungleiche Temperaturverteilung höher. Fouling oder Belagbildung an wärmeübertragenden Flächen Als Fouling (Belagbildung) wird jeder Prozess bezeichnet, bei dem Wärmetauscherflächen durch Ablagerungen in ihrer Effizienz beeinträchtigt werden. Fouling entsteht, indem sich Inhaltsstoffe des aufzuwärmenden Mediums an den wärmeübertragenden Flächen absetzen. Fouling verursacht in der Industrie erhebliche Kosten. Die Kosten enstehen durch größere erforderliche Wärmetauscherflächen, durch eine schlechte Ausnutzung der Energie, Reinigung, Wartung, den Einsatz von Antifoulants, durch Produktionsausfälle, durch die Auswahl teurerer Werkstoffe, um Korrosionsfouling zu verringern, und durch höhere erforderliche Pumpenleistung. Man unterscheidet unterschiedliche Arten von Fouling: Sedimentations- und Partikelfouling, chemisches Korrosionsfouling, Kristallisationsfouling, gemischtes Fouling und Biofouling. Bei Einsatz von überhitztem Dampf kommt es meist zu Sedimentations- und Partikelfouling. Durch die Erwärmung der wärmeübertragenden Flächen bilden sich Ablagerungen. Diese bilden sich umso schneller, je wärmer die Flächen sind und behindern den Wärmeübergang. Das heißt, die vom überhitzten Dampf erwärmten Flächen neigen eher zum Fouling als die vom kühleren Sattdampf erwärmten Flächen. Zusätzlich verhält sich der überhitzte Dampf beim Wärmeübergang wie ein trockenes Gas. Er muss, um die Energie abgeben zu können, eventuell vorhandene statische Filme an der Rohrwandung überwinden. Im Gegensatz hierzu kondensiert der Sattdampf direkt an der Wärmetauscherfläche. Die Wärmeabgabe ist einfacher, direkter und effektiver. Das heißt, obwohl bei überhitztem Dampf T größer ist als bei Sattdampf, ist der Wärmeübergang wegen den zuvor beschriebenen Punkten meist erheblich schlechter. Beispiel 1.3. Auslegung eines Rohrbündels für Einsatz mit überhitztem Dampf Überhitzter Dampf mit einem Druck von 3 bar ü und 10 K Überhitzung (154 C) soll als primäre Wärmequelle für einen Rohrbündelwärmetauscher mit einer Leistung von 250 kw genutzt werden, um ein Fluid (Öl) von 80 C auf 120 C zu erwärmen (man verwende die gemittelte Temperatur von T m = 100 C). Die Fläche des Rohrbündels soll abgeschätzt werden. Hinweis: Die arithmetisch gemittelte Temperatur kann verwendet werden, um die Berechnung einfach zu halten; in der Praxis würde man, um eine höhere Genauigkeit zu erhalten, bevorzugt die logarithmisch gemittelte Temperatur verwenden. Zunächst betrachten wir das mit Sattdampf (3 bar ü) beheizte Rohrbündel. T s = 144 C Der Wärmeübergangskoeffizient U für die Beheizung von Öl durch Sattdampf kann mit 500 W/m² C angesetzt werden. T am = T s - T m = 144 C C = 44 C Mit Hilfe von Formel 1.3 Q = U A T = 500 W/m² C A 44 C = 250 kw A = /(500 44) A = 11,4 m² Bei Einsatz von Sattdampf würden wir eine Fläche von 11,4 m² benötigen. Spirax Sarco 9

11 1 Überhitzter Dampf Nun betrachten wir die Beheizung mit überhitztem Dampf (3 bar ü; Überhitzung 10 K, T ü = 154 C). Mit Hilfe der Faustregel pro 2 C Überhitzung wird ca. 1 % mehr Fläche benötigt können wir die notwendige Fläche berechnen. Die Überhitzung beträgt 10 K. Das bedeutet, dass wir 5 % mehr Fläche benötigen. Benötigte Fläche = 11,4 m² + 5 % = 11,4 m² + 0,6 m² = 12 m² diese Fläche würde man bei Beheizung mit überhitztem Dampf benötigen. Fouling oder Belagbildung: Wenn wir nun noch eine Toleranz von 5 % zusätzlicher Fläche für Belagbildung berücksichtigen ergibt sich: = 12 m² + 5 % = 12 m² + 0,6 m² = 12,6 m² diese Fläche würde man bei Beheizung mit überhitztem Dampf und unter Berücksichtigung von 5 % Fläche für eventuelles Fouling benötigen. Weitere Anwendungen, bei denen überhitzter Dampf eingesetzt wird Das zuvor Gesagte trifft zu, wenn überhitzter Dampf durch relativ schmale Durchgänge strömt, wie zum Beispiel durch Rohre in Rohrbündelwärmetauschern. In einigen Anwendungen, zum Beispiel an Zylindern in der Papierindustrie, ist überhitzter Dampf im höheren Maße zulässig, sofern sich seine Strömungsgeschwindigkeit an den betreffenden Prozesstellen stark verringert. In der Nähe der Zylinderwandung fällt die Temperatur des Dampfes sehr schnell auf Sattdampftemperatur und die Kondensation kann einsetzen. Der Wärmefluss durch den Zylinder ist folglich gleich gut, als wäre er mit Sattdampf versorgt worden. Der überhitzte Dampf gelangt also in das Innere des Zylinders und kühlt dann auf die erforderlichen Werte ab. Es versteht sich, dass der Grad der Überhitzung an den Prozess angepasst sein muss. Es gibt auch Prozesse, bei denen der überhitzte Dampf den Prozess negativ beeinflusst. Dies ist stets dann der Fall, wenn die Feuchtigkeit im Dampf Teil des Prozesses ist. Als Beispiel führen wird die Herstellung von Trockenfutter für Tiere an. Der Feuchtigkeitsgehalt des Futters muss geregelt werden, damit die Pellets hergestellt werden können. Der Einsatz von überhitztem Dampf wäre hierfür ungeeignet, da er das Futter austrocknen würde; die Pelletierung wäre erschwert oder unmöglich. Überhitzung durch Druckminderung Überhitzter Dampf kann nicht nur durch Leiten des Dampfes über einen Wärmetauscher wie Economizer oder sonstige Abhitzekessel erfolgen. Überhitzter Dampf kann auch durch Druckminderung entstehen, also wenn sich Dampf von einem höheren Druck (p 1 ; T 1 ) zu einem niedrigen Druck (p 2 ; T 2 ) durch eine Düse (zum Beispiel ein Stellventil oder Druckminderventil) entspannt. Die Ursache für die Überhitzung ist der Energieerhaltungssatz (E 1 = E 2 ). Die Gesamtenthalpie des Dampfes bei einem höheren Druck p 1 muss gleich der Gesamtenthalpie des Dampfes bei einem niedrigeren Druck p 2 sein. Nach der Druckminderung sollte der Dampf die zum Minderdruck p 2 zugehörige Sattdampftemperatur T S einnehmen. Dadurch, dass zu einem tieferen Druck eine tiefere Temperatur T 2 gehört, aber der Energieinhalt dem von vor der Druckminderung (E 1 bei p 1 ) entsprechen muss (E 1 = E 2 : Energieerhaltungssatz), ergibt sich ein gewisser Überhitzungsgrad für T 2 gegenüber der zugehörigen Sattdampftemperatur T S. Der Grad der Überhitzung hängt von verschiedenen Faktoren ab: Vom Druck p 1 Vom Dampfgehalt des Dampfes mit Druck p 1 Vom Druckabfall p 1 - p 2 an einer Düse, z. B. am Stellventil oder Druckreduzierventil 10 Spirax Sarco

12 1 Überhitzter Dampf Für trockenen Sattdampf unterhalb 30 bar ü wird jeder Druckabfall an einer Düse zu einer Überhitzung führen. Der Überhitzungsgrad hängt vom Druckanfall ab. Für trockenen Sattdampf p1 oberhalb 30 bar ü wird der reduzierte Dampf trocken, feucht oder überhitzt sein. Dies hängt vom Druckabfall ab. Wenn zum Beispiel trockener Sattdampf mit 60 bar ü auf 10,5 bar ü reduziert wird, entsteht trockener Sattdampf. Wird der Dampf auf Drücke reduziert, die höher als 10,5 bar ü liegen, so wird der Dampf eine Restfeuchte haben. Wenn der Dampf auf Drücke, die kleiner als 10,5 bar ü sind reduziert, so entsteht überhitzter Dampf. Der Dampfgehalt des zu mindernden Dampfes p1 hat eine Auswirkung auf den druckreduzierten Dampf. Zum Beispiel müßte man Sattdampf mit 10 bar ü und einem Dampfgehalt von 0,95 (95 %) auf einen Druck p2 = 0,135 bar ü mindern, damit trockener Sattdampf entsteht. Bei einem geringeren Druckabfall würde der Dampf eine Restfeuchte haben. Bei einem größeren Druckabfall würde überhitzter Dampf entstehen. Beispiel 1.4 Dampfgehalt durch Druckminderung erhöhen Sattdampf mit 6 bar ü und einem Dampfgehalt von 0,95 soll auf einen Druck p 2 = 1,0 bar ü gemindert werden. Die Dampfbedingungen nach der Minderung sollen bestimmt werden: Aus den Dampftafeln: bei 6 bar ü h f = 697,5 kj/kg h fg = 2066,0 kj/kg bei 1 bar ü h f = 505,6 kj/kg h fg = 2201,1 kj/kg Die Gesamtenthalpie vor der Druckminderung beträgt: = h f + (h fg χ ) bei 6 bar ü = 697,5 kj/kg + (2066,0 kj/kg 0,95) Gesamtenthalpie bei 6 bar ü = 2660,2 kj/kg Diese Energie ist also im Dampf enthalten, bevor er auf einen Druck von 1 bar ü reduziert wird. Gesamtenthalpie bei 1 bar ü = 505,6 kj/kg ,1 kj/kg Gesamtenthalpie bei 1 bar ü = 2706,7 kj/kg Wir sehen nun, dass die Gesamtenthalpie bei 6 bar ü geringer als die Gesamtenthalpie bei 1 bar ü ist. Das bedeutet, dass die Restfeuchte nicht vollständig verdampft werden kann und im 1 bar Dampf ein gewisses Mass an Restfeuchte bleiben wird. Diese kann mit oben aufgeführter Formel wie folgt berechnet werden: Gesamtenthalpie bei 6 bar ü = 2660,2 kj/kg = h f + (h fg χ ) = 505,6 kj/kg + (2201,1 kj/kg χ ) Die Gleichung muss nun nach χ umgestellt werden: χ = 2 660, 2 kj kg - 505, 6 kj kg 2 201, 1 kj kg χ = 0,979 oder 97,9 % Dampfgehalt Beispiel 1.5 Überhitzung durch ein Regelventil Sattdampf mit 10 bar ü und einem Dampfgehalt von χ = 0,98 soll auf einen Druck p 2 = 1,0 bar ü gemindert werden. Die Dampfbedingungen nach der Minderung sollen bestimmt werden: Aus den Dampftafeln: bei 10 bar ü h f = 781,6 kj/kg h fg = 2000,1 kj/kg bei 1 bar ü h f = 505,6 kj/kg h fg = 2201,1 kj/kg Spirax Sarco 11

13 1 Überhitzter Dampf Die Gesamtenthalpie vor der Druckminderung beträgt: = hf + (h fg χ ) bei 10 bar ü = 781,6 kj/kg + (2000,1 kj/kg 0,98) Gesamtenthalpie bei 10 bar ü = 2741,7 kj/kg Diese Energie ist also im Dampf enthalten, bevor er auf einen Druck von 1 bar ü reduziert wird. Die Aufgabe ist nun, den Grad der Überhitzung nach der Druckminderung zu bestimmen. Wie wir schon in Beispiel 1.4 ermittelt haben, beträgt die: Gesamtenthalpie bei 1 bar ü = 505,6 kj/kg kj/kg Gesamtenthalpie bei 1 bar ü = 2706,7 kj/kg Wir sehen nun, dass die Gesamtenthalpie bei 10 bar ü um 35 kj/kg größer ist als die Gesamtenthalpie bei 1 bar ü (Differenz = 2741,7 kj/kg ,7 kj/kg = 35 kj/kg). Wir bekommen also diesmal 100 % trockenen Dampf mit etwas Überhitzung. Die Energiedifferenz bewirkt die Überhitzung. Es stellt sich eine geringfügige Überhitzung von 136 C gegenüber der Sattdampftemperatur von 120 C ein. 10 bar 180 C 1 bar Druckreduzierventil 136 C 2741,7 kj/kg Bild 1.4 Entstehung von Überhitzung bei einer Druckminderung Den Grad der Überhitzung können wir mit dem Mollier-Diagramm ermitteln. 12 Spirax Sarco

14 1 Überhitzter Dampf Das Mollier-Diagramm Beim Mollier-Diagramm ist die Enthalpie in Anhängigkeit der Entropie aufgezeichnet. Enthalpie h (kj/kg) Sattdampfkurve Entropie s (kj/kg K) Bild 1.5 Mollier (h,s)-diagramm Bild 1.5 zeigt eine vereinfachte Version eines Mollier-Diagramms. Das Diagramm zeigt die Zusammenhänge zwischen Enthalpie, Entropie, Temperatur, Druck und Dampfgehalt für Wasserdampf. Es scheint zunächst wegen der vielen Kurven etwas unübersichtlich. Konstante Enthalpie (waagrechte Linien; Isenthalpe) Konstante Entropie (senkrechte Linien; Isentrope) Die Sattdampfkurve ist die dickere Linie in der Mitte des Diagramms. Sie trennt den Sattdampfbereich vom Bereich des überhitzen Dampfes. Die Sattdampflinie entspricht dem Zustand von trockenem Sattdampf. Der Bereich unterhalb der Sattdampflinie beschreibt Dampf mit Restfeuchte. Der Bereich oberhalb der Sattdampflinie beschreibt überhitzten Dampf. Konstante Drucklinien (Isobaren) Konstante Temperaturen (Isothermen) Konstanter Dampfgehalt (unterhalb der Sattdampfkurve) Bei einer Expansion, wie sie etwa in einer Turbine oder in einem Dampfmotor stattfindet, handelt es sich um einen Prozess mit konstanter Entropie, das heißt, man bewegt sich senkrecht im Diagramm. Man beginnt mit den Ausgangsbedingungen bei einem oberen Punkt und wandert senkrecht nach unten zum Endzustand. Bei einer Drosselung, wie das zum Beispiel bei einer Druckreduzierung der Fall ist, handelt es sich um einen Prozess mit konstanter Enthalpie, das heißt, man bewegt sich waagrecht im Diagramm. Man beginnt mit den Ausgangsbedingungen bei einem Punkt links im Diagramm und wandert waagrecht nach rechts zum Endzustand. Bei beiden Prozessen entsteht eine Druckreduzierung, aber der Weg dahin ist unterschiedlich. Die beiden Beispiele sind in Bild 1.6 auf der nächsten Seite schematisch dargestellt. Man kann den Prozess auch mit Hilfe der Dampftafeln beschreiben. Spirax Sarco 13

15 1 Überhitzter Dampf Perfekte Expansion (z. B. mit Turbine) Perfekte Drosselung (z. B. Druckreduzierventil) h 1 P 1 Enthalpie Druckabfall Enthalpie Druckabfall P 1 P 2 h 2 P 2 Entropie Entropie s 1 s 2 Bild 1.6 Beispiele für Drosselung und Expansion im Mollier-Diagramm Beispiel 1.6 Isentropische Expansion zur Erzeugung von mechanischer Arbeit Wir betrachten nun die Expansion von Dampf in eine Turbine. Der Dampf liegt mit einem Druck von 50 bar abs und einer Temperatur von 300 C vor. Der Druck am Austritt der Turbine soll p 2 = 0,04 bar abs betragen. Graphische Ermittlung des Ergebnisses Da es sich hier um eine isentropische Expansion handelt, also die Entropie konstant bleibt, können wir den Prozess mit einer senkrechten Linie mit Anfangsbedingungen und Endbedingungen im Diagramm darstellen (siehe Bild 1.7). Bei den Anfangsbedingungen beträgt die Entropie circa 6,25 kj/kg C. Wenn man nun der Linie senkrecht nach unten bis zum Wert 0,04 bar abs folgt, so erhält man die Werte für den Endzustand des Dampfes. Es ergibt sich eine Enthalpie mit einem Wert knapp unter h g = 1900 kj/kg und einem Dampfgehalt von 0,72 (siehe Bild 1.7). Rechnerische Ermittlung des Ergebnisses Man kann den Dampfzustand aber auch mittels der Dampftabellen ermitteln. Aus den Dampftafeln: bei 50 bar abs/300 C: h f = 2927 kj/kg s g = 6,212 kj/kg C Für trockenen Sattdampf: bei 0,04 bar abs: s f = 0,422 kj/kg C s fg = 8,051 kj/kg C und s g = 8,473 kj/kg C 14 Spirax Sarco

16 1 Überhitzter Dampf Enthalpie h (kj/kg) Sattdampfkurve Entropie s (kj/kg K) Bild 1.7 Mollier (h,s)-diagramm - Beispiel Wir sehen nun, dass die Entropie s g bei 0,04 bar abs (8,473 kj/kg C) größer als bei 50 bar abs/300 C (6,212 kj/kg C) ist. Daraus folgt, dass ein Teil des Dampfes kondensiert sein muss, damit die Energiebilanz stimmt. Um diesen Sachverhalt in Zahlen auszudrücken: s f + (s fg с) = 6,212 kj/kg C 0,422 kj/kg C + (8,051 kj/kg C с) = 6,212 kj/kg C Wir lösen die Gleichung nun nach c auf: с = 6,212 kj kg C - 0,422 kj kg C 8,051 kjkg C Dampfgehalt c = 0,72 (72%) außerdem h g = h f + ( h fg с) bei 0,04 bar abs h f = 121 kj/kg und h fg = 2433 kj/kg folglich h g = h f + ( h fg с) h g = 121 kj/kg + (2433 kj/kg 0,72) Gesamtenthalpie h g = 1873 kj/kg Erwartungsgemäß liegen das graphisch und das rechnerisch ermittelte Ergebnis dicht beieinander. Ungenauigkeiten kommen lediglich durch das ungenaue Ablesen der Werte in dem kleinen Mollier-Diagramm zustande. Spirax Sarco 15

17 1 Überhitzter Dampf Fragebogen: 1. Verglichen mit Sattdampf, trifft für überhitzten Dampf Folgendes zu: a. Er enthält mehr Wärmeenergie. b. Er hat mehr Verdampfungswärme. c. Er hat ein geringeres spezifisches Volumen. d. Er kondensiert bei höheren Temperaturen. 2. Welches ist KEINE Eigenschaft von überhitztem Dampf? a. Er enthält keine Wassertröpfchen. b. Er verursacht starke Erosion in Rohrleitungen. c. Er heizt Flächen ungleichmäßig auf. d. Er hat eine höhere Temperatur als Sattdampf. 3. Überhitzter Dampf mit einem Druck von 6 bar ü... a. hat eine größere spezifische Wärmekapazität als Wasser. b. hat einen Dampfgehalt von 99%. c. darf nicht zur Wärmeübertragung genutzt werden. d. hat eine Temperatur, die höher als 165 C ist. 4. Sattdampf mit 7 bar ü und einem Dampfgehalt von χ = 0,97 soll auf einen Druck p 2 = 2,0 bar ü gemindert werden. Welchen Zustand hat der Dampf nach der Druckminderung? a. Temperatur 170,5 C und Dampfgehalt 0,97 b. Temperatur 164 C und Dampfgehalt 1 c. Temperatur 133,7 C und Dampfgehalt 0,99 d. Temperatur 149,9 C und Dampfgehalt 0,98 5. Wenn überhitzter Dampf mit einem Druck von 4 bar abs und einer Temperatur 250 C auf einen Druck von 2 bar abs in einer Dampfmaschine verwendet werden soll, was ist dann die Dampfaustrittstemperatur? a. 120 C b. 172 C c. 247 C d. 250 C 6. Dampf mit einem Druck von 7 bar ü und einer Temperatur von 425 C... a. nimmt weniger Volumen ein als Sattdampf beim selbem Druck. b. ist um 254 C überhitzt. c. hat eine Enthalpie von 2941kJ/kg. d. hat eine Entropie von 7,040 kj/kg C. Antworten: 1:a, 2:b, 3:d, 4:c, 5:b, 6:b 16 Spirax Sarco

18 2.1 Grundlagen der Dampfkühlung Kapitel 2.1: Grundlagen der Dampfkühlung Überhitzter Dampf Überhitzter Dampf hat eine höhere Temperatur als die zum strömenden Dampfdruck zugehörige Sattdampftemperatur. Zum Beispiel hat Sattdampf bei 3 bar ü eine zugehörige Temperatur von 143,6 C. Wird dieser Dampf bei gleichbleibendem Druck weiter erhitzt, so entsteht überhitzter Dampf. Der Grad der Überhitzung hängt von der Menge der zugeführten Energie ab. Überhitzter Dampf ist heißer als Sattdampf. Überhitzter Dampf enthält mehr Energie als Sattdampf. Überhitzter Dampf hat ein größeres spezifisches Volumen als Sattdampf überhitzter Dampf Dampfsättigung Temperatur in C Wasser Druck in bar ü Bild Dampfdiagramm Diese Zusammenhänge und Werte können gängigen Tabellen für überhitzten Dampf entnommen werden. Überhitzter Dampf hat folgende wichtigen Vorteile: Keine Kondensierung und Tröpfchenbildung auf den Turbinenschaufeln. Höhere Strömungsgeschwindigkeiten (bis 100 m/s) sind in Rohrleitungen erzielbar. Das heißt, das Dampfverteilnetz kann mit kleineren Rohrleitungen ausgeführt werden, sofern der Druckabfall im vertretbaren Rahmen bleibt. Keine Kondensatbildung in den Rohrleitungen, außer beim Anfahren und Herunterfahren der Anlage. Überhitzter Dampf hat folgende wichtigen Nachteile: Überhitzter Dampf enthält viel Energie. Diese Energie ist in drei Energieformen enthalten; 1. die Enthalpie des Wassers (h ), 2. die Verdampfungswärme (r) und 3. die Enthalpie des überhitzten Dampfes. Der größte Teil der Energie steckt jedoch in der Verdampfungswärme (r). Der Energieanteil, der in der Enthalpie des überhitzten Dampfes steckt, ist vergleichsweise gering. Zum Beispiel: überhitzter Dampf, 10 bar a, 300 C Enthalpie des Wassers (h ) = 763 kj/kg Verdampfungswärme (r) = 2015 kj/kg Enthalpie des überhitzten Dampfes = 274 kj/kg Spirax Sarco 17

19 2.1 Grundlagen der Dampfkühlung Verdampfungswärme 66 % Enthalpie des überhitzten Dampfes 9 % Enthalpie des Wassers 25 % Bild Gesamtenthalpie des überhitzten Dampfes Überhitzter Dampf kann erst kondensieren, wenn er seine Überhitzungswärme abgegeben hat, also wenn er wieder Sattdampf geworden ist. Bei Einsatz von Dampf zur Übergabe von Wärmeenergie kann mit Sattdampf mehr Wärme übergeben werden als mit überhitztem Dampf. Bei Sattdampf wird schlagartig die gesamte Verdampfungswärme in Form von Kondensationswärme abgegeben. Wärmetauscherflächen werden also kompakter und günstiger bei Einsatz von Sattdampf. Viele Prozesse benötigen zum korrekten Betrieb Sattdampf, zum Beispiel die Sterilisation Viele Prozesse arbeiten nicht effektiv, wenn sie mit überhitztem Dampf beheizt werden, wie zum Beispiel Destillationskolonnen. Je nach Grad der Überhitzung kann es sein, dass teurere Armaturen verwendet werden müssen. Zusammenfassend kann man sagen, dass überhitzter Dampf zwar für die Dampfverteilung von Vorteil ist und für Turbinen oft eingesetzt wird, für die meisten thermischen Prozesse aber eher nicht wünschenswert ist. Bei Kraftwerken oder Blockheizkraftwerken wird oft überhitzter Dampf erzeugt. Ebenso gibt es Anlagen, in denen große Mengen Müll oder anderes Material (Papierindustrie, Zuckerindustrie) verbrannt werden, um überhitzten Dampf herzustellen. In Anlagen, in denen überhitzter Dampf bereits vorliegt, ist es sinnvoll, diesen im überhitzten Zustand zu verteilen und dann am Verbrauchsort auf den erwünschten Sattdampf zu kühlen. Dampfkühlung Bei der Dampfkühlung soll die Überhitzung abgebaut werden. Die meisten Verfahren der Dampfkühlung reduzieren die Überhitzung des Dampfes auf eine Temperatur von circa 5 bis 10 K oberhalb der zugehörigen Sattdampftemperatur. Eine erzielte Temperatur von im Mittel circa 3 K oberhalb der Sattdampftemperatur gilt als sehr gutes Ergebnis. Es gibt zunächst zwei grundlegende Unterscheidungen der Dampfkühlverfahren: Indirekte Kühlung Das Medium, mit dem der Dampf gekühlt werden soll, kommt nicht in direkten Kontakt mit dem zu kühlenden Dampf. Eine Kühlflüssigkeit oder ein Gas wird zur Kühlung verwendet. Dies kann zum Beispiel die Umgebungsluft sein. Als weiteres Beispiel können Wärmetauscher aufgeführt werden. Überhitzter Dampf wird dem Wärmetauscher zugeführt und auf der Gegenseite strömt ein Medium, das die Überhitzungsenergie aufnimmt. Die Temperatur des zu kühlenden Dampfes kann entweder durch Regelung der eintretenden Dampfmenge oder durch Regelung der eintretenden Kühlflüssigkeitsmenge realisiert werden. In der Praxis wird die zugeführte Kühlflüssigkeitsmenge geregelt. 18 Spirax Sarco

20 2.1 Grundlagen der Dampfkühlung Direkte Kühlung Das Medium, mit dem der Dampf gekühlt werden soll, kommt in direkten Kontakt mit dem Dampf. In den meisten Fällen ist das Kühlmedium dasselbe Medium wie der Dampf, der gekühlt werden soll, jedoch in flüssigem Zustand. Zum Beispiel wird überhitzter Wasserdampf normalerweise mit Wasser gekühlt. In Bild ist eine Einspritzkühlung schematisch dargestellt. Um den überhitzten Dampf zu kühlen, wird eine bestimmte Menge Kühlflüssigkeit in den Dampf eingebracht. Diese Kühlflüssigkeit wird durch den Dampf vermischt und aufgenommen. Da der überhitzte Dampf diese Kühlflüssigkeit aufwärmen und verdampfen muss, wird der Dampf gekühlt. Für die Einbringung der Kühlflüssigkeit in den Dampf gibt es mehrere verschiedene Verfahren, die unterschiedliche Ergebnisse liefern. Je nach Verfahren kann man fast perfekten Sattdampf (98 % Sättigung) oder eine Temperatur, die etwa 5 8 K oberhalb der des zugehörigen Dampfdruckes liegt, erreichen. Die verschiedenen Verfahren werden weiter hinten im Buch beschrieben. Temperaturregler Regelventil Kühlflüssigkeit Rückschlagventil überhitzter Dampf gekühlter Dampf Einspritz-Dampfkühler Bild direkte Dampfkühlung mittels einer Einspritzdüse - schematische Skizze Berechnung der erforderlichen Kühlwassermenge Die Menge des erforderlichen Kühlwassers sollte so dosiert werden, dass man nicht wesentlich mehr eingebracht werden als notwendig ist. Eine zu geringe Kühlwassermenge hat zur Folge, dass die gewünschte Temperatur nicht erreicht werden kann. Eine zu große Kühlwassermenge hat zur Folge, dass der Dampf sehr viel Wasser mitreißt. Dies ist nicht erwünscht. In der Praxis muss aber mit einer gewissen Wasser-Übersättigung gefahren werden, damit ausreichend Kühlwasser zur Verfügung steht. Dieses überschüssige Wasser muss nach der Dampfkühlung mit einen Dampftrockner wieder abgeschieden werden. Die folgende Formel basiert auf dem Energieerhaltungssatz. Die erforderliche Dampfmenge kann so einfach ermittelt werden. Gesamtenthalpie vor der Kühlung = Gesamtentalphie nach der Kühlung ṁ cw h cw + ṁ s h s = ṁ s h d + ṁ cw h d ṁ s h s + ṁ s h d = ṁ cw h d - ṁ cw h cw ṁ s (h s - h d ) = ṁ cw (h d - h cw ) ṁ cw = ṁ s (h s - h d ) (h d - h cw ) Formel Spirax Sarco 19

21 2.1 Grundlagen der Dampfkühlung Abkürzungen: ṁ cw = Wasserdurchsatz des Kühlwassers (kg/h) ṁ s = Durchsatz des überhitzten Dampfes (kg/h) h s = Enthalpie der Überhitzung (kj/kg) h d = Enthalpie der Überhitzung nach der Kühlung (kj/kg) h cw = Enthalpie des Kühlwassers (kj/kg) Beispiel Bestimmung der erforderlichen Kühlwassermenge: Druck 10 bar abs Dampfversorgung Temperatur 300 C Durchsatz kg/h Kühlwasser Druck 15 bar abs Temperatur 150 C Benötigter Dampf Druck 10 bar abs Temperatur Sattdampftemperatur +5 K Lösung: Die notwendigen Informationen können aus Dampftafeln entnommen werden. In den Tabellen und finden Sie alle zur Lösung erforderlichen Informationen. Tabelle Sattdampftafel P Ts vg uf ug hf hfg hg sf sfg sg bar ü C m³/kg kj/kg kj/kg kj/kg K 9 175,4 0, ,9 0, ,1 0, ,0 0, Tabelle Dampftafel für überhitzten Dampf Druck T (Temperatur) C bar ü 9 (175) 10 (180) 15 (198) v g 0,2149 v 0,2305 0,2597 0,2874 0,3144 0,3410 0,3674 0,3937 0,4558 u g 2581 u h g 2774 h s g 6623 s v g 0,1944 v 0,2061 0,2328 0,2582 0,2825 0,3065 0,3303 0,3540 0,4010 u g 2584 u h g 2778 h s g 6586 s v g 1317 v 0,1324 0,1520 0,1697 0,1865 0,2029 0,2191 0,2351 0,2667 u g 2595 u h g 2792 h s g 6445 s Spirax Sarco

22 2.1 Grundlagen der Dampfkühlung ṁ s = Durchsatz des überhitzten Dampfes = kg/h h s = Enthalpie der Überhitzung (bei 300 C und 10 bar abs) = 3052 kj/kg h cw = Enthalpie des Kühlwassers (150 C x 4,2 kj/kg C) = 630 kj/kg h d = Enthalpie des Dampfes nach der Kühlung (kj/kg) Um h d zu ermitteln, muss interpoliert werden, weil die exakten Werte nicht in den oben aufgeführten Tabellen enthalten sind. Zunächst die Sattdampftemperatur ermitteln: Bei 10 bar abs: T s = 180 C Bei 5 C Überhitzung: T 2 = 180 C + 5 C = 185 C Diese beiden Werte sind in der Tabellen enthalten: Enthalpie bei 10 bar abs; T s (Sattdampf) = 2778 kj/kg Enthalpie bei 10 bar abs; 200 C (Sattdampf) = 2829 kj/kg Nun muss interpoliert werden (10 bar abs und 185 C) h d = ( (2829 kj/kg kj/kh) x 185 C C ) 200 C C h d = ( 51 x 5 ) 20 Also h d = 2791 kj/kg Formel ṁ cw = ṁ s (h s - h d ) (h d - h cw ) ṁ cw = x ( ) ( ) ṁ cw = 1208 kg/h Der Wasserdurchsatz ṁ cw beträgt 1208 kg/h Folgende Menge gekühlter Dampf wird geliefert: kg/h kg/h = kg/h Wurde nun eine Gesamtmenge von kg/h gewünscht, kann der tatsächliche Bedarf an überhitztem Dampf mittels eines Dreisatzes einfach ermittelt werden: = ṁ s ṁ s = 8923 kg/h Spirax Sarco 21

23 2.1 Grundlagen der Dampfkühlung Fragebogen 1. Welche der folgenden Eigenschaften treffen auf überhitzen Dampf zu? a. Die Enthalpie von überhitztem Dampf ist höher als die von Sattdampf. b. Die Dichte von überhitztem Dampf ist geringer als die von Sattdampf. c. Die Temperatur von überhitztem Dampf ist höher als die von Sattdampf. d. Alle zuvor genannten Punkte treffen zu. 2. Was ist der Hauptnachteil von überhitzem Dampf in Wärmetauscher-Anwendungen? a. Der überhitzte Dampf enthält weniger Wärmeenergie als Sattdampf. b. Der Wärmeübergangskoeffizient ist geringer als der für Sattdampf. c. Überhitzter Dampf ist sehr trocken. d. Überhitzter Dampf ist wenig effizient. 3. Bestimmen Sie mit Hilfe der Tabellen und 2.1.2, um wieviel höher die Energie von überhitztem Dampf mit 9 bar abs und einer Überhitzungstemperatur von 74,6 C gegenüber Sattdampf mit dem selben Druck liegt. a. 1% b. 6% c. 11% d. 24% 4. Was ist die Hauptaufgabe eines Dampfkühlers? a. Den Dampfdruck zu reduzieren. b. Das Dampfvolumen zu erhöhen. c. Den Dampf niederzuschlagen, damit er als Kondensat abgeführt werden kann. d. Die Temperatur des Dampfes zu reduzieren. 5. Ermitteln Sie mit Hilfe der Tabellen und durch Interpolation die Enthalpie von auf 9 bar abs und (T s + 8 C) gekühltem Dampf. a kj/kg b kj/kg c kj/kg d kj/kg 6. In einem Kraftwerk werden 108 kg/s überhitzter Dampf erzeugt. Nach der Turbine hat der Dampf 110 bar abs und eine Temperatur von 500 C. Wieviel Kühlwasser wird benötigt, um den Dampf um 150 C zu kühlen? a. 5 kg/h b. 15 kg/h c. 25 kg/h d. 30 kg/h Antworten 1:d, 2:b, 3:b, 4:d, 5:a, 6:c 22 Spirax Sarco

24 2.2 Verfahren der Dampfkühlung Kapitel 2.2 Verfahren der Dampfkühlung Dampfkühlungen Die einfachste Art der Dampfkühlung ist, einen Teil der dampfführenden Rohrleitung ohne Wärmedämmung zu belassen, so dass Wärme an die Umgebung abgegeben werden kann. Dieses Verfahren ist aber zum einen gefährlich, da man sich an der heißen Dampfleitung verletzen könnte und zum anderen wird Energie verschwendet. Es sind verschiedene Typen von Dampfkühlern verfügbar. Zwei wesentliche Eigenschaften betrachten wir im nun Folgenden. Spirax Sarco 23

25 2.2 Verfahren der Dampfkühlung Der Regelbereich oder das Massen-Stellverhältnis, beschreibt den Bereich, in dem das entsprechende Dampfkühlsystem arbeitet. Es wird mit der Formel beschrieben. Massen-Stellverhältnis = maximaler Durchsatz minimaler Durchsatz Formel Dies ist ein sehr wichtiger Parameter, weil eine Änderung des Eingangsdruckes, der Temperatur und/oder des Durchsatzes eine Änderung der Kühlmenge zur Folge hat. Für eine korrekte Funktion der Dampfkühlung sind diese Änderungen jedoch nur in einem gewissen Rahmen möglich. Aus diesem Grunde ist das Massen-Stellverhältnis wichtig. Massen-Stellverhältnis gibt den minimalen und den maximalen Wert an, bei dem das System funktioniert.es sollte so groß wie erforderlich gewählt werden, aber nicht wesentlich größer. Kühlwasser-Stellverhältnis man kann auch das Stellverhältnis zwischen dem kleinsten und dem größten Kühlwasserdurchsatz angeben. Dieser Wert wird natürlich durch das Dampfdurchsatz-Stellverhältnis direkt beeinflusst. Die beiden Werte sind proportional zueinander. Kann der Kühlwasserdurchsatz nicht mehr verkleinert werden, so kann auch die minimale kühlbare Dampfmenge nicht mehr verringert werden. Das maximal erreichbare Kühlwasser-Stellverhältnis hängt vom ausgewählten System und/oder den ausgewählten Komponenten ab. Wir verweisen wieder auf die Formel: Formel ṁ cw = ṁ s (h s - h d ) (h d - h cw ) Abkürzungen: ṁ cw = Wasserdurchsatz des Kühlwassers (kg/h) ṁ s = Durchsatz des überhitzten Dampfes (kg/h) h s = Enthalpie der Überhitzung (kj/kg) h d = Enthalpie der Überhitzung nach der Kühlung (kj/kg) h cw = Enthalpie des Kühlwassers (kj/kg) Mit Hilfe der Vereinfachung: (h s - h d) k = (h - h ) d cw kann die Formel auch einfacher darstellt werden: ṁ cw k x ṁ s Man sieht also, dass der Kühlwasserdurchsatz zum Dampfdurchsatz proportional ist. Der Wert k ist der Proportionalitätsfaktor. Aus dem erforderlichen Stellverhältnis für den Dampfdurchsatz folgt also das notwendige Stellverhältnis für den Kühlwasserdurchsatz. 24 Spirax Sarco

26 2.2 Verfahren der Dampfkühlung Anforderungen an ein Dampfkühlsystem Es ist wichtig, die genauen Anforderungen an ein Dampfkühlsystem zu prüfen. Das setzt voraus, dass man die nachgeschalteten Prozesse analysiert. Man sollte das System so aufbauen, dass es die ermittelten Anforderungen erfüllt. Das Massen- oder Dampfdurchsatz-Stellverhältnis sollte so groß wie erforderlich gewählt werden, jedoch nicht größer, denn dies würde das System nur unnötig verteuern. Man beachte stets, dass der Dampfkühler nur eine Komponente eines System ist. Es kann sein, dass zur Erzielung des gewünschten Ergebnisses mehrere Systeme geeignet verschaltet werden müssen. Folgende Parameter müssen auch geregelt werden: Dampfdruck; Dampftemperatur Dampfdurchsatz; Wasserdurchsatz Temperatur vor und nach der Dampfkühlung Kühlwasserdruck Genauigkeit der Temperatur Bei Einspritzsystemen die Länge der Mischstrecke Lage der Sensoren Nachfolgend finden Sie die Beschreibung einiger wichtiger Kühlsysteme. Indirekte Dampfkühler Rohrbündelkühler in U-Form Bei dieser Bauart sind in der Regel zwei Rohrbündelwärmetauscher in U-Form angeordnet. Im unteren Bereich ist der Wasserraum verbunden. Auf der Dampfaustrittseite ist der Rohrvorkopf jeweils schwimmend gelagert. Der überhitzte Dampf strömt durch die Rohre und das Kühlmedium fließt um die Rohre und nimmt die abzubauende Wärme auf. Das Kühlmedium siedet hierdurch bei Sattdampftemperatur. Aufsteigender Dampf aus dem Kühlwasser mischt sich am schwimmend gelagerten Rohrbündelaustritt mit gekühltem Dampf und sättigt diesen zusätzlich. Druck- und Temperatursensor Sicherheitsventil überhitzter Dampf schwimmend gelagerter Rohrkopf Sattdampf Überlauf mit Kondensatableiter Niveau- Regelung Entleerung Kühlwasser bei Sattdampfbedingungen Kühlwasser Bild Rohrbündelkühler in U-Form Spirax Sarco 25

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Chemie Zusammenfassung KA 2

Chemie Zusammenfassung KA 2 Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen

Mehr

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)?

b) Welche Optimierungsprobleme ergeben sich hinsichtlich der Auslegung des Wärmeübertragers (Heat-eXchanger HX)? Übung 8 Aufgabe 5.3: Carnot-Schiff In der Region des Nordmeeres liegt die Wassertemperatur zumeist über der Temperatur der Umgebungsluft. Ein Schiff soll die Temperaturdifferenz zwischen diesen beiden

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

Dampfkraftprozess Dampfturbine

Dampfkraftprozess Dampfturbine Fachgebiet für Energiesysteme und Energietechnik Prof. Dr.-Ing. B. Epple Musterlösung Übung Energie und Klimaschutz Sommersemester 0 Dampfkraftprozess Dampfturbine Aufgabe : Stellen Sie den Dampfkraftprozess

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Fachhochschule Flensburg. Institut für Physik

Fachhochschule Flensburg. Institut für Physik Name: Fachhochschule Flensburg Fachbereich Technik Institut für Physik Versuch-Nr.: W 2 Bestimmung der Verdampfungswärme von Wasser Gliederung: Seite Einleitung Versuchsaufbau (Beschreibung) Versuchsdurchführung

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung

Institut für Energiesysteme und Energietechnik. Vorlesungsübung 1. Musterlösung Institut für Energiesysteme und Energietechnik Vorlesungsübung 1 Musterlösung 3.1 Kohlekraftwerk Aufgabe 1 Gesucht: Aufgrund der Vernachlässigung des Temperaturunterschiedes des Luft-, Rauchgas- und Brennstoffstromes

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Der Leverage-Effekt wirkt sich unter verschiedenen Umständen auf die Eigenkapitalrendite aus.

Der Leverage-Effekt wirkt sich unter verschiedenen Umständen auf die Eigenkapitalrendite aus. Anhang Leverage-Effekt Leverage-Effekt Bezeichnungs- Herkunft Das englische Wort Leverage heisst Hebelwirkung oder Hebelkraft. Zweck Der Leverage-Effekt wirkt sich unter verschiedenen Umständen auf die

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

SORTEN VON DAMPF / DAMPF UND DRUCK / VAKUUM

SORTEN VON DAMPF / DAMPF UND DRUCK / VAKUUM SORTEN VON DAMPF / DAMPF UND DRUCK / VAKUUM In diesem Kapitel werden kurz einige wichtige Begriffe definiert. Ebenso wird das Beheizen von Anlagen mit Dampf im Vakuumbereich beschrieben. Im Sprachgebrauch

Mehr

Allgemeine Speicherberechnung

Allgemeine Speicherberechnung doc 6. Seite von 5 Allgemeine Seicherberechnung echnische Daten Grundlage Die Berechnung eines Hydroseichers bezieht sich auf die Zustandsänderung des Gases im Hydroseicher. Die gleiche Veränderung erfolgt

Mehr

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R

1 C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R C H R I S T O P H D R Ö S S E R D E R M A T H E M A T I K V E R F Ü H R E R L Ö S U N G E N Seite 7 n Wenn vier Menschen auf einem Quadratmeter stehen, dann hat jeder eine Fläche von 50 mal 50 Zentimeter

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Die Anwendung des h-x-diagramms

Die Anwendung des h-x-diagramms Die Anwendung des h-x-diagramms 1. Mischen zweier Luftmengen 2 2. Lufterwlrmung 3 3.12EHUIOlFHQNOXQJ 3.2.1DVVNOXQJ 4. Luftbefeuchtung 5 4.1.Befeuchtung mit Wasser 4.2.=XVWDQGVlQGHUXQJLP['LDJUDPP 4.3.Befeuchtung

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Sonderrundschreiben. Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen

Sonderrundschreiben. Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen Sonderrundschreiben Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen Sonnenstraße 11-80331 München Telefon 089 / 5404133-0 - Fax 089 / 5404133-55 info@haus-und-grund-bayern.de

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

LEITFADEN ZUR SCHÄTZUNG DER BEITRAGSNACHWEISE

LEITFADEN ZUR SCHÄTZUNG DER BEITRAGSNACHWEISE STOTAX GEHALT UND LOHN Stollfuß Medien LEITFADEN ZUR SCHÄTZUNG DER BEITRAGSNACHWEISE Stand 09.12.2009 Seit dem Januar 2006 hat der Gesetzgeber die Fälligkeit der SV-Beiträge vorgezogen. So kann es vorkommen,

Mehr

Berechnung der Erhöhung der Durchschnittsprämien

Berechnung der Erhöhung der Durchschnittsprämien Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu])

Erstellen einer Collage. Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) 3.7 Erstellen einer Collage Zuerst ein leeres Dokument erzeugen, auf dem alle anderen Bilder zusammengefügt werden sollen (über [Datei] > [Neu]) Dann Größe des Dokuments festlegen beispielsweise A4 (weitere

Mehr

Mean Time Between Failures (MTBF)

Mean Time Between Failures (MTBF) Mean Time Between Failures (MTBF) Hintergrundinformation zur MTBF Was steht hier? Die Mean Time Between Failure (MTBF) ist ein statistischer Mittelwert für den störungsfreien Betrieb eines elektronischen

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Finanzierung: Übungsserie III Innenfinanzierung

Finanzierung: Übungsserie III Innenfinanzierung Thema Dokumentart Finanzierung: Übungsserie III Innenfinanzierung Lösungen Theorie im Buch "Integrale Betriebswirtschaftslehre" Teil: Kapitel: D1 Finanzmanagement 2.3 Innenfinanzierung Finanzierung: Übungsserie

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

L10N-Manager 3. Netzwerktreffen der Hochschulübersetzer/i nnen Mannheim 10. Mai 2016

L10N-Manager 3. Netzwerktreffen der Hochschulübersetzer/i nnen Mannheim 10. Mai 2016 L10N-Manager 3. Netzwerktreffen der Hochschulübersetzer/i nnen Mannheim 10. Mai 2016 Referentin: Dr. Kelly Neudorfer Universität Hohenheim Was wir jetzt besprechen werden ist eine Frage, mit denen viele

Mehr

Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung

Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung Klausuraufgaben Thermodynamik (F 0 A) BRAUNKOHLE-KRAFTWERK Ein Braunkohle-Kraftwerk arbeitet nach dem Clausius-Rankine-Prozess mit einfacher Zwischenüberhitzung und Anzapf-Vorwärmung. Dabei wird der Wassermassenstrom

Mehr

Bauhinweise Dampfbad Selbstbau:

Bauhinweise Dampfbad Selbstbau: Bauhinweise Dampfbad Selbstbau: Kaiser Wellness +43 660 68 60 599 www.dampfgenerator.at office@kaiser-wellness.at Dampfbad Selbstbau Bauhinweise - Dampfbad Selbstbau: Das eigene Dampfbad, einfach selbst

Mehr

Die Wärmepumpe funktioniert auf dem umgekehrten Prinzip der Klimaanlage (Kühlsystem). Also genau umgekehrt wie ein Kühlschrank.

Die Wärmepumpe funktioniert auf dem umgekehrten Prinzip der Klimaanlage (Kühlsystem). Also genau umgekehrt wie ein Kühlschrank. WÄRMEPUMPEN Wie funktioniert die Wärmepumpe? Die Wärmepumpe funktioniert auf dem umgekehrten Prinzip der Klimaanlage (Kühlsystem). Also genau umgekehrt wie ein Kühlschrank. Die Wärmepumpe saugt mithilfe

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Handbuch Fischertechnik-Einzelteiltabelle V3.7.3

Handbuch Fischertechnik-Einzelteiltabelle V3.7.3 Handbuch Fischertechnik-Einzelteiltabelle V3.7.3 von Markus Mack Stand: Samstag, 17. April 2004 Inhaltsverzeichnis 1. Systemvorraussetzungen...3 2. Installation und Start...3 3. Anpassen der Tabelle...3

Mehr

Arbeitsmarkteffekte von Umschulungen im Bereich der Altenpflege

Arbeitsmarkteffekte von Umschulungen im Bereich der Altenpflege Aktuelle Berichte Arbeitsmarkteffekte von Umschulungen im Bereich der Altenpflege 19/2015 In aller Kürze Im Bereich der Weiterbildungen mit Abschluss in einem anerkannten Ausbildungsberuf für Arbeitslose

Mehr

Bewertung des Blattes

Bewertung des Blattes Bewertung des Blattes Es besteht immer die Schwierigkeit, sein Blatt richtig einzuschätzen. Im folgenden werden einige Anhaltspunkte gegeben. Man unterscheidet: Figurenpunkte Verteilungspunkte Längenpunkte

Mehr

Informatik Kurs Simulation. Hilfe für den Consideo Modeler

Informatik Kurs Simulation. Hilfe für den Consideo Modeler Hilfe für den Consideo Modeler Consideo stellt Schulen den Modeler kostenlos zur Verfügung. Wenden Sie sich an: http://consideo-modeler.de/ Der Modeler ist ein Werkzeug, das nicht für schulische Zwecke

Mehr

Simulation LIF5000. Abbildung 1

Simulation LIF5000. Abbildung 1 Simulation LIF5000 Abbildung 1 Zur Simulation von analogen Schaltungen verwende ich Ltspice/SwitcherCAD III. Dieses Programm ist sehr leistungsfähig und wenn man weis wie, dann kann man damit fast alles

Mehr

Ein Leitfaden für die Dimensionierung der Umwälzpumpe in kleinen und mittleren Heizungsanlagen

Ein Leitfaden für die Dimensionierung der Umwälzpumpe in kleinen und mittleren Heizungsanlagen Stromsparchance Umwälzpumpe Ein Leitfaden für die Dimensionierung der Umwälzpumpe in kleinen und mittleren Heizungsanlagen Fünf Schritte zur Auswechslung der Umwälzpumpe Die wichtigsten Grundlagen Was

Mehr

DIE ANWENDUNG VON KENNZAHLEN IN DER PRAXIS: WEBMARK SEILBAHNEN IM EINSATZ

DIE ANWENDUNG VON KENNZAHLEN IN DER PRAXIS: WEBMARK SEILBAHNEN IM EINSATZ Kurzfassung DIE ANWENDUNG VON KENNZAHLEN IN DER PRAXIS: WEBMARK SEILBAHNEN IM EINSATZ Mag. Klaus Grabler 9. Oktober 2002 OITAF Seminar 2002 Kongresshaus Innsbruck K ennzahlen sind ein wesentliches Instrument

Mehr

Arbeitspunkt einer Diode

Arbeitspunkt einer Diode Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von

Mehr

Rundung und Casting von Zahlen

Rundung und Casting von Zahlen W E R K S T A T T Rundung und Casting von Zahlen Intrexx 7.0 1. Einleitung In diesem Werkstattbeitrag erfahren Sie, wie Zahlenwerte speziell in Velocity, aber auch in Groovy, gerundet werden können. Für

Mehr

Der Kälteanlagenbauer

Der Kälteanlagenbauer Der Kälteanlagenbauer Band : Grundkenntnisse Bearbeitet von Karl Breidenbach., überarbeitete und erweiterte Auflage. Buch. XXVIII, S. Gebunden ISBN 00 Format (B x L):,0 x,0 cm Zu Inhaltsverzeichnis schnell

Mehr

Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation

Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation Lernerfolge sichern - Ein wichtiger Beitrag zu mehr Motivation Einführung Mit welchen Erwartungen gehen Jugendliche eigentlich in ihre Ausbildung? Wir haben zu dieser Frage einmal die Meinungen von Auszubildenden

Mehr

DAS PARETO PRINZIP DER SCHLÜSSEL ZUM ERFOLG

DAS PARETO PRINZIP DER SCHLÜSSEL ZUM ERFOLG DAS PARETO PRINZIP DER SCHLÜSSEL ZUM ERFOLG von Urs Schaffer Copyright by Urs Schaffer Schaffer Consulting GmbH Basel www.schaffer-consulting.ch Info@schaffer-consulting.ch Haben Sie gewusst dass... >

Mehr

Zwischenablage (Bilder, Texte,...)

Zwischenablage (Bilder, Texte,...) Zwischenablage was ist das? Informationen über. die Bedeutung der Windows-Zwischenablage Kopieren und Einfügen mit der Zwischenablage Vermeiden von Fehlern beim Arbeiten mit der Zwischenablage Bei diesen

Mehr

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster Es gibt in Excel unter anderem die so genannten Suchfunktionen / Matrixfunktionen Damit können Sie Werte innerhalb eines bestimmten Bereichs suchen. Als Beispiel möchte ich die Funktion Sverweis zeigen.

Mehr

Wärmeübertragung durch Bauteile (k-wert) nach ÖNORM EN ISO 6946. Copyright 1999 LandesEnergieVerein, Burggasse 9, 8010 Graz. Autor: G.

Wärmeübertragung durch Bauteile (k-wert) nach ÖNORM EN ISO 6946. Copyright 1999 LandesEnergieVerein, Burggasse 9, 8010 Graz. Autor: G. Wärmeübertragung durch Bauteile (k-wert) nach ÖNOM EN ISO 6946 Copyright 999 LandesEnergieVerein, Burggasse 9, 800 Graz Autor: G. Bittersmann 4.07.000 :3 Seite von 9 Wärmeübertragung durch Bauteile (k-wert)

Mehr

Deutschland-Check Nr. 35

Deutschland-Check Nr. 35 Beschäftigung älterer Arbeitnehmer Ergebnisse des IW-Unternehmervotums Bericht der IW Consult GmbH Köln, 13. Dezember 2012 Institut der deutschen Wirtschaft Köln Consult GmbH Konrad-Adenauer-Ufer 21 50668

Mehr

ONLINE-AKADEMIE. "Diplomierter NLP Anwender für Schule und Unterricht" Ziele

ONLINE-AKADEMIE. Diplomierter NLP Anwender für Schule und Unterricht Ziele ONLINE-AKADEMIE Ziele Wenn man von Menschen hört, die etwas Großartiges in ihrem Leben geleistet haben, erfahren wir oft, dass diese ihr Ziel über Jahre verfolgt haben oder diesen Wunsch schon bereits

Mehr

GARAGEN TORE THERMALSAFE DOOR

GARAGEN TORE THERMALSAFE DOOR GARAGEN THERMALSAFE DOOR garagen LUFTDICHTIGKEIT KLASSE 4 U-WERT Durchschnittlich 22% höhere Dämmwirkung Die thermische Effizienz und die Verringerung der Luftdurchlässigkeit sind ausschlaggebende Aspekte

Mehr

Anwendungshinweise zur Anwendung der Soziometrie

Anwendungshinweise zur Anwendung der Soziometrie Anwendungshinweise zur Anwendung der Soziometrie Einführung Die Soziometrie ist ein Verfahren, welches sich besonders gut dafür eignet, Beziehungen zwischen Mitgliedern einer Gruppe darzustellen. Das Verfahren

Mehr

Gewinnvergleichsrechnung

Gewinnvergleichsrechnung Gewinnvergleichsrechnung Die Gewinnvergleichsrechnung stellt eine Erweiterung der Kostenvergleichsrechnung durch Einbeziehung der Erträge dar, die - im Gegensatz zu der Annahme bei der Kostenvergleichsrechnung

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

Wasserkraft früher und heute!

Wasserkraft früher und heute! Wasserkraft früher und heute! Wasserkraft leistet heute einen wichtigen Beitrag zur Stromversorgung in Österreich und auf der ganzen Welt. Aber war das schon immer so? Quelle: Elvina Schäfer, FOTOLIA In

Mehr

4. Das neue Recht der GmbH ein Überblick

4. Das neue Recht der GmbH ein Überblick 4. Das neue Recht der GmbH ein Überblick Wie sieht die GmbH-Reform eigentlich aus und was sind ihre Auswirkungen? Hier bekommen Sie einen kompakten Überblick. Einer der wesentlichen Anstöße, das Recht

Mehr

Festigkeit von FDM-3D-Druckteilen

Festigkeit von FDM-3D-Druckteilen Festigkeit von FDM-3D-Druckteilen Häufig werden bei 3D-Druck-Filamenten die Kunststoff-Festigkeit und physikalischen Eigenschaften diskutiert ohne die Einflüsse der Geometrie und der Verschweißung der

Mehr

Erfolg im Verkauf durch Persönlichkeit! Potenzialanalyse, Training & Entwicklung für Vertriebsmitarbeiter!

Erfolg im Verkauf durch Persönlichkeit! Potenzialanalyse, Training & Entwicklung für Vertriebsmitarbeiter! Wer in Kontakt ist verkauft! Wie reden Sie mit mir? Erfolg im Verkauf durch Persönlichkeit! Potenzialanalyse, Training & Entwicklung für Vertriebsmitarbeiter! www.sizeprozess.at Fritz Zehetner Persönlichkeit

Mehr

Informationen für Enteignungsbetroffene

Informationen für Enteignungsbetroffene 1 Informationen für Enteignungsbetroffene Sie sind Eigentümer, Pächter oder haben ein anderes Recht (z. B. Nießbrauchrecht, Erbbaurecht) an einem Grundstück, das von Planungen zum Wohle der Allgemeinheit

Mehr

Überlege du: Wann brauchen wir Strom. Im Haushalt In der Schule In Büros/Firmen Auf Straßen

Überlege du: Wann brauchen wir Strom. Im Haushalt In der Schule In Büros/Firmen Auf Straßen Jeden Tag verbrauchen wir Menschen sehr viel Strom, also Energie. Papa macht den Frühstückskaffee, Mama fönt sich noch schnell die Haare, dein Bruder nimmt die elektrische Zahnbürste zur Hand, du spielst

Mehr

FAQ 04/2015. Auswirkung der ISO 14119 auf 3SE53/3SF13 Positionsschalter. https://support.industry.siemens.com/cs/ww/de/view/109475921

FAQ 04/2015. Auswirkung der ISO 14119 auf 3SE53/3SF13 Positionsschalter. https://support.industry.siemens.com/cs/ww/de/view/109475921 FAQ 04/2015 Auswirkung der ISO 14119 auf 3SE53/3SF13 Positionsschalter mit https://support.industry.siemens.com/cs/ww/de/view/109475921 Dieser Beitrag stammt aus dem Siemens Industry Online Support. Es

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten "bedingten Wahrscheinlichkeit".

Tipp III: Leiten Sie eine immer direkt anwendbare Formel her zur Berechnung der sogenannten bedingten Wahrscheinlichkeit. Mathematik- Unterrichts- Einheiten- Datei e. V. Klasse 9 12 04/2015 Diabetes-Test Infos: www.mued.de Blutspenden werden auf Diabetes untersucht, das mit 8 % in der Bevölkerung verbreitet ist. Dabei werden

Mehr

Nicht kopieren. Der neue Report von: Stefan Ploberger. 1. Ausgabe 2003

Nicht kopieren. Der neue Report von: Stefan Ploberger. 1. Ausgabe 2003 Nicht kopieren Der neue Report von: Stefan Ploberger 1. Ausgabe 2003 Herausgeber: Verlag Ploberger & Partner 2003 by: Stefan Ploberger Verlag Ploberger & Partner, Postfach 11 46, D-82065 Baierbrunn Tel.

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Jedes Umfeld hat seinen perfekten Antrieb. Individuelle Antriebslösungen für Windenergieanlagen.

Jedes Umfeld hat seinen perfekten Antrieb. Individuelle Antriebslösungen für Windenergieanlagen. Jedes Umfeld hat seinen perfekten Antrieb. Individuelle Antriebslösungen für Windenergieanlagen. 1 2 3 3 4 1 2 3 4 Generator Elektromechanische Bremse Azimutantriebe Rotorlock-Antrieb (im Bild nicht sichtbar)

Mehr

Kulturelle Evolution 12

Kulturelle Evolution 12 3.3 Kulturelle Evolution Kulturelle Evolution Kulturelle Evolution 12 Seit die Menschen Erfindungen machen wie z.b. das Rad oder den Pflug, haben sie sich im Körperbau kaum mehr verändert. Dafür war einfach

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Ist Excel das richtige Tool für FMEA? Steve Murphy, Marc Schaeffers

Ist Excel das richtige Tool für FMEA? Steve Murphy, Marc Schaeffers Ist Excel das richtige Tool für FMEA? Steve Murphy, Marc Schaeffers Ist Excel das richtige Tool für FMEA? Einleitung Wenn in einem Unternehmen FMEA eingeführt wird, fangen die meisten sofort damit an,

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN

PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN Karlsruhe, April 2015 Verwendung dichte-basierter Teilrouten Stellen Sie sich vor, in einem belebten Gebäude,

Mehr

Technical Note Nr. 101

Technical Note Nr. 101 Seite 1 von 6 DMS und Schleifringübertrager-Schaltungstechnik Über Schleifringübertrager können DMS-Signale in exzellenter Qualität übertragen werden. Hierbei haben sowohl die physikalischen Eigenschaften

Mehr

Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut wird, dass sie für sich selbst sprechen können Von Susanne Göbel und Josef Ströbl

Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut wird, dass sie für sich selbst sprechen können Von Susanne Göbel und Josef Ströbl Persönliche Zukunftsplanung mit Menschen, denen nicht zugetraut Von Susanne Göbel und Josef Ströbl Die Ideen der Persönlichen Zukunftsplanung stammen aus Nordamerika. Dort werden Zukunftsplanungen schon

Mehr

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de

Wachstum 2. Michael Dröttboom 1 LernWerkstatt-Selm.de 1. Herr Meier bekommt nach 3 Jahren Geldanlage 25.000. Er hatte 22.500 angelegt. Wie hoch war der Zinssatz? 2. Herr Meiers Vorfahren haben bei der Gründung Roms (753. V. Chr.) 1 Sesterze auf die Bank gebracht

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit

sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit sondern alle Werte gleich behandelt. Wir dürfen aber nicht vergessen, dass Ergebnisse, je länger sie in der Vergangenheit liegen, an Bedeutung verlieren. Die Mannschaften haben sich verändert. Spieler

Mehr

Partitionieren in Vista und Windows 7/8

Partitionieren in Vista und Windows 7/8 Partitionieren in Vista und Windows 7/8 Windows Vista und Windows 7 können von Haus aus Festplatten partitionieren. Doch die Funktion ist etwas schwer zu entdecken, denn sie heißt "Volume verkleinern".

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall

Aufgaben. 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen. Der High-Fall Aufgaben 2.1. Leiten Sie die Formeln (9) und (10) her! Vorbetrachtungen I. Die open-collector-gatter auf der "in"-seite dürfen erst einen High erkennen, wenn alle open-collector-gatter der "out"-seite

Mehr

Im Bereich der Körperpflege (Waschen, Duschen, Baden usw.) Im Bereich der Ernährung (Aufnahme oder Zubereitung der Nahrung)

Im Bereich der Körperpflege (Waschen, Duschen, Baden usw.) Im Bereich der Ernährung (Aufnahme oder Zubereitung der Nahrung) P f l e g e d i e n s t Plus LUX HELIOS 72474 Winterlingen, Ambulante Pflege, hauswirtschaftliche Versorgung und Betreuung Häufige Fragen und Antworten an unseren Pflegedienst Wer erhält Leistungen aus

Mehr

6 Schulungsmodul: Probenahme im Betrieb

6 Schulungsmodul: Probenahme im Betrieb 6 Schulungsmodul: Probenahme im Betrieb WIEDNER Wie schon im Kapitel VI erwähnt, ist die Probenahme in Betrieben, die Produkte nach dem Lebensmittel- und Futtermittelgesetzbuch herstellen oder in den Verkehr

Mehr

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 S n 1250 1244, 085 1214, 075 1220, 136 1226, 167 Nach einem Jahr beträgt der Schuldenstand ca. 1177,09. Gymnasium Leichlingen 10a M Lö 2007/08.2 2/2 Aufgaben/Lösungen der Klassenarbeit Nr. 4 von Fr., 2008-04-25 2 45 Aufgabe 1: Die A-Bank bietet Kredite zu einem Zinssatz von 6% pro Jahr an. Ein privater Keditvermittler

Mehr

Projektmanagement in der Spieleentwicklung

Projektmanagement in der Spieleentwicklung Projektmanagement in der Spieleentwicklung Inhalt 1. Warum brauche ich ein Projekt-Management? 2. Die Charaktere des Projektmanagement - Mastermind - Producer - Projektleiter 3. Schnittstellen definieren

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

Access [basics] Rechnen in Berichten. Beispieldatenbank. Datensatzweise berechnen. Berechnung im Textfeld. Reporting in Berichten Rechnen in Berichten

Access [basics] Rechnen in Berichten. Beispieldatenbank. Datensatzweise berechnen. Berechnung im Textfeld. Reporting in Berichten Rechnen in Berichten Berichte bieten die gleichen Möglichkeit zur Berechnung von Werten wie Formulare und noch einige mehr. Im Gegensatz zu Formularen bieten Berichte die Möglichkeit, eine laufende Summe zu bilden oder Berechnungen

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Dauermagnetgeneratoren (DMG)

Dauermagnetgeneratoren (DMG) Dauermagnetgeneratoren (DMG) Was ist ein DMG? B e i e i n e m Dauermagnetgenerator handelt es sich um einen Synchrongenerator, bei dem die normalerweise im Rotor stattfindende Erregerwicklung durch e i

Mehr

A1.7: Entropie natürlicher Texte

A1.7: Entropie natürlicher Texte A1.7: Entropie natürlicher Texte Anfang der 1950er Jahre hat Claude E. Shannon die Entropie H der englischen Sprache mit einem bit pro Zeichen abgeschätzt. Kurz darauf kam Karl Küpfmüller bei einer empirischen

Mehr

Umfrage der Klasse 8c zum Thema "Smartphones"

Umfrage der Klasse 8c zum Thema Smartphones Umfrage der Klasse 8c zum Thema "Smartphones" Gruppe Aylin, Antonia, Lisa, Vanessa Wir haben in den Wochen der Projektarbeit eine Umfrage gemacht, bei der wir insgesamt 25 Leute befragt haben. Zuvor hatten

Mehr