Deskriptive Statistik

Größe: px
Ab Seite anzeigen:

Download "Deskriptive Statistik"

Transkript

1 Deskriptive Statistik In der beschreibenden Statistik werden Methoden behandelt, mit deren Hilfe man Daten übersichtlich darstellen und kennzeichnen kann. Die Urliste (=Daten in der Reihenfolge ihrer Erhebung) ist meist umfangreich und läßt kaum Aussagen über die Struktur der Population zu. Daher müssen die Werte geordnet und verdichtet werden. Tabellen und graphische Darstellungen Eine Form der Aufbereitung von umfangreichem Datenmaterial besteht darin, Untersuchungseinheiten mit gleichen oder ähnlichen Merkmalsausprägungen zu Klassen zusammenzufassen und festzustellen, wieviele Einheiten auf jede Klasse entfallen. So entsteht eine Häufigkeitsverteilung, die tabellarisch und graphisch dargestellt werden kann. Die Anzahl (n i, i=,..,k, k n) der Beobachtungen in einer Klasse wird als absolute Häufigkeit (Besetzungszahl) in dieser Klasse bezeichnet. Nach Division durch die Gesamtzahl der Beobachtungen (n) erhält man die relative Häufigkeit (h i ) einer Klasse. Während bei nominalen Daten die Reihenfolge der Klassen keine Rolle spielt, muß bei allen höheren Meßniveaus die Rangordnung der Klassen beachtet werden. Bei nominalen oder ordinalen Daten ergeben sich zumeist natürliche Klassengrenzen, doch bei größerem metrischen Datenmaterial ist es notwendig, eine Klasseneinteilung vorzunehmen. Klasseneinteilung, Klassierung Die Klasseneinteilung ist notwendig, um eine Überbewertung des Zufallseinflusses zu vermeiden und die Struktur (Verteilungstyp, Gesetzmäßigkeit) der Beobachtungsreihe besser erkennen zu können. Die Wahl einer geeigneten Klasseneinteilung ist stets willkürlich, aber es sollten einige Regeln beachtetet werden:. Die Klasseneinteilung muß alle Beobachtungswerte umfassen (also in der ersten Version auch extreme Werte).. Die Klassengrenzen sind so zu wählen, dass die Beobachtungswerte eindeutig den Klassen zugeordnet werden können, z.b. sollen die Klassenenden auf Werte, die meßtechnisch nicht vorkommen, fallen (etwa eine Dezimale mehr als gemessen wird) oder man verwendet halboffene Klassen (z.b. von 3 bis unter 40). Man wähle gleiche Klassenbreiten. 3. Die Klassenmitte repräsentiert die übrigen Meßwerte der Klasse. 4. Je kleiner die Klassenanzahl umso größer die Klassenbreite und umso größer ist der Informationsverlust. Je größer die Klassenanzahl, umso mehr kommt die nichtinteressierende Wirkung von Zufallseinflüssen zur Geltung. Die Erfahrung führt zu folgenden Faustregeln: k n, k 5log 0 n (k: Klassenanzahl, n: Anzahl der Beobachtungswerte) Statistische Datenanalyse am PC Andrea Berghold

2 Die gebräuchlichsten graphischen Darstellungsformen sind: Stab-, Balkendiagramm (bar chart) Kreisdiagramm (pie chart) Histogramm Häufigkeitspolygon Stamm- und Blatt Darstellung (stem and leaf plot) Beim Stabdiagramm ist die Höhe der Stäbe proportional zu den Besetzungszahlen bzw. rel. Häufigkeiten in den einzelnen Klassen. Breite und Abstand spielen keine Rolle. Es eignet sich für qualitative, ordinale und quantitativ diskrete Merkmale (z.b. Blutgruppe, Schulnoten, Anzahl kariöser Zähne bei Volksschulkindern) Das Kreisdiagramm (als spezielles Flächendiagramm) wird in Segmente proportional zu den beobachteten Anzahlen (rel. Häufigkeiten) zerlegt. Histogramme müssen flächentreu sein - d.h. die Fläche (und nicht die Höhe) muß proportional der Häufigkeit n i bzw.h i sein. Daher kann nur bei konstanter Klassenbreite (Δx) n i bzw. h i als Ordinate der Rechtecke verwendet werden. Die Polygondarstellung verwendet man meist, wenn mehrere Häufigkeitsverteilungen verschiedener Gruppen in einem gemeinsamen Diagramm verglichen werden sollen. Stamm- und Blatt- Darstellung: Das Histogramm stellt die Häufigkeit für alle Werte innerhalb einer bestimmten Klasse dar. Demzufolge kann man die Häufigkeit eines Einzelwertes dieser Klasse nicht mehr erkennen. Eine graphische Repräsentation der Häufigkeitsverteilung ohne diesen Informationsverlust ist die Stamm- und Blatt-Darstellung (stem and leaf plot). Im Stamm werden jene Ziffern, welche die Klasseneinteilung repräsentieren, eingetragen und im Blatt erfolgt die Eintragung der Ziffern der nächsten Stelle der Größe nach. Statistische Datenanalyse am PC Andrea Berghold

3 Kenngrößen Kenngrößen dienen dazu, die Datenmenge zu einigen wenigen Zahlen zu komprimieren, welche bestimmte Eigenschaften der Daten möglichst gut beschreiben. Wir wollen die mittlere Tendenz der Daten die Streuung der Daten um die mittlere Tendenz charakterisieren. Maßzahlen der Lage Lagemaßzahlen beschreiben zentrale Eigenschaften einer Verteilung. Sie charakterisieren das Zentrum der Häufigkeitsverteilung, also den Wert (Ort) mit der größten Häufigkeit bzw. Wahrscheinlichkeit des Auftretens. Darüber hinaus werden durch Lagemaßzahlen Positionsmerkmale (Ordnungsstatistiken) einer der Größe nach geordneten Datenmenge wiedergegeben (z.b. die Position in der Zahlenreihe, bis zu welcher 90 % der Beobachtungswerte auftreten). Die Statistik braucht eine Reihe verschieden definierter Lagemaßzahlen, um der Vielfalt der Verteilungen statistischer Datenmengen gerecht zu werden. Arithmetisches Mittel (mean) Gegeben sei eine Stichprobe x,x,...,x n vom Umfang n. Das arithmetische Mittel ist definiert als x = n n x i i= Nachteile des arithmetischen Mittels: Es gibt extremen Werten zu viel Gewicht, und ist daher nur verwendbar, wenn man es mit eingipfeligen nicht allzu schiefen Verteilungen zu tun hat. Die errechnete Durchschnittszahl hat im Falle diskreter Merkmale keine Entsprechung in der Wirklichkeit. (Beispiel: Die durchschnittliche Zahl der Verletzten auf der Autobahn an einem Urlaubswochenende beträgt 03.5 Personen). Median (median) Der Median oder Zentralwert ist die mittlere Beobachtung der Daten xi, i=,,...,n, die der Größe nach sortiert wurden x x x3... xn.er hat die Eigenschaft, dass mindestens 50% der Meßwerte kleiner oder gleich dem Median ~ x sind. Statistische Datenanalyse am PC Andrea Berghold 3

4 Für ungerades n ~ x = x( ( n+ ) / ) Für gerades n ~ x = x( n / ) + x( n / + ) ( ) Vorteile des Medians: Der Median ist unempfindlich gegenüber extremen Werten. Er eignet sich als Lokationsmaß für schiefe Verteilungen und ordinal skalierte Daten. α-quantil Der Median ist lediglich ein Spezialfall aus einer Familie von Kenngrößen, die auf der Rangordnung der Daten beruhen - die Quantile. Ein α-quantil x α ist derart definiert, dass mindestens α% der Meßwerte kleiner oder gleich diesem Wert x α sind. Die Berechnung erfolgt über x α = x ( k ), falls n α keine ganze Zahl ist (k=int(n α )+) x = α ( x ( k ) + x( k+ ) ), falls n α eine ganze Zahl ist (k=n α ) Spezielle α-quantile:.quartil (α = 0.5),.Quartil oder Median, 3.Quartil (α = 0.75), Perzentile (Fraktile) Modalwert (mode) Bei nominalskalierten Merkmalen ist der Modalwert x mod der einzige anzuwendende Kennwert. Er ist definiert als der Wert, der am häufigsten in der Meßwertreihe vorkommt. Bei quantitativen Merkmalswerten wird der Modalwert durch die Klassenmitte der am dichtesten besetzten Klasse repräsentiert. Er eignet sich für schiefe Häufigkeitsverteilungen oder zur Charakterisierung von mehrgipfeligen Verteilungen (bimodal, multimodal). Statistische Datenanalyse am PC Andrea Berghold 4

5 Beispiele einiger Maßzahlen der Lage und der Streuung (SPSS-Output entstanden durch Analysieren Deskriptive Statistiken ExplorativeDatenanalyse... ) Univariate Statistiken ZUNAHME GRUPPE Kontroll- Gruppe Mittelwert 95% Konfidenzintervall des Mittelwerts Untergrenze Obergrenze Standardf Statistik ehler 399,5385 0,90 375,767 43,3099 Therapie - Gruppe 5% getrimmtes Mittel Median Varianz Standardabweichung Minimum Maximum Spannweite Interquartilbereich Schiefe Kurtosis Mittelwert 95% Konfidenzintervall des Mittelwerts Untergrenze Obergrenze 399, , ,436 39, ,00 475,00 50,00 50,0000,043,66,9,9 36,3333 6,698 3, ,894 5% getrimmtes Mittel Median Varianz Standardabweichung Minimum Maximum Spannweite Interquartilbereich Schiefe Kurtosis 35,859 3, ,754 3,839 68,00 395,00 7,00 36,7500,4,47 -,305,98 Zulässige Lagemaße bei den verschiedenen Skalenniveaus: Skalenniveau Nominalskala Ordinalskala Metrische Skalen zulässige Lage-Kenngrößen Modalwert Modalwert, Median Modalwert, Median, Mittelwert Statistische Datenanalyse am PC Andrea Berghold 5

6 Maßzahlen der Streuung Durch Mittelwerte allein läßt sich eine Datenmenge nicht ausreichend charakterisieren, da sie keine Auskunft geben, wie die einzelnen Werte sich um den Mittelwert verteilen. Wie bei den Lagemaßen sind in der Statistik auch verschiedene Streuungsmaße üblich, um die unterschiedlichen Skalen und Verteilungen von Daten ausreichend gut beschreiben zu können. Spannweite (range) Das einfachste Maß für die Streuung ist die Spannweite, die Differenz aus dem größten und kleinsten Meßwert. Sie ist für kleine Proben brauchbar, wird aber durch extreme Werte sehr stark beeinflußt. R = Maximum - Minimum = x n x Varianz (variance) und Streuung (standard deviation) Die Varianz s gibt die durchschnittliche, quadrierte Abweichung der Meßwerte vom arithmetischen Mittel wieder. n s = ( x i x) n i= Die Standardabweichung: s = s Die Standardabweichung eignet sich wesentlich besser zur Einschätzung der Variabilität eines Merkmals als s, da sie die gleiche Dimension wie die Beobachtungen hat. Auch diese Maße werden durch Ausreißer beeinflußt. Interquartilsabstand (interquartile range) Eine weitere Kennzahl zur Beschreibung der Variabilität um den zentralen Wert ist der Interquartilsabstand IQR. Er ist die Differenz zwischen dem 75%-Quantil (3.Quartil) und dem 5%-Quantil (.Quartil). In diesem Bereich des IQR liegen somit 50% der Meßwerte. IQR = x 0 x,75 0,5 Der IQR ist gegenüber extremen Werten unempfindlich. Eine graphische Darstellung für den Median, die Spannweite und den Interquartilsabstand (5- Zahlen-Zusammenfassung) ist der Box-and-Whiskers Plot. Ausgehend von dieser Konstruktion gibt es zahlreiche Modifikationen. In SPSS ist folgender Boxplot realisiert. Die untere Grenze der Box stellt das 5% Quantil, die obere das 75% Quantil dar. Die Linien (whiskers) reichen bis zu den Werten, die innerhalb x IQR (bzw. x IQR) liegen. Gibt es Werte außerhalb dieser Grenze, Statistische Datenanalyse am PC Andrea Berghold 6

7 so werden sie bis x IQR (bzw. x IQR) durch O (outliers) gekennzeichnet. Werte, die diese Grenzen übersteigen, gelten als weit außerhalb und werden mit * (extremes) bezeichnet. * x > x IQR O x > x IQR x x IQR oder x max x 0.75 x 0.5 x 0.5 x x IQR oder x min O x < x IQR * x < x IQR Schematische Darstellung eines Boxplots Der Boxplot eignet sich besonders gut für den visuellen Vergleich mehrerer Meßwertreihen. 6 5 Einsekundenkapazität in l 4 3 Geschlecht weiblich 0 N = Jahre Jahre Jahre männlich Altersgruppen Statistische Datenanalyse am PC Andrea Berghold 7

8 Variationskoeffizient: Ob die Streuung von Meßwerten als stark oder gering anzusehen ist, erweist sich oft erst, wenn man die Streuung im Verhältnis zum Mittelwert betrachtet. Der Quotient Vk = s x wird als Variationskoeffizient bezeichnet. Er wird häufig in Prozent angegeben. In der Praxis interpretiert man Vk bis zu 0% als geringe Variabilität, zwischen 0% und 5% als normal und über 5% als starke Streuung des Beobachtungsmaterials. Er ist gegen Ausreißer anfällig. Er wird zum Vergleich von Streuungen verschiedener Meßreihen verwendet (ist unabhängig von der gewählten Einheit). Skalenniveau Nominalskala Ordinalskala Metrische Skalen zulässige Streuungskenngrößen keine Spannweite, Quartilsabstand Spannweite, Quartilsabstand, Standardabweichung, Variationskoeffizient Zur deskriptiven Statistik existieren auch mehrere Web Applikationen, die eine anschauliche Darstellung der Methodik zeigen: z.b. JUMBO Münster: Statistische Datenanalyse am PC Andrea Berghold 8

9 Verwendung von SPSS in der Deskriptiven Analyse Metrisches Merkmal: Häufigkeiten: Mit dem Befehl Häufigkeiten... erfahren wir, wie oft eine Ausprägung eines zu untersuchenden Merkmals vorkommt. Zusätzlich können wir im Untermenü Statistik... zulässige Kenngrößen für dieses Merkmal auswählen und im Untermenü Diagramme... ein Histogramm auswählen. Deskriptive Statistik: (nur bei metrischen Merkmalen anwenden!) Mit dem Befehl Deskriptive Statistiken... aus dem Menü Analysieren DeskriptiveStatistiken kann man selbst auswählen, welche Kennzahlen für eine Variable ausgegeben werden sollen. Im Untermenü Optionen... steht zur Auswahl: Mittelwert, Summe; als Lagemaße der Streuung die Std.-Abweichung, Varianz, Spannweite, Minimum, Maximum sowie Std.-Fehler und als Maßzahlen zur Beschreibung der Verteilungsform die Kurtosis und Schiefe. Explorative Datenanalyse: Für eine deskriptive Datenanalyse eines metrischen Merkmals hält SPSS den Befehl Explorative Datenanalyse... im Menü Analysieren Deskriptive Statistiken bereit. Es werden bestimmte statistische Kennzahlen ausgegeben (siehe Beispiel Seite 5). Hier besteht außerdem die Möglichkeit die deskriptive Statistik nach einem Faktor gruppiert auszugeben. Im Beispiel auf Seite 5 wurde die Ausgabe aufgeteilt nach dem Faktor Gruppe, der Faktorstufen aufweist: Kontroll-Gruppe / Therapie-Gruppe. Grafiken: Zum Boxplot und Histogramm gelangt man über das Menü Grafiken. Ein anderer Weg führt im Zuge der Erstellung einer deskriptiven Analyse im Menü ExplorativeDatenanalyse zum Untermenü Diagramme... Hier besteht auch die Möglichkeit sich neben einem Boxplot und Histogramm ein Stengel-Blatt-Diagramm ausgeben zu lassen. Ordinales Merkmal: Häufigkeiten: Mit dem Befehl Häufigkeiten... erfahren wir, wie oft eine Ausprägung eines zu untersuchenden Merkmals vorkommt. Zusätzlich können wir im Untermenü Statistik... Statistische Datenanalyse am PC Andrea Berghold 9

10 zulässige Kenngrößen für dieses Merkmal auswählen und im Untermenü Diagramme... ein Balken- oder ein Kreisdiagramm auswählen. Explorative Datenanalyse: Für ordinale Merkmale steht uns ebenfalls die Explorative Datenanalyse... zur Verfügung, wo wir Median und Quartilsabstand bestimmen können. Grafiken: Neben der oben beschriebenen Möglichkeit über den Befehl Häufigkeiten lassen sich Boxplot, Balkendiagramm und Kreisdiagramm auch über das Menü Grafiken erstellen. Nominales Merkmal Häufigkeiten: Mit dem Befehl Häufigkeiten... erfahren wir die absoluten und relativen Häufigkeiten der einzelnen Ausprägungen des nominalen Merkmals und falls gewünscht ein Balken- oder Kreisdiagramm. Kreuztabellen Wollen wir nominale Merkmale (oder auch ordinale Merkmale mit wenigen Ausprägungen) zueinander in Beziehung setzen, so steht der Befehl Kreuztabellen zur Verfügung. Ein Merkmal ergibt die Spalten der Kreuztabelle, das. Merkmal die Zeilen. Man kann auch Prozentwerte für die Zellen anfordern. Grafiken: Neben der oben beschriebenen Möglichkeit über den Befehl Häufigkeiten lassen sich Balkenund Kreisdiagramm auch über das Menü Grafiken erstellen. Statistische Datenanalyse am PC Andrea Berghold 0

11 Kennzahlen zur Beschreibung der Verteilungsform Im folgenden werden Kennzahlen eingeführt, die als Maß für die Schiefe und die Wölbung einer eingipfeligen Verteilung herangezogen werden können. Mit Hilfe der verschiedenen Lagemaße lassen sich bereits Aussagen über die Schiefe einer eingipfeligen Verteilung treffen: Verteilungsform rechtsschief (linkssteil) linksschief (rechtssteil) symmetrisch Bedingung x > ~ x > x x < ~ x < x x = ~ x = x mod mod mod Schiefe (Skewness) Mit Hilfe des Schiefemasses g ist man nun in der Lage, durch einen einzigen Kennwert Auskunft über die Schiefe und deren Richtung zu erhalten. 3 ( xi x) n i= g = 3 ( xi x) n i= Ist g 0, so kann man davon ausgehen, dass die Meßwerte symmetrisch um x verteilt liegen. Bei linksschiefen Verteilungsformen wird g negativ, bei rechtschiefen positiv. Exzeß und Wölbung (Kurtosis) g n = n ( x x) 4 i i= ( xi x) i= Der Exzeß gibt an, ob, bei gleicher Varianz, das absolute Maximum der Verteilung größer als bei der Dichte der Normalverteilung ist. Der theoretische Wert von g für normalverteilte Merkmalswerte ist 0. Ist g > 0 (g < 0), so liegen im Zentrum der Verteilung mehr (weniger) Merkmalswerte als bei der Normalverteilung. 3 Statistische Datenanalyse am PC Andrea Berghold

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung II Daten Deskription Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de IBE,

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

3 Deskriptive Statistik in R (univariat)

3 Deskriptive Statistik in R (univariat) (univariat) Markus Burkhardt (markus.burkhardt@psychologie.tu-chemnitz.de) Inhalt 3.1 Ziel... 1 3.2 Häufigkeiten... 1 3.3 Deskriptive Kennziffern I Lagemaße... 2 3.4 Streuungsmaße... 5 3.5 Standardisierung:

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung

Der Internetdienst für Ihre Online-Umfragen. Leitfaden statistische Auswertung Der Internetdienst für Ihre Online-Umfragen Leitfaden statistische Auswertung Weitere in dieser Reihe bei 2ask erschienene Leitfäden Allgemeiner Leitfaden zur Fragebogenerstellung Sie möchten einen Fragebogen

Mehr

Grundbegriffe der Beschreibenden Statistik

Grundbegriffe der Beschreibenden Statistik Grundbegriffe der Beschreibenden Statistik 1. Datenmatrix und Messniveaus...3 1.1. Merkmale, Datenmatrix, uni- und multivariate Analysen...3 1.2. Messniveaus (Skalentypen)...4 2. Ausgewählte Verfahren

Mehr

Statistik mit Excel 2010. Themen-Special. Peter Wies. 1. Ausgabe, September 2011 W-EX2010S

Statistik mit Excel 2010. Themen-Special. Peter Wies. 1. Ausgabe, September 2011 W-EX2010S Statistik mit Excel 2010 Peter Wies 1. Ausgabe, September 2011 Themen-Special W-EX2010S 3 Statistik mit Excel 2010 - Themen-Special 3 Statistische Maßzahlen In diesem Kapitel erfahren Sie wie Sie Daten

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln

Häufigkeitstabellen. Balken- oder Kreisdiagramme. kritischer Wert für χ2-test. Kontingenztafeln Häufigkeitstabellen Menüpunkt Data PivotTable Report (bzw. entsprechendes Icon): wähle Data Range (Zellen, die die Daten enthalten + Zelle mit Variablenname) wähle kategoriale Variable für Spalten- oder

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

IBM SPSS Statistics Base 21

IBM SPSS Statistics Base 21 IBM SPSS Statistics Base 21 Hinweis: Lesen Sie zunächst die allgemeinen Informationen unter Hinweise auf S. 343, bevor Sie dieses Informationsmaterial sowie das zugehörige Produkt verwenden. Diese Ausgabe

Mehr

UNIVARIATE DATENANALYSE STATISTISCHE MASSZAHLEN MODUL 7 PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK)

UNIVARIATE DATENANALYSE STATISTISCHE MASSZAHLEN MODUL 7 PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) INSTITUT FÜR ERZIEHUNGSWISSENSCHAFT - UNIVERSITÄT SALZBURG PROSEMINAR ANALYSE UND DARSTELLUNG VON DATEN I (DESKRIPTIVE STATISTIK) GÜNTER HAIDER WS 1997/98 MODUL 7 UNIVARIATE DATENANALYSE STATISTISCHE MASSZAHLEN

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/31 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Übung Statistik I Statistik mit Stata SS07-14.05.2007 5. Dokumentation der Datenanalyse, Datentransformationen II und Univariate Statistiken II

Übung Statistik I Statistik mit Stata SS07-14.05.2007 5. Dokumentation der Datenanalyse, Datentransformationen II und Univariate Statistiken II Übung Statistik I Statistik mit Stata SS07-14.05.2007 5. Dokumentation der Datenanalyse, Datentransformationen II und Univariate Statistiken II Andrea Kummerer (M.A.) Oec R. I-53 Sprechstunde: Di. 15-16

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Wahrscheinlichkeitsrechnung anhand realer Situationen

Wahrscheinlichkeitsrechnung anhand realer Situationen MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Wahrscheinlichkeitsrechnung anhand realer Situationen Paula Lagares Barreiro 1 Frederico Perea Rojas-Marcos

Mehr

Multivariate and Geostatistical Data Analysis. Multivariate and Geostatistical Data Analysis

Multivariate and Geostatistical Data Analysis. Multivariate and Geostatistical Data Analysis Multivariate and Geostatistical Data Analysis Multivariate and Geostatistical Data Analysis c 2012 Helmut Schaeben Geomathematics and Geoinformatics Technische Universität Bergakademie Freiberg, Germany

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen.

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen. 5 Statistik mit SPSS Die Durchführung statistischer Auswertungen erfolgt bei SPSS in 2 Schritten, der Auswahl der geeigneten Methode, bestehend aus Prozedur Variable Optionen und der Ausführung. 5.1 Variablen

Mehr

Institut für Soziologie Dr. Christian Ganser. Methoden 2. Einführung, grundlegende PASW-Bedienung, univariate Statistik

Institut für Soziologie Dr. Christian Ganser. Methoden 2. Einführung, grundlegende PASW-Bedienung, univariate Statistik Institut für Soziologie Dr. Methoden 2 Einführung, grundlegende PASW-Bedienung, univariate Statistik Programm Wiederholung zentraler Aspekten der Übungen Literatur zur Veranstaltung Erste Schritte mit

Mehr

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015

SFB 833 Bedeutungskonstitution. Kompaktkurs. Datenanalyse. Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 SFB 833 Bedeutungskonstitution Kompaktkurs Datenanalyse Projekt Z2 Tübingen, Mittwoch, 18. und 20. März 2015 Messen und Skalen Relativ (Relationensystem): Menge A von Objekten und eine oder mehrere Relationen

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Beschreibende Statistik

Beschreibende Statistik Beschreibende Statistik Daten graphisch darstellen 21. April 2009 Dr. Katja Krüger Universität Paderborn Grundlagen der Schulmathematik SoSe 2009 1 Daten graphisch darstellen warum? Die rasche und sichere

Mehr

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8

Box-and-Whisker Plot -0,2 0,8 1,8 2,8 3,8 4,8 . Aufgabe: Für zwei verschiedene Aktien wurde der relative Kurszuwachs (in % beobachtet. Aus den jeweils 20 Quartaldaten ergaben sich die folgenden Box-Plots. Box-and-Whisker Plot Aktie Aktie 2-0,2 0,8,8

Mehr

Deskriptive Statistik Angabe statistischer Maßzahlen und ihre Darstellung in Tabellen und Grafiken

Deskriptive Statistik Angabe statistischer Maßzahlen und ihre Darstellung in Tabellen und Grafiken ÜBERSICHTSARBEIT Deskriptive Statistik Angabe statistischer Maßzahlen und ihre Darstellung in Tabellen und Grafiken Teil 7 der Serie zur Bewertung wissenschaftlicher Publikationen Albert Spriestersbach,

Mehr

DATEN- ANALYSE. Marcus Hudec Christian Neumann. mit Excel. Institut für Statistik der Universität Wien

DATEN- ANALYSE. Marcus Hudec Christian Neumann. mit Excel. Institut für Statistik der Universität Wien DATEN- ANALYSE mit Excel Marcus Hudec Christian Neumann Institut für Statistik der Universität Wien Vorwort Wir leben im Jahrhundert der Statistik! lautet der Leitsatz von STAT 4 U, dem Projekt zur Vermittlung

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

WEBINAR@LUNCHTIME THEMA: " SCHICKE BERICHTE SCHNELL ERSTELLT MIT DEM SAS ENTERPRISE GUIDE" HELENE SCHMITZ

WEBINAR@LUNCHTIME THEMA:  SCHICKE BERICHTE SCHNELL ERSTELLT MIT DEM SAS ENTERPRISE GUIDE HELENE SCHMITZ WEBINAR@LUNCHTIME THEMA: " SCHICKE BERICHTE SCHNELL ERSTELLT MIT DEM SAS ENTERPRISE GUIDE" HELENE SCHMITZ EBINAR@LUNCHTIME HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh SAS

Mehr

Kreuztabellenanalyse -Zusammenhangsmaße

Kreuztabellenanalyse -Zusammenhangsmaße Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Kreuztabellenanalyse -Zusammenhangsmaße 14. Dezember 2007 Anja Hall, Bundesinstitut für Berufsbildung, AB 2.2:

Mehr

Einführung in SPSS. 1. Die Datei Seegräser

Einführung in SPSS. 1. Die Datei Seegräser Einführung in SPSS 1. Die Datei Seegräser An 25 verschiedenen Probestellen wurde jeweils die Anzahl der Seegräser pro m 2 gezählt und das Vorhandensein von Seeigeln vermerkt. 2. Programmaufbau Die wichtigsten

Mehr

Taschenbuch Null-Fehler-Management Umsetzung von Six Sigma Herausgegeben von Franz J. Brunner

Taschenbuch Null-Fehler-Management Umsetzung von Six Sigma Herausgegeben von Franz J. Brunner Johann Wappis, Berndt Jung Taschenbuch Null-Fehler-Management Umsetzung von Six Sigma Herausgegeben von Franz J. Brunner ISBN-10: 3-446-41373-1 ISBN-13: 978-3-446-41373-3 Inhaltsverzeichnis Weitere Informationen

Mehr

Der Chi Quadrat Test nicht nur für die digitalen Ziffernanalyse geeignet

Der Chi Quadrat Test nicht nur für die digitalen Ziffernanalyse geeignet Der Chi Quadrat Test nicht nur für die digitalen Ziffernanalyse geeignet 1. Einleitung Seit Anfang 2002 finden elektronische Betriebsprüfungen auf der Grundlage der Grundsätze zum Datenzugriff und zur

Mehr

Statistische Auswertungsverfahren mit SPSS. Prof. Dr. Andrea Raab Fachhochschule Ingolstadt

Statistische Auswertungsverfahren mit SPSS. Prof. Dr. Andrea Raab Fachhochschule Ingolstadt Inhaltliche Übersicht Informationen zum Programm SPSS Grundlagen der Programmbedienung in SPSS Befragung und Datenerstellung Daten und Variablen Deskriptive Analysemethoden 2 Das Programmpaket SPSS für

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Grundlagen von Versuchsmethodik und Datenanalyse

Grundlagen von Versuchsmethodik und Datenanalyse Grundlagen von Versuchsmethodik und Datenanalyse Der Anfang: Hypothesen über Ursache-Wirkungs-Zusammenhänge Ursache Wirkung Koffein verbessert Kurzzeitgedächtnis Gewaltfilme führen zu aggressivem Verhalten

Mehr

Gefahrene km Anzahl der. eine Summenlinie beziehungsweise Summentreppe zur graphischen Darstellung einer Häufigkeitsverteilung geeignet? 3.

Gefahrene km Anzahl der. eine Summenlinie beziehungsweise Summentreppe zur graphischen Darstellung einer Häufigkeitsverteilung geeignet? 3. SEMINAR FÜR STATISTIK Stand 17. April 23 UNIVERSITÄT MANNHEIM Aufgabensammlung zur Veranstaltung Deskriptive Statistik 1. Aufgabe Geben Sie für die Merkmale Einkommen Haarfarbe soziale Stellung Körperlänge

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

IBM SPSS Statistics Base 22

IBM SPSS Statistics Base 22 IBM SPSS Statistics Base 22 Hinweis Vor Verwendung dieser Informationen und des darin beschriebenen Produkts sollten die Informationen unter Bemerkungen auf Seite 199 gelesen werden. Produktinformation

Mehr

Einleitung 19. Teil I SPSS kennen lernen 25. Kapitel 1 In 25 Minuten zum SPSS-Profi 27

Einleitung 19. Teil I SPSS kennen lernen 25. Kapitel 1 In 25 Minuten zum SPSS-Profi 27 Inhaltsverzeichnis Einleitung 19 SPSS oder PASW oder was? 19 Über dieses Buch 20 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Törichte Annahmen über den Leser 21 Wie dieses Buch aufgebaut

Mehr

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY

5.2. Nichtparametrische Tests. 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY 5.2. Nichtparametrische Tests 5.2.1. Zwei unabhängige Stichproben: U- Test nach MANN- WHITNEY Voraussetzungen: - Die Verteilungen der beiden Grundgesamtheiten sollten eine ähnliche Form aufweisen. - Die

Mehr

SPSS-Skriptum. 1. Vorbereitungen für die Arbeit mit SPSS (im Seminar)

SPSS-Skriptum. 1. Vorbereitungen für die Arbeit mit SPSS (im Seminar) Die folgenden Erklärungen und Abbildungen sollen den Umgang mit SPSS im Rahmen des POK erleichtern. Diese beschreiben nicht alle Möglichkeiten, die SPSS bietet, sondern nur die Verfahren, die im Seminar

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Hinweise zur Leseprobe:

Hinweise zur Leseprobe: Hinweise zur Leseprobe: Kompetenzen: Auf den Einstiegs- und Testseiten wird mithilfe von Symbolen auf die besonders geförderten prozessbezogenen Kompetenzen verwiesen: M Modellieren W Werkzeuge nutzen

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

SPSS 16 für b ummies

SPSS 16 für b ummies Felix Brosius SPSS 16 für b ummies WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Über den Autor 7 Einführung 21 Über dieses Buch 21 Konventionen in diesem Buch 22 Was Sie nicht lesen müssen

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

Johann Wappis. Berndt Jung. Null-Fehler-Management. Umsetzung von Six Sigma. 4., überarbeitete und erweiterte Auflage

Johann Wappis. Berndt Jung. Null-Fehler-Management. Umsetzung von Six Sigma. 4., überarbeitete und erweiterte Auflage Johann Wappis Berndt Jung Null-Fehler-Management Umsetzung von Six Sigma 4., überarbeitete und erweiterte Auflage Praxisreihe Qualitätswissen Herausgegeben von Franz J. Brunner HANSER Inhalt Vorwort V

Mehr

Einführung in elementare Statistik und Wahrscheinlichkeitsrechnung. Bodo Werner mailto:werner@math.uni-hamburg.de

Einführung in elementare Statistik und Wahrscheinlichkeitsrechnung. Bodo Werner mailto:werner@math.uni-hamburg.de Einführung in elementare Statistik und Wahrscheinlichkeitsrechnung Bodo Werner mailto:werner@math.uni-hamburg.de 17. Juni 2009 2 Inhaltsverzeichnis 1 Vorwort 7 1.1 Internet-Seiten....................................

Mehr

Einführende Informationen zu IBM SPSS Statistics für Windows. Andrea Berghold

Einführende Informationen zu IBM SPSS Statistics für Windows. Andrea Berghold Einführende Informationen zu IBM SPSS Statistics für Windows Andrea Berghold INHALT Allgemeines... 3 Zugriff auf IBM SPSS Statistics... 3 SPSS Dateitypen:... 3 Starten von IBM SPSS Statistics... 4 Daten-Editor

Mehr

Taschenbuch Null-Fehler-Management

Taschenbuch Null-Fehler-Management Taschenbuch Null-Fehler-Management Umsetzung von Six Sigma von Johann Wappis, Berndt Jung, Franz J. Brunner 3., überarbeitete Auflage Hanser München 2010 Verlag C.H. Beck im Internet: www.beck.de ISBN

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Eine Einführung in SPSS

Eine Einführung in SPSS Eine Einführung in SPSS Aufbau von SPSS 14 Bemerkung: SPSS 14 kann in den Subzentren in der Kopernikusgasse installiert werden, falls dies noch nicht geschehen ist. Dazu öffnet man den Application Explorer

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Anwendung von Statistik in Excel Deskriptive Statistik und Wirtschaftsstatistik

Anwendung von Statistik in Excel Deskriptive Statistik und Wirtschaftsstatistik Anwendung von Statistik in Excel Deskriptive Statistik und Wirtschaftsstatistik Wintersemester 08/09 Kai Schaal Universität zu Köln Organisatorisches und Einleitung (1) Was, wann, wo? Anwendung von Statistik

Mehr

Datenanalyse aus einer unklassierten Häufigkeitstabelle

Datenanalyse aus einer unklassierten Häufigkeitstabelle Datenanalyse aus einer unklassierten Häufigkeitstabelle Worum geht es in diesem Modul? Häufigkeitstabelle Stabdiagramm Die empirische Verteilungsfunktion Quantile Worum geht es in diesem Modul? Nachdem

Mehr

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang,

werden können. Wenn der Benutzer zudem eine konkrete Differenz mit praktischen Konsequenzen angibt, berechnet der Assistent den Stichprobenumfang, Dieses White Paper ist Teil einer Reihe von Veröffentlichungen, welche die Forschungsarbeiten der Minitab-Statistiker erläutern, in deren Rahmen die im Assistenten der Minitab 17 Statistical Software verwendeten

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

1 Deskriptive Statistik

1 Deskriptive Statistik 1 1 Deskriptive Statistik Statistik und die von dieser Wissenschaft bereitgestellten Methoden sind stets notwendig, wenn im Rahmen empirischer Untersuchungen Daten erhoben und analysiert werden sollen.

Mehr

Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse

Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse Schätzung Lifetime Values von Spenn mit Hilfe Überlebensanalyse Einführung in das Verfahren am Beispiel Einzugsgenehmigung Überlebensanalysen o Ereignisdatenanalysen behandeln das Problem, mit welcher

Mehr

Streuungsmaße. Grundbegriffe

Streuungsmaße. Grundbegriffe Grundbegriffe Untersuchungseinheiten U,...,U n Merkml X Urliste x,...,x n geordnete Urliste x (),...,x (n) Es gilt i.llg.: xi x() i, i, Κ, n In einer westdeutschen Großstdt gibt es insgesmt drei Träger

Mehr

7 Ausreißer Erkennen, Interpretieren und Umgehen

7 Ausreißer Erkennen, Interpretieren und Umgehen 7 Ausreißer Erkennen, Interpretieren und Umgehen Das unscheinbare Ausreißerproblem gilt als so alt wie die Statistik selbst, birgt es doch in sich das Risiko, die Robustheit statistischer Verfahren massiv

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Performance Messungen

Performance Messungen Performance Messungen 1 Einordnung titativ iv Quan Qualitat Kontrollierte Eperimente mit Probanden Fragebög en 3 Think Aloud Protokolle Mensch Computer Technisch h h Interview Fallstudien Zeitreihen analysen

Mehr

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav Beispiel für eine multivariate Varianzanalyse () Daten: POKIV_Terror_V12.sav Es soll überprüft werden, inwieweit das ATB-Syndrom (Angst vor mit den drei Subskalen affektive Angst von, Terrorpersistenz,

Mehr

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik)

Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) 2 3 Klausur-Nr = Sitzplatz-Nr Prüfung zu Modul 26 (BA Bw) bzw. 10 (BA IB) (Wirtschaftsstatistik) Klausurteil 1: Beschreibende Statistik BeStat-1 (7 ) n = 400 Personen wurden gefragt, wie viele Stück eines

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1

Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Prof. Dr. P. von der Lippe Statistik I NK SS 2002 Seite 1 Aufgabe 1 a) BWL-Student S hat von seinem Lieblingsonkel 10.000 geschenkt bekommen mit der Auflage damit etwas Vernünftiges zu machen. Nachdem

Mehr

Intelligente Datenanalyse

Intelligente Datenanalyse Intelligente Datenanalyse Vorlesungsskript Christian Borgelt 20. Oktober 2004 Institut für Wissens- und Sprachverarbeitung Otto-von-Guericke-Universität Magdeburg Universitätsplatz 2, D-39106 Magdeburg

Mehr

Untersuchung ausgewählter sozioökonomischer Probleme unter Anwendung von Methoden der deskriptiven und induktiven Statistik

Untersuchung ausgewählter sozioökonomischer Probleme unter Anwendung von Methoden der deskriptiven und induktiven Statistik Semesterarbeit Untersuchung ausgewählter sozioökonomischer Probleme unter Anwendung von Methoden der deskriptiven und induktiven Statistik Semesterarbeit im Fach Stochastik und Induktive Statistik im Fachbereich

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr