Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse

Größe: px
Ab Seite anzeigen:

Download "Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse"

Transkript

1 Skript zur Übung: Grundlagen der empirischen Sozialforschung - Datenanalyse Phasen des Forschungsprozesses Auswahl des Forschungsproblems Theoriebildung Theoretische Phase Konzeptspezifikation / Operationalisierung Bestimmung der Untersuchungsform Auswahl der Untersuchungseinheiten Datenerhebung Datenerfassung Empirische Phase Datenanalyse Deskriptive Statistik Inferenzstatistik Auswertungsphase Publikation Praktische Phase 1

2 Deskriptive Statistik (Beschreibende Statistik) Die deskriptive Statistik verfolgt das Ziel, die Untersuchungsergebnisse darzustellen. Die Darstellung erfolgt durch tabellarische und graphische Darstellungen, Maßzahlen der zentralen Tendenz, Streuungsmaße und Korrelationskoeffizienten. Die deskriptive Statistik gliedert sich in drei Bereiche auf: a. Univariate Analyse b. Bivariate Analyse c. Multivariate Analyse Inferenzstatistik (schließende bzw. analytische Statistik) Die Inferenzstatistik verfolgt das Ziel, von den Ergebnissen einer Stichprobe auf die Grundgesamtheit (Population) zu schließen. Die Inferenzstatistik prüft, in welcher Weise die Ergebnisse der deskriptiven Statistik verallgemeinert werden können. D. h., ob die Ergebnisse einer Stichprobe auf die Grundgesamtheit übertragen werden kann. 2

3 Grundbegriffe der Statistik: Untersuchungseinheit: Untersuchungseinheit ist das Objekt, an dem Messungen vorgenommen werden. Die Untersuchungseinheit, ganz allgemein auch Beobachtung oder Fall genannt, ist als Merkmalsträger das Bezugsobjekt der Forschung. (z.b. Personen, Schulen, Texte) Die Untersuchungseinheit ist die Einheit, auf die sich die Untersuchung bezieht. Variable: Variablen sind Merkmale oder Eigenschaften, die von Untersuchungseinheit zu Untersuchungseinheit variieren können. Eine Variable ist die Eigenschaft der jeweiligen Untersuchungseinheit. Eine Variable besitzt mindestens zwei Merkmalsausprägungen. Die kleinste Ausprägung wäre das Vorhandensein oder das Nicht Vorhandensein eines Merkmals. Merkmalsausprägung: Merkmalsausprägungen sind Werte, die eine Variable annehmen kann. Dichotome Variable (Dichotomie): Besitzt eine Variable zwei Merkmalsausprägungen, so spricht man von einer dichotomen (zweiteiligen, zweistufigen) Variablen. - Die Variable Geschlecht besitzt zwei Merkmalsausprägungen (1) männlich und (2) weiblich. - Zu Fragen wie Sind Sie berufstätig? mit den dazugehörige Antwortkategorien (1) ja und (2) nein. Trichotome Variable (Trichotomie): Besitzt eine Variable drei Merkmalsausprägungen, so spricht man von einer trichotomen (dreistufigen) Variablen. - Die Variable Schichtzugehörigkeit besitzt drei Merkmalsausprägungen: (1) Unterschicht, (2) Mittelschicht und (3) Oberschicht. - Die Variable Augenfarbe besitzt die Merkmalsausprägungen (1) grün, (2) blau und (3) braun. Polytome Variable (Polytomie): Besitzt eine Variable mehr als drei Merkmalsausprägungen, so spricht man von einer polytomen (mehrstufigen) Variablen. - Die Variable Nationalität besitzt mehr als drei Merkmalsausprägungen (1) Belgier, (2) Brite, (3) Franzose, (4) Italiener usw. (5, 6 ) - Die Variable Berufsstatus kann ebenfalls mehr als drei Merkmalsausprägungen besitzen, nämlich: (1) Arbeiter, (2) Angestellter, (3) Beamter und (4) Selbstständiger. - Zusätzliche Beispiele hierfür sind die Variablen Familienstand, Konfessionszugehörigkeit, Körpergewicht usw. 3

4 Objekte können sich der Qualität oder der Quantität nach unterscheiden. Demgemäß gibt es eine Unterscheidung qualitativer und quantitativer Variablen. Die beiden Eigenschaftsmöglichkeiten einer Variablen schließen sich gegenseitig aus. D.h., wenn eine Variable qualitativ ist, dann kann sie nicht quantitativ sein. Quantitative Variable: Kann man Objekte im Hinblick auf eine bestimmte Eigenschaft der Größe nach unterscheiden, d.h. können Objekte hoch oder niedrig, größer oder kleiner, mehr oder weniger sein, so spricht man von einer quantitativen Variablen. Diese Variablen können mit mannigfaltigen Messeinheiten in Verbindung gebracht werden. Variable Lebensalter (Tag, Monat, Jahr), Körpergröße (mm, cm, m), Körpergewicht (Gramm, Kilogramm), Einkommen (Cent, Euro), Haushaltsgröße (0, 1, 2 und Personen), Geburtenrate (0%, 1%, 2%, 3% usw. Geburten), Anzahl vollendeter Schuljahre (0, 1, 2 usw. Schuljahre). Qualitative Variable: Kann man Objekte im Hinblick auf eine bestimmte Eigenschaft der Art nach unterscheiden, so spricht man von einer qualitativen Variablen. Variable Geschlecht (Merkmalsausprägung: männlich, weiblich), Nationalität (Däne, Deutscher, Amerikaner usw.), Konfessionszugehörigkeit (evangelisch, katholisch usw.), Familienstand (ledig, verheiratet, geschieden usw.), Gewerkschaftszugehörigkeit (ja, nein). Da die Kategorien qualitativer Variablen nicht größenmäßig geordnet sind, kann ein Objekt bezüglich einer qualitativen Variablen nicht höher, größer oder mehr sein als ein anderes Objekt; die Objekte sind entweder gleich oder ungleich. Diskrete (diskontinuierliche) Variable: Eine diskrete Variable kann nur ganz bestimmte Werte annehmen (d.h. nur endlich viele oder abzählbar unendlich viele Werte). Obwohl die Werte einen großen Bereich abdecken können, sind sie stets isolierte Werte, zwischen denen Lücken bzw. Sprungstellen existieren. Sie beruhen auf einem Zählvorgang. Die Variable Haushaltsgröße besteht aus 0, 1, 2, 3, 4 usw. Personen, die in einem Haushalt wohnen. Aber es existiert kein Haushalt, der aus 3,5 Personen besteht. Es liegen hierbei größere Lücken zwischen den Merkmalsausprägungen vor. 4

5 Stetige (kontinuierliche) Variable: Eine stetige Variable kann in einem bestimmten Bereich jeden beliebigen Wert aus der Menge der reellen Zahlen annehmen. Sie kann stets in noch feineren Einheiten gemessen werden, so dass zwischen den Werten keine oder sehr kleine Lücken bzw. Sprungstellen bestehen. Zwischen den Messwerten sind beliebig viele Zwischenwerte möglich. Sie beruhen auf einem Messvorgang. - Die Variable Lebensalter kann in Jahren, Monaten, Wochen, Tagen, Stunden, Sekunden, Millisekunden usw. gemessen werden. - Das gilt auch beispielsweise für die Variablen Körpergröße, Körpergewicht, Temperatur usw. Die Variableneigenschaften stetig und diskret schließen sich gegenseitig aus. D.h., wenn eine Variable stetig ist, dann kann sie nicht diskret sein. Manifeste Variable: Manifeste Variablen sind direkt beobachtbar oder können direkt gemessen werden (in Form einer Frage wie z.b. Gehören Sie einer Gewerkschaft an? ) Die Variablen Körpergröße, Haarfarbe, Gewerkschaftszugehörigkeit, Geschlecht, Schulnoten usw. sind manifeste Variablen Latente Variable: Latente Variablen sind nicht direkt beobachtbar. Sie werden mit Hilfe von Indikatoren erfasst. Die Variablen Arbeitszufriedenheit, Vertrauen in die Regierung, Religiosität, Diskriminierung, politische Einstellung usw. sind latente Variablen, also theoretische Begriffe. Indikatoren: Indikatoren sind manifeste Variablen (beobachtbare Sachverhalte), die als Ersatz für die latente Variable fungieren. Indikatoren sind Variablen, die als Hinweis auf eine nicht sichtbare Variable dienen. Die latente Variable Arbeitszufriedenheit kann durch folgende Indikatoren messbar gemacht werden. Mögliche Indikatoren für Arbeitszufriedenheit: Mögliche Indikatoren für Religiosität: - Fernbleiben vom Arbeitsplatz - Häufigkeit des Arbeitsplatzwechsels - Verbale Zufriedenheitsbekundung usw. - Gebetshäufigkeit - Kirchgangshäufigkeit usw. 5

6 Messen: Der Prozess der Datenerhebung kann auch als Messen bezeichnet werden, denn im Prozess der Datenerhebung messen wir Merkmalsausprägungen von Untersuchungseinheiten. Messen ist die strukturtreue Zuordnung von Zahlen zu Objekten nach festgelegten Regeln. Strukturtreue bedeutet, wenn man eine Variable nehme (z.b. Körpergröße), dann definiert die Variable zwischen den Objekten (z.b. Personen) eine Beziehung (Relation). Person A ist größer/kleiner als Person B. Skalenniveau bzw. Messniveau: 1. Nominalskala 2. Ordinalskala 3. Intervallskala 4. Ratio- bzw. Verhältnisskala metrisch skaliert Die Nominalskala stellt das niedrigste Messniveau und die Ratio- bzw. Verhältnisskala das höchste Messniveau dar. Ratioskalierte Variablen beinhalten im Vergleich den höchsten Informationsgehalt, daher kann man mit ihnen die meisten Rechenoperationen durchführen. 1) Nominalskala: Klassifikation von Untersuchungseinheiten hinsichtlich ihres Besitzens oder Nicht-Besitzens einer bestimmten Merkmalsausprägung. Das Messen auf einer Nominalskala bedeutet nichts anderes als die Einordnung von Untersuchungseinheiten in Merkmalskategorien. Die Merkmalsausprägungen bzw. Kategorien müssen sich gegenseitig ausschließen, d.h., kein Fall darf in mehr als eine Kategorie gelangen. - Variable Geschlecht, Gewerkschaftszugehörigkeit, Telefonnummern, Hobby von Studierenden usw. 2) Ordinalskala: Klassifikation von Untersuchungseinheiten hinsichtlich ihres Besitzens oder Nicht-Besitzens einer bestimmten Merkmalsausprägung. (siehe Nominalskala) Zusätzlich: Bei einer Ordinalskala werden die Objekte im Hinblick auf den Grad, in dem sie eine Merkmalsausprägung besitzen, geordnet. Eine größer-kleiner-relation wird zwischen den Merkmalsausprägungen aufgestellt. Ordinales Messen informiert aber nicht über die Größe der Differenzen zwischen den Kategorien. - Variable Schulnoten, Schichtzugehörigkeit (Unterschicht, Mittelschicht, Oberschicht), Arbeitszufriedenheit (sehr zufrieden - gar nicht zufrieden) usw. 6

7 3) Intervallskala: Klassifikation von Untersuchungseinheiten hinsichtlich ihres Besitzens oder Nicht-Besitzens einer bestimmten Merkmalsausprägung. (siehe Nominalskala) Die Objekte werden im Hinblick auf den Grad, in dem sie eine Merkmalsausprägung besitzen, geordnet (siehe Ordinalskala). Eine größer-kleiner-relation wird zwischen den Merkmalsausprägungen aufgestellt. (siehe Ordinalskala) Zusätzlich: Bei einer Intervallskala können die exakten Abstände zwischen den Ausprägungen angegeben werden. Der Abstand zwischen zwei beliebig aufeinander folgenden Objekten ist gleich groß, d.h., die Intervalle müssen die gleiche Größe besitzen. Bei der Intervallskala liegt ein willkürlicher Nullpunkt vor. - Variable Temperaturmessung (z.b. in Celsius oder Fahrenheit), Kalenderrechnung usw. 4) Ratioskala: Die Ratioskala ist eine Intervallskala mit einem absoluten Nullpunkt. Der Messwert Null entspricht der tatsächlichen Abwesenheit des gemessenen Merkmals. Es sind Aussagen über Quotienten zweier beliebiger Objekte möglich (z.b. Objekt A besitzt doppelt so viel X wie Objekt B). - Variable Einkommen, Lebensalter, Haushaltsgröße, Körpergewicht, Körpergröße usw. 7

8 Univariate Analyse Univariate Verteilung: Die univariate Verteilung ist eine eindimensionale Verteilung, bei der lediglich eine einzelne Variable betrachtet wird. Häufigkeitsverteilung: Die Beobachtungsdaten werden so organisiert, dass die in ihnen enthaltenen Informationen in gedrängter Form zum Ausdruck gebracht werden können. Um Einsicht in die Struktur der Daten zu gewinnen, werden die Rohdaten daraufhin untersucht, wie viele Untersuchungseinheiten auf jede Variablenausprägung entfallen. Die aus dieser Operation resultierende Zusammenstellung der Ausprägungen mit den dazugehörigen Häufigkeiten heißt Häufigkeitsverteilung Kinder einer Schulklasse werden in Hinblick auf die Variable Geschlecht betrachtet. Die Messung ergab folgende Ergebnisse: 6 Kinder = männlich 4 Kinder = weiblich Tabellarische Darstellung der univariaten Verteilung: Geschlecht (x i ) Häufigkeit (f i ) männlich (x 1 ) 6 (f 1 ) weiblich (x 2 ) 4 (f 2 ) Anzahl der Fälle 10 (N) Allgemein: Variable X mit den Messwerten x i = x 1, x 2, x 3,..., x n (absoluten) Häufigkeiten f i = f 1, f 2, f 3,..., f n N bzw. n = Anzahl der Fälle bzw. Untersuchungseinheiten / Stichprobengröße 8

9 Die folgenden Rechenoperationen können ab nominalem Messniveau angewendet werden: f n = relative Häufigkeiten (Betrachtung des i-ten Wertes einer Verteilung) f n = f i N % f i = prozentuale Häufigkeiten bzw. absolute Prozentwerte fi % f = 100 N i Die folgenden Rechenoperationen dürfen erst ab ordinalem Messniveau angewendet werden: cum f i bzw. f ci = kumulierte (= addierte) absolute Häufigkeiten f c1 = f 1 f c2 = f 1 + f 2 f c3 = f 1 + f 2 + f 3 cum f n = kumulierte relative Häufigkeiten cum f n = cum N f i cum f i % bzw. % f ci = kumulierte prozentuale Häufigkeiten cum fi cum % fi = 100 N x i f i f n % f i cum f i cum f n cum f i % 1 (x 1 ) 2 0,2 20% 2 0,2 20% 2 (x 2 ) 1 0,1 10% 3 0,3 30% 3 (x 3 ) 5 0,5 50% 8 0,8 80% 4 (x 4 ) 2 0,2 20% % N = 10 1,00 100% 9

10 Umgang mit klassierten (gruppierten) Variablen: Variable Lebensalter Klassenintervall Exakte Grenzen Klassenmitte (x i ) ,5-25,5 bzw. 25, ,5-30,5 bzw. 30, ,5-35,5 bzw. 35,49 33 Exakte Grenzen exakte untere und exakte obere Grenze Klassenmitte der Punkt, der das Intervall in Hälften teilt Berechnung der Klassenmitte: 1. Möglichkeit: (21+ 25) 46 x i = = = Möglichkeit: (20,5 + 25,5) 46 x i = = =

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK

1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1 1. GEGENSTAND UND GRUNDBEGRIFFE DER STATISTIK 1.1 Gegenstand der Statistik Die Statistik stellt ein Instrumentarium bereit, um Informationen über die Realität oder Wirklichkeit verfügbar zu machen. Definition

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Grundbegriffe (1) Grundbegriffe (2)

Grundbegriffe (1) Grundbegriffe (2) Grundbegriffe (1) S.1 Äquivalenzklasse Unter einer Äquivalenzklasse versteht man eine Klasse von Objekten, die man hinsichtlich bestimmter Merkmalsausprägungen als gleich (äquivalent) betrachtet. (z.b.

Mehr

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik

Modul 04: Messbarkeit von Merkmalen, Skalen und Klassierung. Prof. Dr. W. Laufner Beschreibende Statistik Modul 04: Messbarkeit von Merkmalen, Skalen und 1 Modul 04: Informationsbedarf empirische (statistische) Untersuchung Bei einer empirischen Untersuchung messen wir Merkmale bei ausgewählten Untersuchungseinheiten

Mehr

Phasen des Forschungsprozesses (hypothesenprüfende Studie)

Phasen des Forschungsprozesses (hypothesenprüfende Studie) Phasen des Forschungsprozesses (hypothesenprüfende Studie) Konzeptspezifikation/ Operationalisierung/Messung rot: Planungsphase Auswahl des Forschungsproblems Theoriebildung Auswahl der Untersuchungseinheiten

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein.

Alle weiteren Messoperationen schließen die Klassifikation als Minimaloperation ein. 1 unterschiedliche Skalenniveaus Wir haben zuvor schon kurz von unterschiedlichen Skalenniveaus gehört, nämlich dem: - Nominalskalenniveau - Ordinalskalenniveau - Intervallskalenniveau - Ratioskalenniveau

Mehr

Skalenniveau Grundlegende Konzepte

Skalenniveau Grundlegende Konzepte Skalenniveau Grundlegende Konzepte M E R K M A L / V A R I A B L E, M E R K M A L S A U S P R Ä G U N G / W E R T, C O D I E R U N G, D A T E N - M A T R I X, Q U A N T I T A T I V E S M E R K M A L, Q

Mehr

Grundlagen der Datenanalyse

Grundlagen der Datenanalyse Schematischer Überblick zur Behandlung quantitativer Daten Theorie und Modellbildung Untersuchungsdesign Codierung / Datenübertragung (Erstellung einer Datenmatrix) Datenerhebung Fehlerkontrolle / -behebung

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische Darstellung von Datenmaterial

Mehr

Deskriptive Statistik Kapitel III - Merkmalsarten

Deskriptive Statistik Kapitel III - Merkmalsarten Deskriptive Statistik Kapitel III - Merkmalsarten Georg Bol bol@statistik.uni-karlsruhe.de hoechstoetter@statistik.uni-karlsruhe.de April 26, 2006 Typeset by FoilTEX Agenda 1. Merkmalsarten 2. Skalen 3.

Mehr

Deskriptive Statistik

Deskriptive Statistik Deskriptive Statistik [descriptive statistics] Ziel der deskriptiven (beschreibenden) Statistik einschließlich der explorativen Datenanalyse [exploratory data analysis] ist zunächst die übersichtliche

Mehr

Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion

Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion Dr. habil. Rüdiger Jacob Methoden und Techniken der empirischen Sozialforschung Vorlesung mit Diskussion 4. Messtheorie Messen in den Sozialwissenschaften, Operationalisierung und Indikatoren, Messniveaus,

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG GLIEDERUNG Statistik eine Umschreibung Gliederung der Statistik in zwei zentrale Teilbereiche Deskriptive Statistik Inferenzstatistik

Mehr

Daten, Datentypen, Skalen

Daten, Datentypen, Skalen Bildung kommt von Bildschirm und nicht von Buch, sonst hieße es ja Buchung. Daten, Datentypen, Skalen [main types of data; levels of measurement] Die Umsetzung sozialwissenschaftlicher Forschungsvorhaben

Mehr

Grundbegriffe. Bibliografie

Grundbegriffe. Bibliografie Grundbegriffe Merkmale und Merkmalsausprägungen Skalen und Skalentransformation Einführung und Grundbegriffe II 1 Bibliografie Bleymüller / Gehlert / Gülicher Verlag Vahlen Statistik für Wirtschaftswissenschaftler

Mehr

Einführung. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment

Einführung. 2. Sie entstehen erst durch Beobachtung, Erhebung, Befragung, Experiment Einführung In vielen Gebieten des öffentlichen Lebens, in der Wirtschaft, der Verwaltung, der Industrie, der Forschung, in der Medizin etc. werden Entscheidungen auf der Grundlage von bestimmten Daten

Mehr

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5)

Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) Eigene MC-Fragen Grundbegriffe der Statistik (X aus 5) 1. Welche Reihenfolge ist zutreffend auf den Ablauf einer statistischen Untersuchung laut SB? A B C D Aufbereitung Erhebung Planung Auswertung C-D-A-B

Mehr

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik

Felix Klug SS 2011. 2. Tutorium Deskriptive Statistik 2. Tutorium Deskriptive Statistik Felix Klug SS 2011 Skalenniveus Weitere Beispiele für Skalenniveus (Entnommen aus Wiederholungsblatt 1.): Skalenniveu Nominalskala Ordinalskala Intervallskala Verhältnisskala

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8

Wiederholung Statistik I. Statistik für SozialwissenschaftlerInnen II p.8 Wiederholung Statistik I Statistik für SozialwissenschaftlerInnen II p.8 Konstanten und Variablen Konstante: Merkmal hat nur eine Ausprägung Variable: Merkmal kann mehrere Ausprägungen annehmen Statistik

Mehr

5. MESSUNG & DATENERHEBUNG IN DEN SOWI

5. MESSUNG & DATENERHEBUNG IN DEN SOWI 5. MESSUNG & DATENERHEBUNG IN DEN SOWI Ziel: kontrollierte Gewinnung empirischer Informationen Bei den Entscheidungen über geeignete Erhebungsinstrumente, Messen, Auswahlverfahren und dem anzustrebenden

Mehr

3. Merkmale und Daten

3. Merkmale und Daten 3. Merkmale und Daten Ziel dieses Kapitels: Vermittlung des statistischen Grundvokabulars Zu klärende Begriffe: Grundgesamtheit Merkmale (Skalenniveau etc.) Stichprobe 46 3.1 Grundgesamtheiten Definition

Mehr

Kapitel III - Merkmalsarten

Kapitel III - Merkmalsarten Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Statistik 1 - Deskriptive Statistik Kapitel III - Merkmalsarten Markus Höchstötter Lehrstuhl für Statistik, Ökonometrie

Mehr

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich)

STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) WS 07/08-1 STATISTIK FÜR STATISTIK-AGNOSTIKER Teil 1 (wie mich) Nur die erlernbaren Fakten, keine Hintergrundinfos über empirische Forschung etc. (und ich übernehme keine Garantie) Bei der Auswertung von

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Analyse bivariater Kontingenztafeln

Analyse bivariater Kontingenztafeln Analyse bivariater Kontingenztafeln Werden zwei kategoriale Merkmale mit nicht zu vielen möglichen Ausprägungen gemeinsam analysiert, so kommen zur Beschreibung der gemeinsamen Verteilung im allgemeinen

Mehr

Graphische Darstellung einer univariaten Verteilung:

Graphische Darstellung einer univariaten Verteilung: Graphische Darstellung einer univariaten Verteilung: Die graphische Darstellung einer univariaten Verteilung hängt von dem Messniveau der Variablen ab. Bei einer graphischen Darstellung wird die Häufigkeit

Mehr

Empirische Methoden PM-EMP-P12-040828

Empirische Methoden PM-EMP-P12-040828 Studiengang Pflegemanagement Fach Empirische Methoden Art der Leistung Prüfungsleistung Klausur-Knz. Datum 28.08.2004 Die Klausur besteht aus 5 Aufgaben, von denen alle zu lösen sind. Ihnen stehen 90 Minuten

Mehr

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien

Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische

Mehr

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen.

Analyse klassierter Daten: Vor der Analyse fasst man jeweils mehrere Merkmalsausprägungen in (Merkmalswerte-)Klassen zusammen. 4. Analyse univariater Daten: Übersicht Mathematik ist die Wissenschaft der reinen Zahl, Statistik die der empirischen Zahl Von univariaten Daten spricht man, wenn bei der Datenerhebung nur ein Merkmal

Mehr

Wissenschaftstheoretische Grundlagen

Wissenschaftstheoretische Grundlagen Wissenschaftstheoretische Grundlagen Wissenschaftstheorie: Lehre von der Vorgehensweise bei der wissenschaftlichen Tätigkeit (Methodologie) Wissenschaftstheorie ist der Sammelbegriff für alle metawissenschaftlichen

Mehr

Deskriptive Statistik

Deskriptive Statistik Fakultät für Humanwissenschaften Sozialwissenschaftliche Methodenlehre Prof. Dr. Daniel Lois Deskriptive Statistik Stand: April 2015 (V2) Inhaltsverzeichnis 1. Notation 2 2. Messniveau 3 3. Häufigkeitsverteilungen

Mehr

Einführung in die statistische Datenanalyse I

Einführung in die statistische Datenanalyse I Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE

Mehr

Empirische Wirtschaftsforschung und Ökonometrie III

Empirische Wirtschaftsforschung und Ökonometrie III Empirische Wirtschaftsforschung und Ökonometrie III Prof. Dr. Robert Jung Lehrstuhl für Ökonometrie Staatswissenschaftliche Fakultät Universität Erfurt http://www.uni-erfurt.de/oekonometrie SS 2009 BA

Mehr

DATENERHEBUNG: MESSEN-OPERATIONALISIEREN - SKALENARTEN

DATENERHEBUNG: MESSEN-OPERATIONALISIEREN - SKALENARTEN DATENERHEBUNG: MESSEN-OPERATIONALISIEREN - SKALENARTEN Was ist Messen? Messen - im weitesten Sinne - ist die Zuordnung von Zahlen zu Objekten und Ereignissen entsprechend einer Regel (Def. nach Stevensen

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Kontingenzkoeffizient (nach Pearson)

Kontingenzkoeffizient (nach Pearson) Assoziationsmaß für zwei nominale Merkmale misst die Unabhängigkeit zweier Merkmale gibt keine Richtung eines Zusammenhanges an 46 o jl beobachtete Häufigkeiten der Kombination von Merkmalsausprägungen

Mehr

Statistische Grundlagen I

Statistische Grundlagen I Statistische Grundlagen I Arten der Statistik Zusammenfassung und Darstellung von Daten Beschäftigt sich mit der Untersuchung u. Beschreibung von Gesamtheiten oder Teilmengen von Gesamtheiten durch z.b.

Mehr

Quantitative empirische Sozialforschung

Quantitative empirische Sozialforschung Heinz-Günter Micheel Quantitative empirische Sozialforschung Mit 37 Abbildungen und 34 Tabellen Ernst Reinhardt Verlag München Basel Dr. Heinz-Günter Micheel ist Privatdozent an der Fakultät für Erziehungswissenschaft

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Statistik I für Betriebswirte Vorlesung 5

Statistik I für Betriebswirte Vorlesung 5 Statistik I für Betriebswirte Vorlesung 5 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik 07. Mai 2015 PD Dr. Frank Heyde Statistik I für Betriebswirte Vorlesung 5 1 Klassische Wahrscheinlichkeitsdefinition

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

18.04.2013. Prinzipien der Fragebogenkonstruktion. Allgemeine Bestandteile. Richtlinien zur Formulierung. Die 10 Gebote der Frageformulierung (II)

18.04.2013. Prinzipien der Fragebogenkonstruktion. Allgemeine Bestandteile. Richtlinien zur Formulierung. Die 10 Gebote der Frageformulierung (II) Prinzipien der Fragebogenkonstruktion Seminar: Patricia Lugert, Marcel Götze 17.04.2012 Medien-Bildung-Räume Inhalt Fragebogenerstellung Grundlagen Arten von Fragen Grundlegende Begriffe: Merkmal, Variable,

Mehr

Statistik II: Grundlagen und Definitionen der Statistik

Statistik II: Grundlagen und Definitionen der Statistik Medien Institut : Grundlagen und Definitionen der Statistik Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Hintergrund: Entstehung der Statistik 2. Grundlagen

Mehr

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement

Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Planung und Auswertung klinischer und experimenteller Studien: Datenmanagement Institut für Medizininformatik, Biometrie und Epidemiologie Universität Erlangen - Nürnberg 1 Einordnung in den Ablauf 1.

Mehr

Datenanalyse mit Excel. Wintersemester 2013/14

Datenanalyse mit Excel. Wintersemester 2013/14 Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen

Mehr

Antwortkategorien und Skalen. Jasmin Hügi Herbstschule 2012

Antwortkategorien und Skalen. Jasmin Hügi Herbstschule 2012 Antwortkategorien und Skalen Jasmin Hügi Herbstschule 2012 Übersicht Zeit 09h00 09h10 09h10 09h40 09h40 10h30 10h30 11h00 11h00 11h20 11h20 12h15 12h15 13h30 13h30 14h00 14h00 15h00 15h00 15h30 15h30 15h50

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Forschungsmethoden in der Sozialen Arbeit

Forschungsmethoden in der Sozialen Arbeit Forschungsmethoden in der Sozialen Arbeit Erhebungsinstrument Lehrveranstaltung an der Fachhochschule für Sozialarbeit und Sozialpädagogik "Alice Salomon" Hochschule für Soziale Arbeit, Gesundheit, Erziehung

Mehr

Empirische Inhaltsanalyse

Empirische Inhaltsanalyse Empirische Inhaltsanalyse Die Darstellung der Arbeitslosigkeit in den Medien Aufgabe 3 a) Nachbearbeitung der Aufgabe 2. Diese dient als Grundlage der Weiterarbeit am gewählten Thema. b) Operationalisierung

Mehr

Psychologische Methodenlehre und Statistik I

Psychologische Methodenlehre und Statistik I Psychologische Methodenlehre und Statistik I Karin Waldherr & Pantelis Christodoulides 4. November 2009 Karin Waldherr & Pantelis Christodoulides Psychologische Methodenlehre und Statistik I 1/56 Informationen,

Mehr

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66

Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation

Mehr

Datenerhebung, Skalenniveaus und Systemdatei

Datenerhebung, Skalenniveaus und Systemdatei Datenerhebung, Skalenniveaus und Systemdatei Institut für Geographie 1 Beispiele für verschiedene Typen von Fragen in einer standardisierten Befragung (3 Grundtypen) Geschlossene Fragen Glauben Sie, dass

Mehr

Mathematische Statistik. Zur Notation

Mathematische Statistik. Zur Notation Mathematische Statistik dient dazu, anhand von Stichproben Informationen zu gewinnen. Während die Wahrscheinlichkeitsrechnung Prognosen über das Eintreten zufälliger (zukünftiger) Ereignisse macht, werden

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Roland Bässler. Research & Consultinq

Roland Bässler. Research & Consultinq J 3 z = Roland Bässler Research & Consultinq Roland Bässler QUANTITATIVE FORSCHUNGSMETHODEN Ein Leitfaden zur Planung und Durchführung quantitativer empirischer Forschungsarbeiten (2. überarb. Auflage)

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung II Daten Deskription Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de IBE,

Mehr

Sozialwissenschaftliche Methoden I

Sozialwissenschaftliche Methoden I Sozialwissenschaftliche Methoden I 4. Grundlagen der empirischen Sozialforschung Wintersemester 2008/09 Jr.-Prof. Dr. Thomas Behrends Internationales Institut für Management ABWL, insb. Personal und Organisation

Mehr

Grundbegriffe der Beschreibenden Statistik

Grundbegriffe der Beschreibenden Statistik Grundbegriffe der Beschreibenden Statistik 1. Datenmatrix und Messniveaus...3 1.1. Merkmale, Datenmatrix, uni- und multivariate Analysen...3 1.2. Messniveaus (Skalentypen)...4 2. Ausgewählte Verfahren

Mehr

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale

Beispiel (Schule) Grundlegende Begriffe. Beispiel (Universität) Beispiel (Lotto) Untersuchungseinheiten und ihre Merkmale Grundlegende Begriffe Untersuchungseinheiten und ihre Merkmale Untersuchungseinheiten Merkmale Merkmalsausprägungen Beispiel (Schule) Untersuchungseinheiten: Schulkinder Merkmale: Körpergröße, Körpergewicht

Mehr

Was heißt messen? Konzeptspezifikation Operationalisierung Qualität der Messung

Was heißt messen? Konzeptspezifikation Operationalisierung Qualität der Messung Was heißt messen? Ganz allgemein: Eine Eigenschaft eines Objektes wird ermittelt, z.b. die Wahlabsicht eines Bürgers, das Bruttosozialprodukt eines Landes, die Häufigkeit von Konflikten im internationalen

Mehr

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG

TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG TEIL 7: EINFÜHRUNG UNIVARIATE ANALYSE TABELLARISCHE DARSTELLUNG / AUSWERTUNG Statistik eine Umschreibung Mathematische Hilfswissenschaft mit der Aufgabe, Methoden für die Sammlung, Aufbereitung, Analyse

Mehr

TÜV Service tested Prüfgrundlagen

TÜV Service tested Prüfgrundlagen TÜV Service tested Prüfgrundlagen 60 Grundsätzliche Prüfgrundlagen Für die Auszeichnung TÜV Service tested müssen drei Voraussetzungen erfüllt sein: 1. Die Gesamtzufriedenheit muss von den Kunden des Unternehmens

Mehr

Statistik I (B) Universität Mannheim Lehrstuhl für Statistik Toni Stocker FSS 2007

Statistik I (B) Universität Mannheim Lehrstuhl für Statistik Toni Stocker FSS 2007 Statistik I (B) Universität Mannheim Lehrstuhl für Statistik Toni Stocker FSS 2007 Foliensymbolik... Beginn eines neuen Kapitels (Folienkopf) Übung... Aufgaben für die Übungen R Programmcode 2 Einführung

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Teil I: Deskriptive Statistik

Teil I: Deskriptive Statistik Teil I: Deskriptive Statistik 2 Grundbegriffe 2.1 Merkmal und Stichprobe 2.2 Skalenniveau von Merkmalen 2.3 Geordnete Stichproben und Ränge 2.1 Merkmal und Stichprobe An (geeignet ausgewählten) Untersuchungseinheiten

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

3 Messmethoden und Messtechniken

3 Messmethoden und Messtechniken 3 Messmethoden und Messtechniken 3.1 Variablen und Daten 1. Qualitative und quantitative Variablen 2. Stetige und diskrete Variablen 3.2 Messniveau und Skalentypen 1. Nominales Messen 2. Ordinales Messen

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

Statistik Grundbegriffe

Statistik Grundbegriffe Kapitel 2 Statistik Grundbegriffe 2.1 Überblick Im Abschnitt Statistik Grundbegriffe werden Sie die Bedeutung von statistischen Grundbegriffen wie Stichprobe oder Merkmal kennenlernen und verschiedene

Mehr

Einführung in die quantitative und qualitative Sozialforschung

Einführung in die quantitative und qualitative Sozialforschung Einführung in die quantitative und qualitative Sozialforschung 8. Sitzung Empirische Forschung III Operationalisierung Messung und Skalierung Wiederholung: Untersuchungsdesigns Experimentelles Design:

Mehr

Stichprobenauslegung. für stetige und binäre Datentypen

Stichprobenauslegung. für stetige und binäre Datentypen Stichprobenauslegung für stetige und binäre Datentypen Roadmap zu Stichproben Hypothese über das interessierende Merkmal aufstellen Stichprobe entnehmen Beobachtete Messwerte abbilden Schluss von der Beobachtung

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Kreditscoring zur Klassifikation von Kreditnehmern. Variablenübersicht des Datensatzes "Kreditscoring zur Klassifikation von Kreditnehmern"

Kreditscoring zur Klassifikation von Kreditnehmern. Variablenübersicht des Datensatzes Kreditscoring zur Klassifikation von Kreditnehmern Ergänzung zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Kreditscoring zur Klassifikation von Kreditnehmern Beschreibung des Datensatzes Die Vergabe von Privatkrediten wird von der Bonität der

Mehr

Fortgeschrittene Statistik SPSS Einführung

Fortgeschrittene Statistik SPSS Einführung Fortgeschrittene Statistik SPSS Einführung Q U A N T I T A T I V E M E R K M A L E, Q U A L I T A T I V E M E R K M A L E, A U S P R Ä G U N G E N, C O D I E R U N G E N, S K A L E N N I V E A U, D A T

Mehr

Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung:

Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung: Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung: k ( np) np B( n, p; k) Poi( np, k) e k! falls gilt: p

Mehr

Skript zur Vorlesung Statistik

Skript zur Vorlesung Statistik Skript zur Vorlesung Statistik Dietrich Baumgarten «16. Januar 2014 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Übersicht und Lernziele........................... 1 1.2 Zum Begri Statistik.............................

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, TB II R. 06-206 (Persike) R. 06-321 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik I Deskriptive und Explorative Datenanalyse 2010 Übungsaufgaben und Lösungen Erkenntn nisgewinnung und Datenerhebung in der Psychologie [Übungsaufgaben

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

5 Zusammenhangsmaße, Korrelation und Regression

5 Zusammenhangsmaße, Korrelation und Regression 5 Zusammenhangsmaße, Korrelation und Regression 5.1 Zusammenhangsmaße und Korrelation Aufgabe 5.1 In einem Hauptstudiumsseminar des Lehrstuhls für Wirtschafts- und Sozialstatistik machten die Teilnehmer

Mehr

Forschungsmethoden in der Sozialen Arbeit (XI)

Forschungsmethoden in der Sozialen Arbeit (XI) Forschungsmethoden in der Sozialen Arbeit (XI) Fachhochschule für Sozialarbeit und Sozialpädagogik Alice-Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 1 Übung Lösungsvorschlag Gruppenübung G 1 Auf einer Touristeninsel in der Karibik wurden in den letzten beiden Juliwochen morgens zur gleichen Zeit die folgenden

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 1 Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 20. Oktober 2008 1 / 28 Online-Materialien Die Materialien zur Vorlesung finden

Mehr

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn

Statistikpraktikum. Carsten Rezny. Sommersemester Institut für angewandte Mathematik Universität Bonn Statistikpraktikum Carsten Rezny Institut für angewandte Mathematik Universität Bonn Sommersemester 2016 Anmeldung in Basis: 06. 10.06.2016 Organisatorisches Einführung Statistik Analyse empirischer Daten

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF DR ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seminar für Theoretische Wirtschaftslehre Vorlesungsprogramm 23042013 Datenlagen und Darstellung eindimensionaler Häufigkeitsverteilungen

Mehr