9 Resümee. Resümee 216

Größe: px
Ab Seite anzeigen:

Download "9 Resümee. Resümee 216"

Transkript

1 Resümee Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls geprüft. Bewertungskriterien der Leistungsfähigkeit sind der Umfang des Erkenntnisgewinns sowie die Fähigkeit neue Untersuchungshypothesen zu generieren. Dabei berücksichtigen die untersuchten Methoden neben bewährten Analyseverfahren wie die Indexkonstruktion, Clusteranalyse und multiple Regression auch neuere algorithmengesteuerte Auswertungsmöglichkeiten wie die Entscheidungsbaum- und Assoziationsanalyse. Die algorithmengesteuerten Verfahren resultieren aus der Entwicklung der Datenverarbeitung mit ihren Möglichkeiten, große Datenmengen zu speichern: Umfangreiche Datensätze enthalten potenziell relevante Informationen, die jedoch mit einer manuellen Analyse vom Rechenaufwand her nicht mehr erfassbar sind. Diese Herausforderung führte zur Entwicklung des neuen Aufgabenbereichs des Knowledge Discovery in Databases (KDD), als der Prozess der (semi-) automatischen Extraktion von Wissen aus Datenbanken 207. Der KDD-Prozess umfasst den Teilprozess Data Mining für die Analyse und Auswertung von Daten mittels Verfahren und Techniken zur Identifikation von unbekannten Muster, Zusammenhängen und Trends 208. In der Statistik finden sich diese Funktionen unter dem Begriff der explorativen Datenanalyse wieder. Der Einsatz der explorativen Analyse ist auch bei der konfirmatorischen Analyse nicht neu: Häufig werden Daten, die theoriegeleitet erhoben wurden, semi-automatisch auf Korrelationen untersucht, um anhand der Ester/Sander, 2000, S. 1 Data Mining bedient sich überwiegend der gängigen statistischen Methoden. Lediglich die algorithmengesteuerten Verfahren wie Entscheidungsbaum- und Assoziationsanalysen können als spezifische Data Mining-Methoden identifziert werden.

2 Resümee 217 Ergebnisse die untersuchungsleitenden Hypothesen zu überprüfen. Im Rahmen der konfirmatorischen Analyse hat diese Suche nach Mustern oder Strukturen jedoch eher den Charakter einer inoffiziellen Zwischenrechnung als einer offensiven Vorgehensweise, um neue und unvermutete Erkenntnisse mittels eines theoriefreien Vorgehens zu entdecken. Es ist erkennbar, dass die neuen Computertechnologien mit ihren weit reichenden Möglichkeiten auch die Forschungsweise der Angewandten Sozialforschung beeinflussen: Die theorie- und modellgeleitete Vorgehensweise der konfirmatorischen Analyse wird zunehmend um die explorative Datenanalyse ergänzt, die aus bereits existierenden Datensätzen neue Informationen (semi-) automatisch generiert. Die nachfolgende Tabelle zeigt das Spektrum gängiger statistischer Verfahren nach Anwendungsbereichen des Data Mining 209 bzw. der explorativen Datenanalyse. 209 vgl. Bankhofer, 2004, S. 3 und Hippner/Wilde 2001, S. 74

3 Resümee 218 Anwendungsbereiche deskriptive Datenanalyse explorative Datenanalyse induktive Datenanalyse Segmentierung Konzentrations- Clusteranalysen Varianzanalyse Bildung von Klassen aufgrund von Ähnlichkeiten der Objekte maße Lage- und Streuungsmaße Faktorenanalyse Neuronale Netze Lage- und Streuungsmaße Klassifikation Konzentrations- Diskriminanzanalyse Korrelationsanalyse Identifikation der Klassenzugehörigkeit von Objekten auf der Basis gegebener Merkmale maße Lage- und Streuungsmaße Entscheidungsbaumanalyse Neuronale Netze Vorhersage Prognose der Werte einer abhängigen kontinuierlichen Variablen auf Basis einer funktionalen Beziehung Assoziation Aufdeckung von strukturellen Zusammenhängen in Datenbasen mit Hilfe von Regeln Beschreibung von Zeitreihen Neuronale Netze Entscheidungsbaumanalyse Netzdiagramm Assoziationsanalyse - Regressionsanalyse Logit- Analyse Tabelle 100: Statistische Methoden nach Art der Datenanalyse und Anwendungen Die in der Tabelle grau unterlegten Methoden sind in der vorliegenden Arbeit eingesetzt worden. Im ersten Teil der Arbeit werden in Kapitel 2 die demografischen Ergebnisse mittels der Methoden der deskriptiven Statistik wie z.b. des arithmetischen Mittels, der Klassifizierung, der Kreuztabellen und der Balkendiagramme datenverdichtet dargestellt und auf ihre Repräsentativität überprüft. Kapitel 3 untersucht die Frage, inwieweit das Sicherheitsempfinden der Befragten sich im Zeitraum von 2002 bis 2005 verändert hat. Während in 2002 noch 46,0 Prozent der befragten Frauen sich sicher fühlten, waren es in 2005 nur noch 44,6 Prozent. Eine

4 Resümee 219 gegenläufige Tendenz ist bei den befragten Männern feststellbar: In 2002 gaben 52,8 Prozent an, sich sicher zu fühlen, in 2005 waren es sogar 55,7 Prozent. Jedoch ist diese Entwicklung nicht statistisch signifikant. Der zweite Teil der Arbeit konzentriert sich auf die Demonstration der Wirkungsweise datenreduzierender Verfahren und die Prüfung ihrer Leistungsfähigkeit anhand der Kriterien Erkenntnisgewinn und der Möglichkeit, neue Untersuchungshypothesen zu generieren. Dazu wird in Kapitel 4 ein Unsicherheitsindex konstruiert. Die Resultate geschlechtsspezifischer Faktorenanalysen und Häufigkeitsauszählungen verdeutlichen, dass die geschlechtsspezifischen Ergebnisse auch im Rahmen eines geschlechtsneutralen Indexes angemessen vertreten sind. Im Rahmen der Indexkonstruktion werden folgende Ergebnisse ermittelt: - Frauen fühlen sich eher unsicher als Männer. - Jüngere Menschen fühlen sich eher unsicher als ältere. - Verheiratete/Verwitwete fühlen sich eher unsicher als Ledige/Geschiedene. - Nicht-Abiturienten fühlen sich eher unsicher als Befragte mit Abitur sowie ggf.höherem Bildungsabschluss. - Nicht-Erwerbstätige fühlen sich eher unsicher als Erwerbstätige. Mit den Methoden der multiplen Regression in Kapitel 5 kann über die Ergebnisse einer Faktorenanalyse darauf geschlossen werden, dass die Variable Geschlecht/Beruf ungefähr gleichbedeutsam auf den Unsicherheitsindex wirkt wie die Variable Alter/Familienstand. Dieses Ergebnis wird bezogen auf die oben genannten Bewertungskriterien Erkenntnisgewinn und die Möglichkeit, neue Untersuchungshypothesen zu generieren als eher weniger interessant beurteilt. Die Clusterzentrenanalyse in Kapitel 6 generiert bereits bei 4 Clustern interpretierbare Ergebnisse, die einerseits die bislang ermittelten Resultate tendenziell bestätigen, zudem aber auch andere Ergebnisoptionen liefern. Somit bietet das Ergebnis der Clusterzentrenanalyse die Möglichkeit eines zusätzlichen Erkenntnisgewinns sowie die Chance, neue

5 Resümee 220 Untersuchungshypothesen zu formulieren. Von daher sind mit der Methode der Clusterzentrenanalyse für die vorliegende Fragestellung eher interessante Ergebnisse ermittelt worden. Auch die Ergebnisse der Entscheidungsbaumanalysen in Kapitel 7 bestätigen tendenziell die bisherigen Befunde. Darüber hinaus können mit den Entscheidungsbaumanalysen diese Resultate noch weiter spezifiziert werden. Die Entscheidungsbaumanalyse bietet mit dem Endknoten als Ergebnistyp ein eindeutiges, nachvollziehbares Resultat. Diese Optimalitätseigenschaft bezüglich eines Kriteriums unterscheidet die Entscheidungsbaumanalysen von den Ergebnissen einer Clusteranalyse. 210 Da in der Entscheidungsbaumanalyse die Knotenergebnisse vom ersten Stammknoten bis zum Endknoten dokumentiert sind, bietet sie die Informationen, die zu einer Formulierung weitergehender Untersuchungshypothesen beitragen können. Von daher werden die Resultate der Entscheidungsbaumanalyse bezogen auf den Erkenntnisgewinn als auch die Chance weiterführende Untersuchungshypothesen zu generieren, als eher interessant eingestuft 211. Die Assoziationsanalyse wird als Verfahren der explorativen Datenanalyse den heuristischen Methoden zugeordnet. Dies zeigt sich auch bei den überwachten und unüberwachten Assoziationsanalysen in Kapitel 8, die eine Vielzahl von Regeln produzieren. Aus dieser Regelmenge können mittels der Kennzahlen Support, Confidence oder Lift interessante Regeln identifiziert und für weitergehende Analysen ausgewählt werden. Aufgrund der Vielzahl von Ergebnistypen, die ggf. über neue Muster und Strukturen in den Daten zu einem Erkenntnisgewinn beitragen können sowie der Möglichkeit weiterführende Untersuchungshypothesen zu formulieren, sind die Ergebnisse der Assoziationsanalyse als eher interessant zu bewerten. Einleitend wurde die Frage gestellt, inwieweit Data Mining-Methoden wie Entscheidungsbaum- und Assoziationsanalyse auch für Baltes-Götz, 2004, S. 4 Die Analyse zeigt, dass bei heterogenen Datensätzen das Ergebnis je nach Art des eingesetzten Algorithmus variieren kann.

6 Resümee 221 sozialwissenschaftlich-statistische Analysen nutzbringend zu verwenden sind. Die Ergebnisse, die im Rahmen der vorliegenden Arbeit mit diesen Methoden ermittelt worden sind, weisen darauf hin, dass diese Verfahren auch für sozialwissenschaftlich-statistische Forschungsfragen, insbesondere bei umfangreichen Datenbeständen nutzbringend eingesetzt werden können. Die sich immer schneller entwickelnde Informationstechnologie fördert die Analyse extrem komplexer sozialwissenschaftlicher Fragestellungen mit informatikbasierten Methoden. Angesichts solcher Entwicklungen 212 wird die sozialwissenschaftliche Informatik 213 zunehmend an Relevanz gewinnen Die Deutsche Forschungsgemeinschaft fördert z.b. die Entwicklung des neuen Forschungsfeldes Sozionik, das die Soziologie und Künstliche Intelligenz verbindet. In der Sozionik geht es um die Frage, wie es möglich ist, Vorbilder aus der sozialen Welt aufzugreifen, um daraus intelligente Computertechnologien zu entwickeln. Quelle: Stand: Sozialwissenschaftliche Informatik ist die Wissenschaft von den gesellschaftlichen Funktionszusammenhängen automatisierter Informationsverarbeitung und den Informationsverarbeitungsverfahren in Politik und Verwaltung., Quelle: Stand:

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Data Mining als Arbeitsprozess

Data Mining als Arbeitsprozess Data Mining als Arbeitsprozess Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 31. Dezember 2015 In Unternehmen werden umfangreichere Aktivitäten oder Projekte im Bereich des Data Mining

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery

Seminar Business Intelligence Teil II. Data Mining & Knowledge Discovery Seminar Business Intelligence Teil II Data Mining & Knowledge Discovery Was ist Data Mining? Sabine Queckbörner Was ist Data Mining? Data Mining Was ist Data Mining? Nach welchen Mustern wird gesucht?

Mehr

26. GIL Jahrestagung

26. GIL Jahrestagung GeorgAugustUniversität Göttingen 26. GIL Jahrestagung Einsatz von künstlichen Neuronalen Netzen im Informationsmanagement der Land und Ernährungswirtschaft: Ein empirischer Methodenvergleich Holger Schulze,

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Dominik Pretzsch TU Chemnitz 2011

Dominik Pretzsch TU Chemnitz 2011 Dominik Pretzsch TU Chemnitz 2011 Wir leben im Informationszeitalter und merken es daran, dass wir uns vor Information nicht mehr retten können. Nicht der überwältigende Nutzen der Information, sondern

Mehr

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML Data Mining Standards am Beispiel von PMML Allgemeine Definitionen im Data Mining Data Mining (DM) Ein Prozess, um interessante neue Muster, Korrelationen und Trends in großen Datenbeständen zu entdecken,

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Automatische Mustererkennung zur Klassifikation von Konsumentenverhalten am Beispiel der Kreditwürdigkeitsprüfung

Automatische Mustererkennung zur Klassifikation von Konsumentenverhalten am Beispiel der Kreditwürdigkeitsprüfung Prof. Dr. Gerhard Arminger Dipl.-Ök. Alexandra Schwarz Bergische Universität Wuppertal Fachbereich Wirtschaftswissenschaft Fach Statistik Automatische Mustererkennung zur Klassifikation von Konsumentenverhalten

Mehr

Studiendesign/ Evaluierungsdesign

Studiendesign/ Evaluierungsdesign Jennifer Ziegert Studiendesign/ Evaluierungsdesign Praxisprojekt: Nutzerorientierte Evaluierung von Visualisierungen in Daffodil mittels Eyetracker Warum Studien /Evaluierungsdesign Das Design einer Untersuchung

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374 DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 374 Eignung von Verfahren der Mustererkennung im Process Mining Sabrina Kohne

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Bestandskundenmanagement Wo drückt bei Ihnen der Schuh?

Bestandskundenmanagement Wo drückt bei Ihnen der Schuh? Bestandskundenmanagement Wo drückt bei Ihnen der Schuh? best-reactions GmbH Hirschberger Straße 33 D 90559 Burgthann Alle Rechte vorbehalten HRB 23679, Amtsgericht Nürnberg Geschäftsführer Alexander P.

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein Alles für den Kunden Analyse von Kundendaten Katrin Plickert, Heiko Hartenstein Zum Verständnis 9. Februar 2007 Heiko Hartenstein, Katrin Plickert 2 Quelle: Heilmann, Kempner, Baars: Business and Competitive

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

8. Grundlagen der empirischen Sozialforschung

8. Grundlagen der empirischen Sozialforschung Einführung in das Studium der Management- und Wirtschaftswissenschaften WS 2013/14 8. Grundlagen der empirischen Sozialforschung Internationales Institut für Management und ökonomische Bildung Professur

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Florian Frötscher und Demet Özçetin

Florian Frötscher und Demet Özçetin Statistische Tests in der Mehrsprachigkeitsforschung Aufgaben, Anforderungen, Probleme. Florian Frötscher und Demet Özçetin florian.froetscher@uni-hamburg.de SFB 538 Mehrsprachigkeit Max-Brauer-Allee 60

Mehr

Anwendung der Predictive Analytics

Anwendung der Predictive Analytics TDWI Konferenz mit BARC@TDWI Track 2014 München, 23. 25. Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg

Mehr

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation?

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation? 1. Konferenz der A Benutzer KFE in Forschung und Entwicklung Data Mining - Marketing-chlagwort oder ernstzunehmende Innovation? Hans-Peter Höschel,, Heidelberg 1. Konferenz der A Benutzer KFE in Forschung

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Anwendungsfall 1. Unternehmen: Versicherungsunternehmen in Hong Kong

Anwendungsfall 1. Unternehmen: Versicherungsunternehmen in Hong Kong Anwendungsfall 1 Unternehmen: Versicherungsunternehmen in Hong Kong Personalauswahl Zur Unterstützung der Personalauswahl mittels einer automatischen Vorselektion potenzieller Versicherungsvertreter aus

Mehr

Visualisierung der Imperfektion in multidimensionalen Daten

Visualisierung der Imperfektion in multidimensionalen Daten Visualisierung der Imperfektion in multidimensionalen Daten Horst Fortner Imperfektion und erweiterte Konzepte im Data Warehousing Betreuer: Heiko Schepperle 2 Begriffe (1) Visualisierung [Wikipedia] abstrakte

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen

Mehr

Data Mining-Projekte

Data Mining-Projekte Data Mining-Projekte Data Mining-Projekte Data Mining stellt normalerweise kein ei nmaliges Projekt dar, welches Erkenntnisse liefert, die dann nur einmal verwendet werden, sondern es soll gewöhnlich ein

Mehr

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner

Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner Agenda Universitätsrechenzentrum Heidelberg Data Mining SAS Mining Challenge Einführung in 14. November 2003 Hussein Waly URZ Heidelberg Hussein.Waly@urz.uni-heidelberg.de SAS Mining Challenge Generelle

Mehr

Sozialwissenschaftliche Methoden I

Sozialwissenschaftliche Methoden I Sozialwissenschaftliche Methoden I 4. Grundlagen der empirischen Sozialforschung Wintersemester 2008/09 Jr.-Prof. Dr. Thomas Behrends Internationales Institut für Management ABWL, insb. Personal und Organisation

Mehr

Grundlagen Statistik Angewandte Statistik 3. Semester

Grundlagen Statistik Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Zur Person Constantin von Craushaar Consultant / Partner Innstat e.u. (www.innstat.com) info@innstat.com Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS

Mehr

Management Support Systeme

Management Support Systeme Management Support Systeme WS 24-25 4.-6. Uhr PD Dr. Peter Gluchowski Folie Gliederung MSS WS 4/5. Einführung Management Support Systeme: Informationssysteme zur Unterstützung betrieblicher Fach- und Führungskräfte

Mehr

S K A L A Predictive Policing als praxisorientiertes Projekt der Polizei NRW

S K A L A Predictive Policing als praxisorientiertes Projekt der Polizei NRW S K A L A Predictive Policing als praxisorientiertes Projekt der Polizei NRW Dieter Schürmann, Landeskriminaldirektor Ministerium für Inneres und Kommunales NRW Projektziel Möglichkeiten und Grenzen der

Mehr

Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden

Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden Dr. Thomas Bernard 6. Karlsruher Automations-Treff (KAT) Leit- und Automatisierungstechnik der Zukunft Karlsruhe,

Mehr

riskkv Scorenalyse riskkv Scoring Seite 1 von 9

riskkv Scorenalyse riskkv Scoring Seite 1 von 9 riskkv Scorenalyse riskkv Scoring Seite 1 von 9 Das Modul dient der flexiblen Erstellung, Auswertung und Verwendung von Scores. Durch vordefinierte Templates können in einer Einklicklösung bspw. versichertenbezogene

Mehr

Data Mining in SAP NetWeaver BI

Data Mining in SAP NetWeaver BI Martin Kießwetter, Dirk Vahl kam p Data Mining in SAP NetWeaver BI Galileo Press Bonn Boston 2.1 Was ist Data Mining? 17 2.2 Data Mining, KDD und Business Intelligence 20 2.3 KDD-Prozessmodelle 22 2.4

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

Wissenschaftliches Arbeiten

Wissenschaftliches Arbeiten Dr. Christian Schicha (www.schicha.net) Was ist Wissenschaft? Überliefertes Wissen durch Forschung und Lehre Ziele von Wissenschaft? Wissen ordnen und begründen, Erkenntnisse gewinnen und Wissen erweitern,

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

TÜV Service tested Prüfgrundlagen

TÜV Service tested Prüfgrundlagen TÜV Service tested Prüfgrundlagen 60 Grundsätzliche Prüfgrundlagen Für die Auszeichnung TÜV Service tested müssen drei Voraussetzungen erfüllt sein: 1. Die Gesamtzufriedenheit muss von den Kunden des Unternehmens

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Fragenkatalog zur Vorlesung "Grundlagen des Data Mining" (WS 2006/07)

Fragenkatalog zur Vorlesung Grundlagen des Data Mining (WS 2006/07) Fragenkatalog zur Vorlesung "Grundlagen des Data Mining" (WS 2006/07) 1. Grenzen Sie die Begriffe "Daten" und "Wissen" mit je 3 charakteristischen Eigenschaften gegeander ab. 2. Nennen Sie vier verschiedene

Mehr

Data Mining für die industrielle Praxis

Data Mining für die industrielle Praxis Data Mining für die industrielle Praxis von Ralf Otte, Viktor Otte, Volker Kaiser 1. Auflage Hanser München 2004 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22465 0 Zu Leseprobe schnell und

Mehr

Mitarbeiterbefragung als PE- und OE-Instrument

Mitarbeiterbefragung als PE- und OE-Instrument Mitarbeiterbefragung als PE- und OE-Instrument 1. Was nützt die Mitarbeiterbefragung? Eine Mitarbeiterbefragung hat den Sinn, die Sichtweisen der im Unternehmen tätigen Menschen zu erkennen und für die

Mehr

Sozialwissenschaftliche Methoden I [BA IM 2stündig] Sommersemester 2010

Sozialwissenschaftliche Methoden I [BA IM 2stündig] Sommersemester 2010 Sozialwissenschaftliche Methoden I [BA IM 2stündig] Sommersemester 2010 Max. Gesamtpunktzahl: 28 (bestanden mit 14 Punkten) Matrikelnummer: - Bei Antwortmöglichkeiten mit müssen Sie jeweils alle die Kästchen

Mehr

Masterarbeit. im Studiengang Informatik. Kombinationen von Data Mining-Verfahren: Analyse und Automatisierung. Ulf Mewe Matrikel.-Nr.

Masterarbeit. im Studiengang Informatik. Kombinationen von Data Mining-Verfahren: Analyse und Automatisierung. Ulf Mewe Matrikel.-Nr. LEIBNIZ UNIVERSITÄT HANNOVER FAKULTÄT FÜR ELEKTROTECHNIK UND INFORMATIK INSTITUT FÜR PRAKTISCHE INFORMATIK FACHGEBIET DATENBANKEN UND INFORMATIONSSYSTEME Masterarbeit im Studiengang Informatik Kombinationen

Mehr

Präsentation zur Diplomprüfung. Thema der Diplomarbeit:

Präsentation zur Diplomprüfung. Thema der Diplomarbeit: Präsentation zur Diplomprüfung Thema der Diplomarbeit: Analyse der Einsatzmöglichkeiten von Data Mining- Verfahren innerhalb einer Unternehmens - Balanced Scorecard und Entwicklung eines Empfehlungskatalogs.

Mehr

Deduktive und induktive Aspekte statistischer Methoden

Deduktive und induktive Aspekte statistischer Methoden Deduktive und induktive Aspekte statistischer Methoden Wissenschaftshistorische und -philosophische Grundlagen Felix Günther Institut für Statistik Ludwig-Maximilians-Universität München Prof. Seising

Mehr

Übung: Einführung in die Politikwissenschaft Wissenschaftliches Arbeiten Herbstsemester 2012

Übung: Einführung in die Politikwissenschaft Wissenschaftliches Arbeiten Herbstsemester 2012 Übung: Einführung in die Politikwissenschaft Wissenschaftliches Arbeiten Herbstsemester 2012 an der Fakultät für Sozialwissenschaften, Fachbereich Politikwissenschaft, der Universität Mannheim 7. Sitzung

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. Datenanalyse II. Stefan Etschberger Sommersemester 2005

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. Datenanalyse II. Stefan Etschberger Sommersemester 2005 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg Datenanalyse II Stefan Etschberger Sommersemester 2005 Organisatorisches Vorlesung Montag, 10.15-11.45 Uhr Vorlesungsmaterialien

Mehr

Analytisches Fundraising

Analytisches Fundraising Analytisches Fundraising Vorgehen, Verfahren, Werkzeuge DiaSys. Marketing Engineering AG, Wankdorffeldstr.102, 3014 Bern 031 922 31 50, zuercher@diasys.ch Analytisches Fundraising Inhaltsverzeichnis Datenbankgestütztes

Mehr

Praxisorientierte. Weiterbildung KURSE 2014. dynelytics AG SCHNECKENMANNSTRASSE 25 CH-8044 ZÜRICH

Praxisorientierte. Weiterbildung KURSE 2014. dynelytics AG SCHNECKENMANNSTRASSE 25 CH-8044 ZÜRICH KURSE 2014 Praxisorientierte Weiterbildung dynelytics AG SCHNECKENMANNSTRASSE 25 CH-8044 ZÜRICH TELEFON (+41) 44 266 90 30 FAX (+41) 44 266 90 39 E-MAIL INFO@DYNELYTICS.COM Dynelytics IBM SPSS-Kurse 2014

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc.

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc. Advanced Analytics Michael Ridder Was ist Advanced Analytics? 2 Was heißt Advanced Analytics? Advanced Analytics ist die autonome oder halbautonome Prüfung von Daten oder Inhalten mit ausgefeilten Techniken

Mehr

Data Mining-Modelle und -Algorithmen

Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining ist ein Prozess, bei dem mehrere Komponenten i n- teragieren. Sie greifen auf Datenquellen, um diese zum Training,

Mehr

Klausur Strategisches Marketing und Internationales Marketing WS 2013/14 1

Klausur Strategisches Marketing und Internationales Marketing WS 2013/14 1 Klausur Strategisches Marketing und Internationales Marketing WS 2013/14 1 Klausur Strategisches Marketing und Internationales Marketing WS 2013/14 Gesamtpunktzahl: 120 Aufgabe 1: Informationsgrundlagen

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

Prof. Dr. Achim Bühl SPSS 16. Einführung in die moderne Datenanalyse. 7 7., überarbeitete und erweiterte Auflage PEARSON. Studium

Prof. Dr. Achim Bühl SPSS 16. Einführung in die moderne Datenanalyse. 7 7., überarbeitete und erweiterte Auflage PEARSON. Studium Prof. Dr. Achim Bühl SPSS 16 Einführung in die moderne Datenanalyse 7 7., überarbeitete und erweiterte Auflage PEARSON Studium ein Imprint von Pearson Education München Boston San Francisco Harlow, England

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Der Gartner Hype Cycle als. prognostischer Hintergrund

Der Gartner Hype Cycle als. prognostischer Hintergrund Der Gartner Hype Cycle als 2 prognostischer Hintergrund Die Digitale Revolution steht nicht bevor, sondern sie entfaltet in vielen Bereichen schon die Kraft der schöpferischen Zerstörung. Eine wichtige

Mehr

Phrasensammlung für wissenschaftliches Arbeiten

Phrasensammlung für wissenschaftliches Arbeiten Phrasensammlung für wissenschaftliches Arbeiten Einleitung In diesem Aufsatz/dieser Abhandlung/dieser Arbeit werde ich... untersuchen/ermitteln/bewerten/analysieren... Um diese Frage zu beantworten, beginnen

Mehr

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen Bildungsurlaub-Seminare: Lerninhalte und Programm Seminartitel SPSS für Psychologen/innen (BH15113) Termin Mo, den 18.05.bis Fr, den 22.05.2015 (40 UStd.) Veranstaltungsort Bildungsherberge der Studierendenschaft

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann

Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann Andreas Ditze MID GmbH Kressengartenstraße 10 90402 Nürnberg a.ditze@mid.de Abstract: Data Lineage

Mehr

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN

EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN EXTRAKTION UND KLASSIFIKATION VON BEWERTETEN PRODUKTFEATURES AUF WEBSEITEN T-SYSTEMS MULTIMEDIA SOLUTIONS GMBH, 16. FEBRUAR 2012 1. Schlüsselworte Semantic Web, Opinion Mining, Sentiment Analysis, Stimmungsanalyse,

Mehr

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend

Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Formulierungshilfen für das wissenschaftliche Schreiben

Formulierungshilfen für das wissenschaftliche Schreiben Formulierungshilfen für das wissenschaftliche Schreiben 1. Einleitendes Kapitel 1.1.1 Einen Text einleiten und zum Thema hinführen In der vorliegenden Arbeit geht es um... Schwerpunkt dieser Arbeit ist...

Mehr

Datengrab oder Goldgrube: Steigerung der Prozess-Effizienz und Produktqualität mit Data-Mining-Methoden

Datengrab oder Goldgrube: Steigerung der Prozess-Effizienz und Produktqualität mit Data-Mining-Methoden Datengrab oder Goldgrube: Steigerung der Prozess-Effizienz und Produktqualität mit Data-Mining-Methoden Dr. Thomas Bernard Fraunhofer-Institut für Systemtechnik, Optronik und Bildauswertung Karlsruhe HANNOVER

Mehr

Web Mining effektive Analyse des Nutzer- Verhaltens im Internet

Web Mining effektive Analyse des Nutzer- Verhaltens im Internet Web Mining effektive Analyse des Nutzer- Verhaltens im Internet Dr. Frank Säuberlich Business Unit e-intelligence SAS Deutschland Agenda 1. Begriffsdefinition e-intelligence: Systemdimension Angebotsdimension

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose

Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose Informatik Philipp von der Born Regressionsanalyse zur Optimierung von künstlichen neuronalen Netzen bei der DAX-Prognose Bachelorarbeit Universität Bremen Studiengang Informatik Regressionsanalyse zur

Mehr

Big Data als neuer Partner von Six Sigma Optimierung der diskreten Produktion

Big Data als neuer Partner von Six Sigma Optimierung der diskreten Produktion Big Data als neuer Partner von Six Sigma Optimierung der diskreten Produktion Frank Effenberger, Marco Fischer, 22.06.2015, München Agenda Firmenpräsentation Einführung Anwendungsfall Fazit Zahlen und

Mehr

1 Einleitung... 1. 1.1 Ausgangssituation... 2. 1.2 Explorative Voruntersuchungen zur Konkretisierung der Problemstellung... 6

1 Einleitung... 1. 1.1 Ausgangssituation... 2. 1.2 Explorative Voruntersuchungen zur Konkretisierung der Problemstellung... 6 XV Inhaltsverzeichnis 1 Einleitung... 1 1.1 Ausgangssituation... 2 1.2 Explorative Voruntersuchungen zur Konkretisierung der Problemstellung... 6 1.3 Zielsetzungen und Abgrenzung... 9 1.4 Stand der Wissenschaft,

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

kaufen E-Commerce in Mitteldeutschland Kaufen Die komplette Potenzialstudie "E-Commerce in Mitteldeutschland" Studie zur Bedeutung des E-Commerce im Raum Mitteldeutschland 2012 kann auf der Webseite der

Mehr

Adoptionsfaktoren. Thorsten^Litfin^ Empirische Analyse am Beispiel eines innovativen Telekommunikationsdienstes. Deutscher Universitäts-Verlag

Adoptionsfaktoren. Thorsten^Litfin^ Empirische Analyse am Beispiel eines innovativen Telekommunikationsdienstes. Deutscher Universitäts-Verlag Thorsten^Litfin^ Adoptionsfaktoren Empirische Analyse am Beispiel eines innovativen Telekommunikationsdienstes Mit einem Geleitwort von Prof. Dr. Sänke Albers Deutscher Universitäts-Verlag Inhaltsverzeichnis

Mehr

Marktforschung und Datenanalyse

Marktforschung und Datenanalyse Marktforschung und Datenanalyse Lehrstuhl für BWL, insb. Marketing von Prof. Dr. Reinhold Decker Dozentin: Anja Hörmeyer (M.Sc.) Universität Bielefeld, Lehrstuhl für BWL, insb. Marketing 1 Anja Hörmeyer

Mehr

Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels

Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels Prototypenentwicklung zur Identifikation gleichartiger Nachrichtenticker am Beispiel des Gashandels TDWI Konferenz München, 24.06.2014 M.Sc.Susann Dreikorn Institut für Wirtschaftsinformatik, 2014 Agenda

Mehr

Inhaltsverzeichnis. Abbildungsverzeichnis...III. 1 Management Summary... 1. 2 Einleitung... 5. 3 Vorgehensweise und Methodik... 6

Inhaltsverzeichnis. Abbildungsverzeichnis...III. 1 Management Summary... 1. 2 Einleitung... 5. 3 Vorgehensweise und Methodik... 6 I Inhaltsverzeichnis Abbildungsverzeichnis...III 1 Management Summary... 1 2 Einleitung... 5 3 Vorgehensweise und Methodik... 6 3.1 Sekundärerhebung...6 3.2 Primärerhebung...14 3.2.1 Design der empirischen

Mehr

Befragung und empirische Einschätzung der Praxisrelevanz

Befragung und empirische Einschätzung der Praxisrelevanz Befragung und empirische Einschätzung der Praxisrelevanz eines Vorgehensmodells zur Auswahl von CRM-Systemen D I P L O M A R B E I T zur Erlangung des Grades eines Diplom-Ökonomen der Wirtschaftswissenschaftlichen

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

14 PRÜFUNGSINHALTE MARKETINGFACH- LEUTE

14 PRÜFUNGSINHALTE MARKETINGFACH- LEUTE 14 PRÜFUNGSINHALTE MARKETINGFACH- LEUTE Marktforschung (Prüfungszeit: 1.5 Stunden schriftlich) ALLGEMEIN Sinnvolle Selektionskriterien für die Wahl eines geeigneten Marktforschungsinstitutsumschreiben

Mehr

Mining the Web. Analyse von Benutzerpfaden und Nutzertypen im Internet. Business Unit CRM Solutions SAS Deutschland. Dr.

Mining the Web. Analyse von Benutzerpfaden und Nutzertypen im Internet. Business Unit CRM Solutions SAS Deutschland. Dr. Mining the Web Analyse von Benutzerpfaden und Nutzertypen im Internet Dr. Frank Säuberlich Business Unit CRM Solutions SAS Deutschland Agenda 1. Einleitung: Der Lebenszyklus eines e-kunden Begriffsdefinition

Mehr

DataMining in der polizeilichen Anwendung

DataMining in der polizeilichen Anwendung Hintergrund / Motivation DataMining in der polizeilichen Anwendung Heiko Held, BKA Wiesbaden Zur Zuständigkeit des Fachbereichs KI14 zählt u.a. die Marktbeobachtung und Toolauswahl im Bereich von Analysesoftware.

Mehr

Visual Business Intelligence Eine Forschungsperspektive

Visual Business Intelligence Eine Forschungsperspektive Visual Business Intelligence Eine Forschungsperspektive Dr. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155 646 Fax.: +49

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Business Intelligence mit Microsoft SQL Server 2005

Business Intelligence mit Microsoft SQL Server 2005 Business Intelligence mit Microsoft SQL Server 2005 Holger Schrödl ISBN 3-446-40463-5 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40463-5 sowie im Buchhandel 4.6

Mehr

2.2. Wissenschaftstheoretische Grundzüge der Gewinnung von Erkenntnissen über Märkte 10

2.2. Wissenschaftstheoretische Grundzüge der Gewinnung von Erkenntnissen über Märkte 10 Vorwort V Abbildungsverzeichnis XIII 1. Überblick über die behandelten Problembereiche 3 2. Aufgaben und wissenschaftstheoretische Grundzüge der Marktforschung 9 2.1. Klassische Aufgaben der Marktforschung

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe

Risiken bei der Analyse sehr großer Datenmengen. Dr. Thomas Hoppe Risiken bei der Analyse sehr großer Datenmengen Dr. Thomas Hoppe Datenaufbereitung Datenanalyse Data Mining Data Science Big Data Risiken der Analyse Sammlung Integration Transformation Fehlerbereinigung

Mehr