Grundzustandsberechnung von Gross-Pitaevskii Gleichungen

Größe: px
Ab Seite anzeigen:

Download "Grundzustandsberechnung von Gross-Pitaevskii Gleichungen"

Transkript

1 Grundzustandsberechnung von Gross-Pitaevskii Gleichungen Christoph Bischko, Lukas Einkemmer, Dominik Steinhauser Fakultät für Mathematik, Informatik und Physik Universität Innsbruck 2. Juli, 2010 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

2 Einleitung - BEC (Bose-Einstein condensate) Eigener Aggregatzustand, 1924 von Bose und Einstein vorhergesagt, 1995 erstmals experimentell realisiert Bosonische Teilchen im selben Quantenzustand bei Temperaturen nahe 0K Im BEC sind die Teilchen delokalisiert Zustand beschreibbar durch einzelne Wellenfunktion Supraleitung, Suprafluidität, Kohärenz Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

3 Einleitung - BEC II Molekularfeldtheoretische (mean-field theory) Betrachtung eines wechselwirkenden BEC bei T=0K unter Vernachlässigung von Fluktuationen i ψ dt = 2 ψ 2m + V ( r)ψ + g ψ 2 ψ } {{ } } {{ } } {{ } potentielle Energie (nichtlineare) Wechslewirkung Kinetische Energie Wechselwirkungsterm: ψ 2 = n Teilchendichte g = 4π a m Kopplungskonstante mit Streulänge a in Einheiten des Bohr Radius, z.b a = 100 für 87 Rb Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

4 Einleitung Problem 1 Ziel: Berechnen des Grundzustandes/ersten angeregten Zustandes 2 (Lineare) Schrödingergleichung i t ψ(x, t) = ( V (x) ) ψ(x, t) 3 Gross-Pitaevskii Gleichung i t ψ(x, t) = ( V (x) + ϑ ψ(x, t) 2 ) ψ(x, t) Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

5 Einleitung Problem 1 Ziel: Berechnen des Grundzustandes/ersten angeregten Zustandes 2 (Lineare) Schrödingergleichung i t ψ(x, t) = ( V (x) ) ψ(x, t) 3 Gross-Pitaevskii Gleichung i t ψ(x, t) = ( V (x) + ϑ ψ(x, t) 2 ) ψ(x, t) Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

6 Einleitung Problem 1 Ziel: Berechnen des Grundzustandes/ersten angeregten Zustandes 2 (Lineare) Schrödingergleichung i t ψ(x, t) = ( V (x) ) ψ(x, t) 3 Gross-Pitaevskii Gleichung i t ψ(x, t) = ( V (x) + ϑ ψ(x, t) 2 ) ψ(x, t) Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

7 Motivation Imaginäre Zeit 1 Substituiere t = iτ in die lin. Schrödingergleichung ( ) 1 φ(x, τ) = τ 2 V (x) φ(x, τ) = Hφ(x, τ) 2 Ansatz φ(x, 0) = c i φ i (x) i=0 Hφ i = E i φ i, mit E 0 < E 1 <... 3 Lösung der Schrödingergleichung φ(x, τ) = e τe i φ i (x) i=0 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

8 Motivation Imaginäre Zeit 1 Substituiere t = iτ in die lin. Schrödingergleichung ( ) 1 φ(x, τ) = τ 2 V (x) φ(x, τ) = Hφ(x, τ) 2 Ansatz φ(x, 0) = c i φ i (x) i=0 Hφ i = E i φ i, mit E 0 < E 1 <... 3 Lösung der Schrödingergleichung φ(x, τ) = e τe i φ i (x) i=0 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

9 Motivation Imaginäre Zeit 1 Substituiere t = iτ in die lin. Schrödingergleichung ( ) 1 φ(x, τ) = τ 2 V (x) φ(x, τ) = Hφ(x, τ) 2 Ansatz φ(x, 0) = c i φ i (x) i=0 Hφ i = E i φ i, mit E 0 < E 1 <... 3 Lösung der Schrödingergleichung φ(x, τ) = e τe i φ i (x) i=0 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

10 Motivation Imaginäre Zeit (Fortsetzung) 1 Da E 0 < E 1 <... e τe i e τe 0 0, τ 2 Daher lim τ 3 Löse Gleichung in imaginärer Zeit φ(x, τ) φ(x, τ) = φ 0(x) 4 Beitrag von φ i, i 0 verschwindet für große τ exponentiell 5 Nach Normalisierung bleibt nur der Grundzustand erhalten 6 Anfangszustand ist egal solange c 0 0 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

11 Motivation Imaginäre Zeit (Fortsetzung) 1 Da E 0 < E 1 <... e τe i e τe 0 0, τ 2 Daher lim τ 3 Löse Gleichung in imaginärer Zeit φ(x, τ) φ(x, τ) = φ 0(x) 4 Beitrag von φ i, i 0 verschwindet für große τ exponentiell 5 Nach Normalisierung bleibt nur der Grundzustand erhalten 6 Anfangszustand ist egal solange c 0 0 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

12 Motivation Imaginäre Zeit (Fortsetzung) 1 Da E 0 < E 1 <... e τe i e τe 0 0, τ 2 Daher lim τ 3 Löse Gleichung in imaginärer Zeit φ(x, τ) φ(x, τ) = φ 0(x) 4 Beitrag von φ i, i 0 verschwindet für große τ exponentiell 5 Nach Normalisierung bleibt nur der Grundzustand erhalten 6 Anfangszustand ist egal solange c 0 0 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

13 Motivation Imaginäre Zeit (Fortsetzung) 1 Da E 0 < E 1 <... e τe i e τe 0 0, τ 2 Daher lim τ 3 Löse Gleichung in imaginärer Zeit φ(x, τ) φ(x, τ) = φ 0(x) 4 Beitrag von φ i, i 0 verschwindet für große τ exponentiell 5 Nach Normalisierung bleibt nur der Grundzustand erhalten 6 Anfangszustand ist egal solange c 0 0 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

14 Motivation Imaginäre Zeit (Fortsetzung) 1 Da E 0 < E 1 <... e τe i e τe 0 0, τ 2 Daher lim τ 3 Löse Gleichung in imaginärer Zeit φ(x, τ) φ(x, τ) = φ 0(x) 4 Beitrag von φ i, i 0 verschwindet für große τ exponentiell 5 Nach Normalisierung bleibt nur der Grundzustand erhalten 6 Anfangszustand ist egal solange c 0 0 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

15 Motivation Imaginäre Zeit (Fortsetzung) 1 Da E 0 < E 1 <... e τe i e τe 0 0, τ 2 Daher lim τ 3 Löse Gleichung in imaginärer Zeit φ(x, τ) φ(x, τ) = φ 0(x) 4 Beitrag von φ i, i 0 verschwindet für große τ exponentiell 5 Nach Normalisierung bleibt nur der Grundzustand erhalten 6 Anfangszustand ist egal solange c 0 0 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

16 Gross-Pitaevskii Gleichung Imaginäre Zeit 1 Adaptierung zur nichtlinearen Schrödingergleichung 2 Mit t = iτ ( ) 1 φ(x, τ) = V (x) ϑ ψ(x, t) 2 ψ(x, t) τ 2 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

17 Gross-Pitaevskii Gleichung Imaginäre Zeit 1 Adaptierung zur nichtlinearen Schrödingergleichung 2 Mit t = iτ ( ) 1 φ(x, τ) = V (x) ϑ ψ(x, t) 2 ψ(x, t) τ 2 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

18 Rückwärts-Euler Sinus Pseudospektral Methode Vorarbeit 1 Einschränkung auf Potentiale der Form 2 Betrachte Bereich [a, b] V (x) =V 0 (x) + W (x) V 0 (x) = 1 2 γ, x 2 W (x) lim x V 0 (x) =0 3 Wegschneiden wo die Lösung ohnehin verschwindet 4 Homogene Randwerte Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

19 Rückwärts-Euler Sinus Pseudospektral Methode Vorarbeit 1 Einschränkung auf Potentiale der Form 2 Betrachte Bereich [a, b] V (x) =V 0 (x) + W (x) V 0 (x) = 1 2 γ, x 2 W (x) lim x V 0 (x) =0 3 Wegschneiden wo die Lösung ohnehin verschwindet 4 Homogene Randwerte Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

20 Rückwärts-Euler Sinus Pseudospektral Methode Vorarbeit 1 Einschränkung auf Potentiale der Form 2 Betrachte Bereich [a, b] V (x) =V 0 (x) + W (x) V 0 (x) = 1 2 γ, x 2 W (x) lim x V 0 (x) =0 3 Wegschneiden wo die Lösung ohnehin verschwindet 4 Homogene Randwerte Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

21 Rückwärts-Euler Sinus Pseudospektral Methode Vorarbeit 1 Einschränkung auf Potentiale der Form 2 Betrachte Bereich [a, b] V (x) =V 0 (x) + W (x) V 0 (x) = 1 2 γ, x 2 W (x) lim x V 0 (x) =0 3 Wegschneiden wo die Lösung ohnehin verschwindet 4 Homogene Randwerte Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

22 Rückwärts-Euler Sinus Pseudospektral Methode Diskretisierung 1 Herleitung (Tafel) 2 Führt auf ein lineares Gleichungssystem in jedem Zeitschritt 3 Iterative Lösung Aφ,m+1 = Bφ,m + φ n A = (1 + α t)i t 2 Ds xx ( B = t diag α V (x 1 ) ϑ φ n 1 2,..., α V (x M 1 ) ϑ φ n 2) M 1 4 Konvergenzbeweis (Tafel) Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

23 Rückwärts-Euler Sinus Pseudospektral Methode Diskretisierung 1 Herleitung (Tafel) 2 Führt auf ein lineares Gleichungssystem in jedem Zeitschritt 3 Iterative Lösung Aφ,m+1 = Bφ,m + φ n A = (1 + α t)i t 2 Ds xx ( B = t diag α V (x 1 ) ϑ φ n 1 2,..., α V (x M 1 ) ϑ φ n 2) M 1 4 Konvergenzbeweis (Tafel) Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

24 Rückwärts-Euler Sinus Pseudospektral Methode Diskretisierung 1 Herleitung (Tafel) 2 Führt auf ein lineares Gleichungssystem in jedem Zeitschritt 3 Iterative Lösung Aφ,m+1 = Bφ,m + φ n A = (1 + α t)i t 2 Ds xx ( B = t diag α V (x 1 ) ϑ φ n 1 2,..., α V (x M 1 ) ϑ φ n 2) M 1 4 Konvergenzbeweis (Tafel) Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

25 Rückwärts-Euler Sinus Pseudospektral Methode Diskretisierung 1 Herleitung (Tafel) 2 Führt auf ein lineares Gleichungssystem in jedem Zeitschritt 3 Iterative Lösung Aφ,m+1 = Bφ,m + φ n A = (1 + α t)i t 2 Ds xx ( B = t diag α V (x 1 ) ϑ φ n 1 2,..., α V (x M 1 ) ϑ φ n 2) M 1 4 Konvergenzbeweis (Tafel) Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

26 Implementierung Lineare Schrödingergleichung Anfangswert zufallsverteilt Ergebnis: Grundzustand für harmonisches Potential Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

27 Grundzustand - Schrödingergleichung Gross-Pitaevskii Gleichung Bekannte Lösung für ϑ = 0 kann als Anfangswert verwendet werden Funktioniert gut für ϑ 10 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

28 Grundzustand - TF Approximation Gross-Pitaevskii Gleichung Für große ϑ ist die Thomas-Fermi Approximation als Anfangswert eine gute Wahl (hier z.b. ϑ = 400) Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

29 Erster angeregter Zustand Implementierung 1 Gleiche Methodik kann dazu verwendet werden φ 1 zu berechnen 2 Entscheidend ist die Wahl des Anfangswertes 3 Wenn V (x) gerade ist kann φ 0 (x) ungerade gewählt werden 4 Konvergenz gegen den ersten angeregten Zustand Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

30 Erster angeregter Zustand Implementierung 1 Gleiche Methodik kann dazu verwendet werden φ 1 zu berechnen 2 Entscheidend ist die Wahl des Anfangswertes 3 Wenn V (x) gerade ist kann φ 0 (x) ungerade gewählt werden 4 Konvergenz gegen den ersten angeregten Zustand Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

31 Erster angeregter Zustand Implementierung 1 Gleiche Methodik kann dazu verwendet werden φ 1 zu berechnen 2 Entscheidend ist die Wahl des Anfangswertes 3 Wenn V (x) gerade ist kann φ 0 (x) ungerade gewählt werden 4 Konvergenz gegen den ersten angeregten Zustand Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

32 Erster angeregter Zustand Implementierung 1 Gleiche Methodik kann dazu verwendet werden φ 1 zu berechnen 2 Entscheidend ist die Wahl des Anfangswertes 3 Wenn V (x) gerade ist kann φ 0 (x) ungerade gewählt werden 4 Konvergenz gegen den ersten angeregten Zustand Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

33 Erster angeregter Zustand ϑ = 400 Christoph, Lukas, Dominik (Univ. Innsbruck) Grundzustand Gross-Pitaevskii 2. Juli, / 14

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme

4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 4. Energetik des Kristallgitters 4.1 Energie und spezifische Wärme 1. Hauptsatz der Thermodynamik: du = dq + dw, U = E kin + E pot Keine externen Felder: dw = -pdv Metalle: Thermische Ausdehnung: a 10-6

Mehr

Die Klein-Gordon Gleichung

Die Klein-Gordon Gleichung Kapitel 5 Die Klein-Gordon Gleichung 5.1 Einleitung Die Gleichung für die Rutherford-Streuung ist ein sehr nützlicher Ansatz, um die Streuung von geladenen Teilchen zu studieren. Viele Aspekte sind aber

Mehr

Physik 4, Übung 8, Prof. Förster

Physik 4, Übung 8, Prof. Förster Physik 4, Übung 8, Prof. Förster Christoph Hansen Emailkontakt Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit. Falls

Mehr

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens

8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 1 8.6.1 Erwartungswert eines beliebigen Operators O 8.6.2 Beispiel: Erwartungswert des Impulses eines freien Teilchens phys4.013 Page 2 8.6.3 Beispiel: Orts- und Impuls-Erwartungswerte für

Mehr

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen

Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II. Musterlösungen UNIVERSITÄT ZU KÖLN Institut für Theoretische Physik Wintersemester 005/006 Nachklausur zur Vorlesung Theoretische Physik in zwei Semestern II Musterlösungen 1. Welche experimentellen Tatsachen weisen

Mehr

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik

Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Formulierung einer relativistisch invarianten Definition der Energie von Gravitationswellen - ein unerwarteter Zusammenhang zur Quantenmechanik Von Torsten Pieper Mannheim 11. November 2013 Zusammenfassung

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften

Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 14/15 Dr. Hanna Peywand Kiani 06.07.2015 Klausurberatung Differentialgleichungen I für Studierende der Ingenieurwissenschaften Die ins Netz gestellten

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 21 Übungsblatt Nr. 3 Bearbeitung bis 6.5.21 Aufgabe 1: Neutronensterne Im Allgemeinen kann man annehmen, dass die Dichte in Zentrum von Neutronensternen

Mehr

Analytische Fortsetzung der Gross-Pitaevskii-Gleichung für PT -symmetrische Bose-Einstein-Kondensate

Analytische Fortsetzung der Gross-Pitaevskii-Gleichung für PT -symmetrische Bose-Einstein-Kondensate Analytische Fortsetzung der Gross-Pitaevskii-Gleichung für PT -symmetrische Bose-Einstein-Kondensate Bachelorarbeit von Helmut Frasch 24. Februar 2014 Prüfer: Prof. Dr. Jörg Main 1. Institut für Theoretische

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Vorlesung 5 Quantenstatistik Florian Lippert & Andreas Trautner 31.08.2012 Inhaltsverzeichnis 1 Quantenstatistik 1 1.1 Vorüberlegungen............................... 1 1.2

Mehr

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil

Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil Quantenchemie WS 2008/2009 Zusammenfassung 1. Teil 1. Grundlagen der Quantenmechanik (a) Wellenfunktion: Die Wellenfunktion Ψ(x, t) beschreibt den quantenmechanischen Zustand eines Teilchens am Ort x zur

Mehr

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15

Physikdepartment. Ferienkurs zur Experimentalphysik 4. Daniel Jost 10/09/15 Physikdepartment Ferienkurs zur Experimentalphysik 4 Daniel Jost 10/09/15 Inhaltsverzeichnis Technische Universität München 1 Kurze Einführung in die Thermodynamik 1 1.1 Hauptsätze der Thermodynamik.......................

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Motivation. Motivation 2

Motivation. Motivation 2 Grenzzyklen 1 Motivation Grenzzyklen modellieren von selbst oszillierende Systeme Stabile Grenzzyklen kleine Abweichungen in den Anfangsbedingungen gehen in Grenzzyklus über Beispiele: Van-der-Pol Schwingkreis

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

Untersuchung des mathematischen Pendels

Untersuchung des mathematischen Pendels Untersuchung des mathematischen Pendels Thomas Bächler, Markus Lange-Hegermann, Marcel Wallraff Aachen, 7. Mai 7 Einführung Im folgenden Abschnitt wird eine kurze Voruntersuchung des mathematischen Pendel

Mehr

Ferienkurs Experimentalphysik 4

Ferienkurs Experimentalphysik 4 Ferienkurs Experimentalphysik 4 Probeklausur Markus Perner, Markus Kotulla, Jonas Funke Aufgabe 1 (Allgemeine Fragen). : (a) Welche Relation muss ein Operator erfüllen damit die dazugehörige Observable

Mehr

Finite Elemente in Materialwissenschaften

Finite Elemente in Materialwissenschaften Finite Elemente in Materialwissenschaften Dieter Süss Institut für Festkörperphysik (8. Stock gelb) Vienna University of Technology dieter.suess@tuwien.ac.at http:/// http:///suess/papers Outline Geschichte

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Das Higgs- Teilchen: Supersymetrische Teilchen:

Das Higgs- Teilchen: Supersymetrische Teilchen: Das CMS- Experiment Das Compact Muon Solenoid Experiment (CMS) am neugebauten Large Hadron Colider (LHC) am CERN ist ein hochpräziser Teilchendetektor mit dessen Hilfe das bis jetzt nicht experimentell

Mehr

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik

Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Grundzustand und erster angeregter Zustand des Heliumatoms Studienprojekt Molekül- und Festkörperphysik Manuel Zingl 83433 WS 2/2 Einleitung Helium (in stabiler Form) setzt sich aus zwei Protonen, ein

Mehr

Bogenschießen. Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit

Bogenschießen. Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit Bogenschießen Jan-Patrick Wo hner/jonas Pfeil 30. Januar 2014 Institut fu r experimentelle Physik, Projektpraktikum Untersuchung der Auswirkung verschiedener Pfeilgewichte auf die Abschussgeschwindigkeit

Mehr

Ab initio Methoden zur Berechnung der elektronischen Struktur

Ab initio Methoden zur Berechnung der elektronischen Struktur Hauptseminar Elektronentransport in anostrukturen Ab initio Methoden zur Berechnung der elektronischen Struktur Michael Kühn 3.0.2009 Inhalt Inhalt:. Vorbemerkung 2. Die Hartree-Fock-Theorie (HF) 3. Die

Mehr

ν und λ ausgedrückt in Energie E und Impuls p

ν und λ ausgedrückt in Energie E und Impuls p phys4.011 Page 1 8.3 Die Schrödinger-Gleichung die grundlegende Gleichung der Quantenmechanik (in den bis jetzt diskutierten Fällen) eine Wellengleichung für Materiewellen (gilt aber auch allgemeiner)

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn,

Stroppel Musterlösung , 180min. Aufgabe 1 (7 Punkte) Gegeben seien folgende Potenzreihen: ( 2) n n xn, Stroppel Musterlösung 0. 09. 03, 80min Aufgabe 7 Punkte) Gegeben seien folgende Potenzreihen: ) n fx) = n xn, gx) = n= + ) n n x+) n. 3 n= a) Bestimmen Sie jeweils den Konvergenzradius und den Entwicklungspunkt.

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Nichtlineare Optimierungsprobleme mit Komplexität

Nichtlineare Optimierungsprobleme mit Komplexität Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-

Mehr

4.3 Anwendungen auf Differentialgleichungen

4.3 Anwendungen auf Differentialgleichungen 7 4.3 Anwendungen auf Differentialgleichungen Die Laplace-Transformation wird gerne benutzt, um lineare Differentialgleichungen mit konstanten Koeffizienten y n + a n y n +... + a y + a 0 y ft zu lösen,

Mehr

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9

D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski. Serie 9 D-MATH Numerische Methoden FS 2016 Dr. Vasile Gradinaru Alexander Dabrowski Serie 9 Best Before: 24.5/25.5, in den Übungsgruppen (2 wochen) Koordinatoren: Alexander Dabrowski, HG G 52.1, alexander.dabrowski@sam.math.ethz.ch

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 2: konservative Kräfte, Vielteilchensysteme und ausgedehnte Körper gehalten von: Markus

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt

Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph. D. Dipl.-inform. Oliver Kayser-Herold Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt Wir

Mehr

N.BORGHINI Version vom 20. November 2014, 21:56 Kernphysik

N.BORGHINI Version vom 20. November 2014, 21:56 Kernphysik II.4.4 b Kernspin und Parität angeregter Zustände Im Grundzustand besetzen die Nukleonen die niedrigsten Energieniveaus im Potentialtopf. Oberhalb liegen weitere Niveaus, auf welche die Nukleonen durch

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Übungen aus den numerischen Methoden der Astronomie SS 2011

Übungen aus den numerischen Methoden der Astronomie SS 2011 Übungen aus den numerischen Methoden der Astronomie SS 2011 1. Fermat Teil I : Berechnen Sie die Fläche eines rechtwinkeligen Dreiecks mit Hilfe des pythagoräischen Lehrsatzes. Die beiden Katheten sollen

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Präsenzübungen zur Vorlesung Theoretische Physik für Lehramt 2

Präsenzübungen zur Vorlesung Theoretische Physik für Lehramt 2 Präsenzübungen zur Vorlesung Theoretische Physik für Lehramt 2 Fakultät für Physik, Universität Wien, WS15 Beatrix C. Hiesmayr Blatt 1/L2/WS15 Auf den folgenden Seiten finden Sie Beispiele, die Sie bitte

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Simulationsmethoden für Windkraftanlagen: Interaktion von Umströmung und Struktur

Simulationsmethoden für Windkraftanlagen: Interaktion von Umströmung und Struktur Simulationsmethoden für Windkraftanlagen: Interaktion von Umströmung und Struktur Sigrun Ortleb Universtät Kassel FB 10 Mathematik und Naturwissenschaften AG Analysis und Angewandte Mathematik Sigrun Ortleb

Mehr

konvergent falls Sei eine allgemeine ("gutmütige") Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in

konvergent falls Sei eine allgemeine (gutmütige) Funktion. Frage: kann man sie in der Nähe des Punktes darstellen mittels einer Potenzreihe in C5 Funktionen: Reihenentwicklungen C5.1 Taylorreihen Brook Taylor (1685-1731) (Analysis-Vorlesung: Konvergenz von Reihen und Folgen) Grundlegende Frage: Wann / unter welchen Voraussetzungen lässt sich

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Physikalische Chemie 0 Klausur, 22. Oktober 2011

Physikalische Chemie 0 Klausur, 22. Oktober 2011 Physikalische Chemie 0 Klausur, 22. Oktober 2011 Bitte beantworten Sie die Fragen direkt auf dem Blatt. Auf jedem Blatt bitte Name, Matrikelnummer und Platznummer angeben. Zu jeder der 25 Fragen werden

Mehr

Mit den angegebenen Parametern ergeben sich folgend Kurven (analytische und numerische Lösung)

Mit den angegebenen Parametern ergeben sich folgend Kurven (analytische und numerische Lösung) Lösungen zur Übung 0/1: 'Evolutionsgleichung' Aufgabe 0/1: Der Code zur Berechnung der analytischen Lösung der Evolutionsgleichung findet sich im file evolution.f90, derjenige zur Berechnung der numerischen

Mehr

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2.

Definition. Fibonacci-Zahlen als Beispiel Für f = (f n ) n 0 = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34,...) gilt Rekursion. Matrix-Formulierung. c 2. Fibonacci-Zahlen als Beispiel Für f = (f n ) = (0,,, 2, 3, 5, 8, 3, 2, 34,...) gilt Rekursion erzeugende Funktion f n2 = f n f n (n 0), f 0 = 0, f = f(z) = f n z n = z z z 2 Partialbruchzerlegung mit φ

Mehr

Optimal Control in Air Traffic Management

Optimal Control in Air Traffic Management Optimal Control in Air Traffic Management DGLR Workshop Bestimmung optimaler Trajektorien im Air Traffic Management 23.04.2013 Deutsche Flugsicherung GmbH, Langen 23.04.2013 1 Inhalt. Hintergrund und Motivation.

Mehr

Reaktorvergleich mittels Verweilzeitverteilung

Reaktorvergleich mittels Verweilzeitverteilung Reaktorvergleich mittels Verweilzeitverteilung Bericht für das Praktikum Chemieingenieurwesen I WS06/07 Studenten: Francisco José Guerra Millán fguerram@student.ethz.ch Andrea Michel michela@student.ethz.ch

Mehr

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke

Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie. Jonas Lübke Das Unschärfeprodukt x p in der klassischen Mechanik Seminar zur Theorie der Atome, Kerne und kondensierten Materie Jonas Lübke 7. November 013 Inhaltsverzeichnis 1 Einführung 1 Beziehung zwischen klassischer

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

allgemeiner Josephson Kontakt Magnetfeldmessung superfluides Helium Zusammenfassung Josephson Effekt Paul Seyfert 5. Dezember 2008

allgemeiner Josephson Kontakt Magnetfeldmessung superfluides Helium Zusammenfassung Josephson Effekt Paul Seyfert 5. Dezember 2008 Josephson Effekt Paul Seyfert 5. Dezember 2008 1 allgemeiner Josephson Kontakt Motivation Theorie Standardbeispiel 2 Magnetfeldmessung SQUID 3 superfluides Helium Aufbau Ergebnis 4 Zusammenfassung Zusammenfassung

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Die Burgers Gleichung

Die Burgers Gleichung Die Burgers Gleichung Vortrag im Rahmen der Vorlesung Spektralmethoden Elena Frenkel Samuel Voit Balthasar Meyer 29. Mai 2008 1 Einfürung Ein kurzer Überblick Physikalische Motivation 2 Cole-Hopf Transformation

Mehr

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung,

Mehr

Finite Differenzen und Elemente

Finite Differenzen und Elemente Dietrich Marsal Finite Differenzen und Elemente Numerische Lösung von Variationsproblemen und partiellen Differentialgleichungen Mit 64 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris

Mehr

Rekursive Folgen im Pascalschen Dreieck

Rekursive Folgen im Pascalschen Dreieck Reursive Folgen im Pascalschen Dreiec Holger Stephan, Tag der Mathemati,. Juni Zusammenfassung Viele Probleme aus den unterschiedlichsten Teilgebieten der Mathemati (z.b. Analysis, Kombinatori, Zahlen-,

Mehr

Modell der Punktmasse

Modell der Punktmasse Kinematik Die Kinematik (kinema, griech., Bewegung) ist die Lehre von der Bewegung von Punkten und Körpern im Raum, beschrieben durch die Größen Weg (Änderung der Ortskoordinate) s, Geschwindigkeit v und

Mehr

Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik

Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik Einsatz interaktiver Vorlesungsfragen in der Experimentalphysik Mechanik und ihre mathematischen Methoden Frank Stallmach Institut für Experimentelle Physik I Vortrag während des LiT.Shortcuts Aktivierung

Mehr

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2 U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A2 Versuch 3 - Gedämpfte freie Schwingung des RLC-Kreises 23. überarbeitete Auflage

Mehr

Semidiskretisierung der PDA-Systeme

Semidiskretisierung der PDA-Systeme Kapitel 4 Semidisretisierung der PDA-Systeme Eine Möglicheit zur numerischen Behandlung von Anfangsrandwertproblemen partieller Differentialgleichungen ist die Linienmethode method of lines, MOL, vgl.

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 13/14 Prof. Dr. J. Schmalian Blatt 9, 1 Bonuspunkte Dr. P. P. Orth Abgabe und Besprechung 1.1.14 1. Kollision

Mehr

Differentialgleichungen

Differentialgleichungen Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der

Mehr

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung

Musterlösungen zu Prüfungsaufgaben über gewöhnliche Differentialgleichungen Prüfungsaufgabe a) Gegeben sei die lineare Differentialgleichung Musterlösungen zu n über gewöhnliche Differentialgleichungen a) Gegeben sei die lineare Differentialgleichung y + - y = e - ln, > 0 Man gebe die allgemeine Lösung der homogenen Gleichung an Wie lautet

Mehr

Ohne Mathematik undenkbar!

Ohne Mathematik undenkbar! Die tägliche - Suche: Ohne Mathematik undenkbar! Dipl.-Wirt.Math. Jan Maruhn FB IV - Mathematik Universität Trier 29. März 2006 29. März 2006 Seite 1 Gliederung Einleitung und Motivation Das Internet als

Mehr

Der harmonische Oszillator anhand eines Potentials

Der harmonische Oszillator anhand eines Potentials Quantenmechanikvorlesung, Prof. Lang, SS04 Der harmonische Oszillator anhand eines Potentials Christine Krasser - Tanja Sinkovic - Sibylle Gratt - Stefan Schausberger - Klaus Passler Einleitung In der

Mehr

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern

Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit. An einigen Beispielen erläutern Vortragsthema: Die Unschärferelationen Ort/Impuls Energie/Zeit An einigen Beispielen erläutern 5. Das Photon: Welle und Teilchen 5.4. Die Plancksche Strahlungsformel Wichtige Punkte: u( ν, T ) = 8πh c

Mehr

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode K.Bräuer: Computersimulation physikalischer Phänomene mit der Finiten-Elemente-Methode 1 Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode Kurt Bräuer Privatdozent am Institut

Mehr

2.4. Atome mit mehreren Elektronen

2.4. Atome mit mehreren Elektronen 2.4. Atome mit mehreren Elektronen 2.4.1. Das Heliumatom Wellenfunktion für das Heliumatom Nach dem Wasserstoffatom ist das Heliumatom das nächst einfachere Atom. Das Heliumatom besitzt einen Kern der

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

Transformation und Darstellung funktionaler Daten

Transformation und Darstellung funktionaler Daten Transformation und Darstellung funktionaler Daten Seminar - Statistik funktionaler Daten Jakob Bossek Fakultät für Statistik 7. Mai 2012 Übersicht Einleitung Einordnung im Seminar Motivation am Beispiel

Mehr

Klapptest Lineare Gleichungen I

Klapptest Lineare Gleichungen I Klapptest Lineare Gleichungen I (Lösungen als ganze Zahlen) 1. 6(x + 2)(x - 7) = x(6x + 6) - 48 1. x = -1 2. -7(x + 3)(x + 1) = x(-7x - 2) - 255 2. x = 9 3. 4(x - 7)(x + 7) = x(4x - 8) - 156 3. x = 5 4.

Mehr

Supraleitung (SUP) Fortgeschrittenen Praktikum, SS 2008

Supraleitung (SUP) Fortgeschrittenen Praktikum, SS 2008 Fortgeschrittenen Praktikum, SS 28 29. April 28 Supraleitung (SUP) Fortgeschrittenen Praktikum, SS 28 Philipp Buchegger, Tobias Müller, Alexander Seizinger, Michael Ziller Betreuer: Matthias Kemmler Tübingen,

Mehr

Thermische Ausdehnung

Thermische Ausdehnung Versuch: TA Fachrichtung Physik Physikalisches Grundpraktikum Aktualisiert: am 16. 09. 2009 Bearbeitet: M. Kreller J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Thermische Ausdehnung Inhaltsverzeichnis

Mehr

Elektronen in Festkörpern

Elektronen in Festkörpern 6 Elektronen in Festkörpern Anhand des Modells des fast freien Elektronengases kann eine Anzahl wichtiger physikalischer Eigenschaften von Metallen erklärt werden. Nach diesem Modell bewegen sich die am

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

Gedämpftes Quantentunneln in makroskopischen Systemen

Gedämpftes Quantentunneln in makroskopischen Systemen Gedämpftes Quantentunneln in makroskopischen Systemen Kerstin Helfrich Seminar über konforme Feldtheorie, 27.06.06 Gliederung 1 Motivation 2 Voraussetzungen Allgemein Ungedämpfter Fall 3 Gedämpftes Tunneln

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

Jenseits der Antimaterie

Jenseits der Antimaterie Jenseits der Antimaterie Das Higgs Teilchen eine Suche nach den Grenzen der Physik Peter Schleper Universität Hamburg 17.4.2012 Akademie der Wissenschaften in Hamburg Quantenphysik: kleinste Bausteine

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

Zum Einsatz von Operatoren im Informatikunterricht

Zum Einsatz von Operatoren im Informatikunterricht Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik Professur für Didaktik der Informatik/Mathematik Claudia Strödter E-Mail: claudia.stroedter@uni-jena.de Zum Einsatz von Operatoren

Mehr

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf

Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf Diese Präsentation soll in kurzer Form den zweiten Teil des Kapitels thermische Eigenschaften der Phononen näher erläutern. Im Speziellen wird auf den Zusammenhang zwischen anharmonischen Kristallwechselwirkungen

Mehr

Numerik für nichtlineare Black-Scholes-Gleichungen

Numerik für nichtlineare Black-Scholes-Gleichungen Fakultät für Mathematik, Physik und Informatik Mathematisches Institut Numerik für nichtlineare Black-Scholes-Gleichungen Bachelorarbeit von Markus Schäfer Aufgabenstellung und Betreuung: Prof. Dr. Lars

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung

Kapitel 7. Bosonfelder: Die Klein-Gordon Gleichung. 7.2 Die Klein-Gordon-Gleichung. 7.1 Einleitung 10 Teilchenphysik, HS 007-SS 008, Prof. A. Rubbia ETH Zurich) 7. Die Klein-Gordon-Gleichung Kapitel 7 Bosonfelder: Die Klein-Gordon Gleichung Wir können im Prinzip die Schrödinger-Gleichung einfach erweitern.

Mehr