BM-Datenanalyse eine Exploration

Größe: px
Ab Seite anzeigen:

Download "BM-Datenanalyse eine Exploration"

Transkript

1 BM-Datenanalyse eine Exploration Marcello Robbiani ZHAW und EBMK Ein Web-basierter Bildervortrag Allgemeingut, Eigengewächs: Keine Quellenangabe Web-Material: Quellenangabe im jeweiligen Folienkopf

2 Inspiriert durch einen Kurzvortrag von Beate Sick Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften Eckdaten zu meiner Person: Fachkonferenz Mathematik 9 Die künftige Berufsmaturität - offene Probleme

3 Wovon handelt das Folgende? Technik & IT, Chemie & Life Sciences, Architektur, Bau- & Planungswesen % Datenanalyse im Grundlagenfach ( von Lektionen) Im Folgenden: TDA (Technik - Daten Analyse) Wovon handelt das Folgende nicht? Ausrichtungen: Gesundheit, Soziale Arbeit, Land- & Forstwirtschaft et al. Deskriptive Statistik & Wahrscheinlichkeitsrechnung

4 Inhalt. Statement zur TDA. Was sollte TDA nicht sein?. Was sollte TDA sein?. TDA Pros und Cons Was sollte TDA sein? Explorativ! Qualitativ Deskriptiv Graphisch Datengetrieben

5 Im Gegensatz zu... Klassisch! Quantitativ Normativ Mathematisch Modellgetrieben htw.activemath.org/activemath/search/show.cmd?id=mbase://mathebrhtw/binom/fak_intro Was TDA nicht ist: Kombinatorik... 5

6 Was TDA nicht ist: Wahrscheinlichkeitsrechnung... Statistik/grundlagen/grund-binomialverteilung-e.htm Was TDA nicht ist: Zufallsexperimente... 6

7 cheind.wordpress.com/9///on-coin-tossing-games-part-/ Was TDA nicht ist: Wahrscheinlichkeitsverteilungen... Was TDA nicht ist: Schliessende Statistik... 7

8 it.wikipedia.org/wiki/file:monty_hall_solution_expanded.png Was TDA nicht ist: Entscheidungstheorie... Was ist dann TDA? Explorativ! Was heisst "explorativ"? Wer steckt hinter "explorativ"? Woher kommt "explorativ"? Weshalb "explorativ"? Nicht zu verwechseln mit "explorative Didaktik"! 8

9 John W. Tukey 95 - Exploratory Data Analysis "Far better an approximate answer to the right question, which is often vague, than the exact answer to the wrong question, which can always be made precise." American Statistician (986) John W. Tukey über Explorative Datenanalyse: "..., I would suggest that it is an attitude and a flexibility and some graph paper..." wikipedia.org/wiki/john_tukey 9

10 Explorative Datenanalyse ist nicht alternativ! Confirmatory Data Analysis (CDA) sollte in Lehre und Praxis auf Exploratory Data Analysis (EDA) aufbauen cll.stanford.edu/~langley/cogsys/behrens97pm.pdf John W. Tukey über Explorative Datenanalyse: "... substantive concerns must take precedence over statistical convenience." Gesundheit, Soziale Arbeit, Land- & Forstwirtschaft et al.

11 M.Sc.E Mittelwert.67 Median.5 Modus 6 Eine mögliche Lösung: Noten EXCEL Eine mögliche Lösung: Noten Quantil ~.5.5-Quantil ~.5.75-Quantil ~

12 Eine mögliche Lösung: Noten M.Sc.E Ausreisser Mittelwert: 5. Mittelwert: 5. Standardabweichung:.97 Standardabweichung: Ausreisser Ausreisser Mittelwert:.98 Standardabweichung:.56 Mittelwert:.85 Standardabweichung:.77 psycnet.apa.org/index.cfm?fa=buy.optiontobuy&id=-97- John W. Tukey: Stem-and-Leaf-Plot

13 processtrends.com/pg_temp_trends.htm John W. Tukey: Box-and-Whisker-Plot Stockholm ryouready.wordpress.com John W. Tukey: Coded Maps 9

14 seattlebubble.com/blog/6/9/6/correction-income-decline-map/ Fallen... Fallen... Kubische Wurzel:

15 en.wikipedia.org/wiki/air_safety Fallen... Das sicherste Verkehrsmittel... Tote pro Reise Tote pro Reisezeit Tote pro Reisestrecke Bus:. Zug: Auto: Laufen: Flug: 7 Velo: 7 Bus:. Zug: Flug:.8 Auto: Laufen: Velo: 55 Flug:.5 Bus:. Zug:.6 Auto:. Velo:.6 Laufen: 5. Bett: Weltweit / 998 Sollte TDA bivariat sein? Simpson-Paradoxon Karl Pearson The Grammar of Science 5

16 en.wikipedia.org/wiki/simpson's_paradox#cite_note-bickel- Berkeley gender bias case 97 Bewerbungen Männer Frauen Angenommen 7 5 Abgelehnt Kreuztabelle / Kontingenztafel Erfolgschancen (Odds) Männer :.7 Frauen :.86 Relative Erfolgschancen (Odds ratio) Frauen :.6 Männer Frauen Bewerbungen Erfolgreich Bewerbungen Erfolgreich A 85 6% 8 8% B 56 6% 5 68% C 5 7% 59 % D 7 % 75 5% E 9 8% 9 % F 7 6% 7% Die 6 grössten Departemente von Berkeley Fazit: Frauen wurden in keiner Weise diskriminiert! 6

17 Grund: Das Denken in Odds ist schwierig... Männer Frauen Bewerbungen Erfolgreich Bewerbungen Erfolgreich A % % B % % C % % D % % E % % F 95 % 5 % Annals of Eugenics. 7, 96 Sollte TDA bivariat sein? Grenzen der Diskriminanzanalyse Ronald A. Fisher The Use of Multiple Measurements in Taxonomic Problems 7

18 de.wikipedia.org/wiki/portal:statistik/datensaetze#cite_note-fisher6- Anderson's Iris data set 5 Schwertlilien der Arten Iris Setosa, Iris Virginica, Iris Versicolor Merkmale: Länge & Breite von Kelchblatt - Sepalum Kronblatt - Petalum. Virginica und Versicolor sind graphisch nicht diskriminierbar! Streudiagramm 8

19 Streudiagramm-Matrix Sollte TDA bivariat sein? Zusammenhangsanalyse... John W. Tukey war Mitglied der Charlie Winsor's Society for the Suppression of Correlation Coefficients...!!! 9

20 Koordinatentransformationen Logarithmisch Doppeltlogarithmisch Scheinzusammenhänge Korrelation vs. Kausalität

21 bweiss.fornax.uberspace.de/blog/wordpress/?tag=okologischer-fehlschluss Der Ökologische Fehlschluss Statistik der Kennzahlen... Wie betrüge ich mit Statistik... Cyril L. Burt John W. Tukey: "The greatest value of a picture is when it forces us to notice what we never expected to see." flowingdata.com/7/9//wise-words-from-john-tukey/

22 John W. Tukey zur Linearen Ausgleichsrechnung... Daten in Abhängigkeit von x in drei Klassen einteilen. x, x, x Mediane der x-werte in jeder Klasse y, y, y Mediane der y-werte in jeder Klasse Die Ausgleichsgerade ist y = a x + b mit. a = (y - y) / (x - x) b = (y + y + y - a (x + x + x)) / y Ideeskizze: (x,y) (x,y) median-median-line (x,y) x

23 Die Erste wurde von Auge bestimmt; die Zweite durch Gausssche lineare Regression; die Dritte durch das Verfahren von Tukey; Welche ist welche? TDA - Pros & Cons (ohne Anspruch auf Vollständigkeit oder Wissenschaftlichkeit) Was spricht dagegen: Lektionen zu viel... Lektionen zu wenig... Zu ambitioniert für BM-Lernende... Zu anspruchvoll für BM-Didaktik... Replik: All dies gilt nur für das klassische Modell!

24 Was spricht dafür: Gesellschaftliche Relevanz... Berufliche Relevanz... Zubringerdienst FH... Viele Chancen attraktiver Didaktik... Erfolgserlebnis auch für Mathe-Muffels... Ideal für projektbasierten Unterricht... Ideal für interdisziplinäres Arbeiten... Replik: Falls TDA nicht zu Betty Bossi entartet! Mein liebstes Argument: Elisabeth Noelle-Neumann 96 - "Statistik ist für mich das Informationsmittel der Mündigen. Wer mit ihr umgehen kann, kann weniger leicht manipuliert werden."

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Explorative Datenanalyse EDA Auffinden von Strukturen

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Stochastik und Statistik für Ingenieure Vorlesung 8

Stochastik und Statistik für Ingenieure Vorlesung 8 PD. Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Stochastik und Statistik für Ingenieure Vorlesung 8 6. Dezember 2013 4. Deskriptive Statistik 4.1. Grundbegriffe der Statistik Der Begriff

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25 Inhaltsverzeichnis Einleitung 19 Zu diesem Buch 19 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Falsche Voraussetzungen 21 Wie dieses Buch aufgebaut ist 21 Teil I: Datenanalyse und Grundlagen

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche

Mehr

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten.

a) Zeichnen Sie in das nebenstehende Streudiagramm mit Lineal eine Regressionsgerade ein, die Sie für passend halten. Statistik für Kommunikationswissenschaftler Wintersemester 2009/200 Vorlesung Prof. Dr. Helmut Küchenhoff Übung Cornelia Oberhauser, Monia Mahling, Juliane Manitz Thema 4 Homepage zur Veranstaltung: http://www.statistik.lmu.de/~helmut/kw09.html

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck Statistik am PC Lösungen mit Excel Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck 5., aktualisierte und erweiterte Auflage 2008. Buch. XVI, 528 S. Hardcover ISBN 978 3 446 41555 3 Format

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Mensch Technisch. Fallstudien

Mensch Technisch. Fallstudien Zusammenfassung Überblick Mensch Technisch h h titativ iv Quan Qualitat Kontrollierte Experimente mit Probanden Fragebög en Interview Fallstudien Zeitreihen analysen Perform ance Beweise Think Aloud Protokolle

Mehr

Einführung in statistische Analysen

Einführung in statistische Analysen Einführung in statistische Analysen Andreas Thams Econ Boot Camp 2008 Wozu braucht man Statistik? Statistik begegnet uns jeden Tag... Weihnachten macht Deutschen Einkaufslaune. Im Advent überkommt die

Mehr

Vorlesung: Statistik für Kommunikationswissenschaftler

Vorlesung: Statistik für Kommunikationswissenschaftler Vorlesung: Statistik für Kommunikationswissenschaftler Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München WiSe 2009/2010 Übungen zur Veranstaltung Mittwoch: 14.15-15.45 HG DZ007 Cornelia Oberhauser

Mehr

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Warum überhaupt Gedanken machen? Was fehlt, ist doch weg, oder? Allgegenwärtiges Problem in psychologischer Forschung Bringt Fehlerquellen

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Statistische Verfahren in der Computerlinguistik. Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb

Statistische Verfahren in der Computerlinguistik. Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb Statistische Verfahren in der Computerlinguistik Einführung in die Computerlinguistik Sommersemester 2009 Peter Kolb Übersicht Statistische vs. symbolische Verfahren in der CL Statistik beschreibende Statistik

Mehr

Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM)

Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM) Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM) Dr. Winfried Willems, IAWG Outline Classical Approach, short

Mehr

Statistik, Geostatistik

Statistik, Geostatistik Geostatistik Statistik, Geostatistik Statistik Zusammenfassung von Methoden (Methodik), die sich mit der wahrscheinlichkeitsbezogenen Auswertung empirischer (d.h. beobachteter, gemessener) Daten befassen.

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?

Mehr

Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation

Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation Eine Betrachtung im Kontext der Ausgliederung von Chrysler Daniel Rheinbay Abstract Betriebliche Informationssysteme

Mehr

Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung:

Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung: Faustformeln / Zusammenhänge a) Binomialverteilung als Poissonverteilung: k ( np) np B( n, p; k) Poi( np, k) e k! falls gilt: p

Mehr

Teil 4,9 Ich habe mein Handy, aber wo sind meine Schlüssel?

Teil 4,9 Ich habe mein Handy, aber wo sind meine Schlüssel? Teil 4,9 Ich habe mein Handy, aber wo sind meine Schlüssel? Üben wir! Vokabular (I) Fill in each blank with an appropriate word from the new vocabulary: 1. Ich lese jetzt Post von zu Hause. Ich schreibe

Mehr

Statistik. Average requirement. deficiency. Sufficient supply for 97.5% of the population. 2 sd 2 sd

Statistik. Average requirement. deficiency. Sufficient supply for 97.5% of the population. 2 sd 2 sd Themenübersicht: Grundlegende statistische Verfahren: Mittelwert, Median,Standardabweichung, Standardfehler Regression mit Beispielen (Eichkurven, Korrelationskoeffizienten) t-tests, Normalverteilung,

Mehr

Sozialwissenschaftliche Datenanalyse mit R

Sozialwissenschaftliche Datenanalyse mit R Katharina Manderscheid Sozialwissenschaftliche Datenanalyse mit R Eine Einführung F' 4-1 V : 'i rl ö LiSl VS VERLAG Inhaltsverzeichnis Vorwort 5 Danksagung 7 Inhaltsverzeichnis 9 R für sozialwissenschaftliche

Mehr

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 2.800.000.000.000.000.000.000 Bytes Daten im Jahr 2012* * Wenn jedes Byte einem Buchstaben entspricht und wir 1000 Buchstaben auf

Mehr

-Which word (lines 47-52) does tell us that Renia s host brother is a pleasant person?

-Which word (lines 47-52) does tell us that Renia s host brother is a pleasant person? Reading tasks passend zu: Open World 1 Unit 4 (student s book) Through a telescope (p. 26/27): -Renia s exchange trip: richtig falsch unkar? richtig falsch unklar: Renia hat sprachliche Verständnisprobleme.

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

HUMANGENETIK IN DER WELT VON HEUTE: 12 SALZBURGER VORLESUNGEN (GERMAN EDITION) BY FRIEDRICH VOGEL

HUMANGENETIK IN DER WELT VON HEUTE: 12 SALZBURGER VORLESUNGEN (GERMAN EDITION) BY FRIEDRICH VOGEL FRIEDRICH VOGEL READ ONLINE AND DOWNLOAD EBOOK : HUMANGENETIK IN DER WELT VON HEUTE: 12 SALZBURGER VORLESUNGEN (GERMAN EDITION) BY Click button to download this ebook READ ONLINE AND DOWNLOAD HUMANGENETIK

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden.

Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Teil III: Statistik Alle Fragen sind zu beantworten. Es können keine oder mehrere Antworten richtig sein. Eine Frage ist NUR dann richtig beantwortet, wenn ALLE richtigen Antworten angekreuzt wurden. Wird

Mehr

Englisch Klasse 8 - Name:

Englisch Klasse 8 - Name: Englisch Klasse 8 Name: Kompetenzen: Unit 1 talk about New York City Englisch G 21 A4 p. 1421 Fit für Tests und Klassenarbeiten 4, p. 89, p. 14 ex. 2, p. 15 ex. 3 use the present perfect progressive and

Mehr

Prüfung auf Normalverteilung

Prüfung auf Normalverteilung S. Heim/C. Heumann SPSS Kurs, SS 2007, 36 χ 2 Anpassungstest ad 7. Analysieren > Nichtparametrische Tests > Chi-Quadrat... H 0 : Daten folgen einer Gleichverteilung Erwartete Werte: Alle Kategorien gleich

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Mathematik. Stoffplan Wirtschaftsschule Thun. Kaufleute M-Profil (BM 1)

Mathematik. Stoffplan Wirtschaftsschule Thun. Kaufleute M-Profil (BM 1) Mathematik Stoffplan Wirtschaftsschule Thun Kaufleute M-Profil (BM 1) Der römische Schriftsteller Stobäus berichtet, dass Euklid (er lebte im 4./3. Jahrhundert v.chr.) von einem jungen Zuhörer gefragt

Mehr

Chair of Information Management Wissenschaftsdisskussion

Chair of Information Management Wissenschaftsdisskussion Chair of Information Management Wissenschaftsdisskussion 3. Wirtschaftsinformatik Doktorandenkolloquium Südost-Niedersachsen 2008 10. - 11. März 2008, St.Andreasberg Institute of Information Systems Chair

Mehr

Achim Bühl, Peter Zöfel. SPSS Version 10. Einführung in die moderne Datenanalyse unter Windows. 7., überarbeitete und erweiterte Auflage

Achim Bühl, Peter Zöfel. SPSS Version 10. Einführung in die moderne Datenanalyse unter Windows. 7., überarbeitete und erweiterte Auflage Achim Bühl, Peter Zöfel SPSS Version 10 Einführung in die moderne Datenanalyse unter Windows 7., überarbeitete und erweiterte Auflage ADDISON-WESLEY An imprint of Pearson Education München Bosten San Francisco

Mehr

LISUM Berlin-Brandenburg Beispiel für eine leistungsdifferenzierte Klassenarbeit im Fach Englisch, Jahrgang 8

LISUM Berlin-Brandenburg Beispiel für eine leistungsdifferenzierte Klassenarbeit im Fach Englisch, Jahrgang 8 Beispiel: Klassenarbeit Jahrgangsstufe 8 ISS Differenzierung durch das Angebot von Lösungshilfen (Modell 3, siehe Überblick unter http://bildungsserver.berlin-brandenburg.de/individualisierung_des_lernens.html)

Mehr

Statistik und Datenanalyse. eine praktische Einführung

Statistik und Datenanalyse. eine praktische Einführung Statistik und Datenanalyse eine praktische Einführung Antony Unwin Lehrstuhl für Rechnerorientierte Statistik und Datenanalyse Institut für Mathematik Universität Augsburg unwin@math.uni-augsburg.de Augsburger

Mehr

Erstellung einer wissenschaftlichen Arbeit

Erstellung einer wissenschaftlichen Arbeit Erstellung einer wissenschaftlichen Arbeit Kapitel 4 Visualisierungen 30.7508, Wintersemester 2015/2016 Bildquellen: http://www.gillikinconsulting.com/wp-content/uploads/2013/11/writer3a_writing_bnw.jpg

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vertretungsstunde Englisch 6. Klasse: Grammatik

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vertretungsstunde Englisch 6. Klasse: Grammatik Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Vertretungsstunde Englisch 6. Klasse: Grammatik Das komplette Material finden Sie hier: Download bei School-Scout.de a few a little

Mehr

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten

Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen. Standardisierung von Daten DAS THEMA: TABELLEN UND ABBILDUNGEN Standardisierung von Daten Darstellung von Daten in Texten, Tabellen und Abbildungen Standardisierung von Daten z-standardisierung Standardnormalverteilung 1 DIE Z-STANDARDISIERUNG

Mehr

Statistik und Wahrscheinlichkeitsrechnung 401-0612-00

Statistik und Wahrscheinlichkeitsrechnung 401-0612-00 Statistik und Wahrscheinlichkeitsrechnung 401-0612-00 Lukas Meier Wieso Statistik und Wahrscheinlichkeitsrechnung? Zufällige Prozesse und Anwendungen von W keitsrechnung und Statistik sind in unserem Alltag

Mehr

Notice: All mentioned inventors have to sign the Report of Invention (see page 3)!!!

Notice: All mentioned inventors have to sign the Report of Invention (see page 3)!!! REPORT OF INVENTION Please send a copy to An die Abteilung Technologietransfer der Universität/Hochschule An die Technologie-Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH Ettlinger Straße

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse

Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse Schätzung Lifetime Values von Spenn mit Hilfe Überlebensanalyse Einführung in das Verfahren am Beispiel Einzugsgenehmigung Überlebensanalysen o Ereignisdatenanalysen behandeln das Problem, mit welcher

Mehr

LOG AND SECURITY INTELLIGENCE PLATFORM

LOG AND SECURITY INTELLIGENCE PLATFORM TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com

Mehr

Laborchemische Referenzwerte in der klinischen Versorgung

Laborchemische Referenzwerte in der klinischen Versorgung Laborchemische Referenzwerte in der klinischen Versorgung Dr. Robin Haring Institut für Klinische Chemie und Laboratoriumsmedizin Universitätsmedizin Greifswald Wozu Referenzwerte? Vor allem in der Laboratoriumsmedizin

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

School of Engineering Institut für Datenanalyse und Prozessdesign (IDP)

School of Engineering Institut für Datenanalyse und Prozessdesign (IDP) School of Engineering Institut für Datenanalyse und Prozessdesign (IDP) Zürcher Fachhochschule www.zhaw.ch/idp Forschung & Entwicklung Das Institut für Datenanalyse und Prozessdesign (IDP) Das Institut

Mehr

Einsatz von Statistikprogrammen

Einsatz von Statistikprogrammen Einsatz von Statistikprogrammen Friends Don t Let Friends Use Excel for Statistics! Get the Right Tool for the Job! What About SPSS / BiAS? EXCEL flache Datenstruktur Tabellen (spreadsheet) Infarktdaten

Mehr

Algorithms for graph visualization

Algorithms for graph visualization Algorithms for graph visualization Project - Orthogonal Grid Layout with Small Area W INTER SEMESTER 2013/2014 Martin No llenburg KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Weiterbildungskolleg der Stadt Bielefeld Abendrealschule Fachbereich Englisch Frachtstraße 8 33602 Bielefeld

Weiterbildungskolleg der Stadt Bielefeld Abendrealschule Fachbereich Englisch Frachtstraße 8 33602 Bielefeld Weiterbildungskolleg der Stadt Bielefeld Abendrealschule Fachbereich Englisch Frachtstraße 8 33602 Bielefeld Requirements for Entering the First Term in English, Exercises to Prepare Yourself / Anforderungen

Mehr

Vorhersagetechniken für zukünftiges Verhalten von Kunden

Vorhersagetechniken für zukünftiges Verhalten von Kunden IBM 360 Grad-Sicht auf den Kunden: Vorhersagetechniken für zukünftiges Verhalten von Kunden Sven Fessler, sven.fessler@de.ibm.com Solution Architect, IBM Germany Business Analytics & Optimization Das Spektrum

Mehr

OzeanEval Evaluierung verschiedener Ozeanparameter aus den MPI-ESM Jahreszeitenvorhersagen. Sabrina Plagemann

OzeanEval Evaluierung verschiedener Ozeanparameter aus den MPI-ESM Jahreszeitenvorhersagen. Sabrina Plagemann OzeanEval Evaluierung verschiedener Ozeanparameter aus den MPI-ESM Jahreszeitenvorhersagen Sabrina Plagemann Seamless Prediction Warum benötigen wir Jahreszeitenvorhersagen? Kick-Off-Meeting Copernicus

Mehr

Eignung von Tag Clouds zur Exploration und Navigation nutzergenerierter Inhalte

Eignung von Tag Clouds zur Exploration und Navigation nutzergenerierter Inhalte Eignung von Tag Clouds zur Exploration und Navigation nutzergenerierter Inhalte Bachelorarbeit Institut für Informatik der Technischen Universität München 4. Juli 2011 Agenda 1 Einführung: Tag Cloud 2

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

Grundlagen der Inferenzstatistik

Grundlagen der Inferenzstatistik Grundlagen der Inferenzstatistik (Induktive Statistik oder schließende Statistik) Dr. Winfried Zinn 1 Deskriptive Statistik versus Inferenzstatistik Die Deskriptive Statistik stellt Kenngrößen zur Verfügung,

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

In welcher Re-Organisation arbeiten Sie gerade??

In welcher Re-Organisation arbeiten Sie gerade?? Work 4.0 Potentiale durch neue Gestaltungsräume In welcher Re-Organisation arbeiten Sie gerade?? IcoSense GmbH 10. PQM Dialog FH Kufstein 13.11.2015 Life is tough, but it s even tougher if you re stupid

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Data Science (k)eine Teenagerliebe? Thilo Stadelmann, Swiss ICT Symposium, 05. November 2011. Zürcher Fachhochschule

Data Science (k)eine Teenagerliebe? Thilo Stadelmann, Swiss ICT Symposium, 05. November 2011. Zürcher Fachhochschule Data Science (k)eine Teenagerliebe? Thilo Stadelmann, Swiss ICT Symposium, 05. November 2011 Teenagerliebe? Data Science Big Data! Aber: Hohe Korrelation in der aktuellen öffentlichen Wahrnehmung. Keiner

Mehr

Market Basket Analysis oder: isst man Salat zum Schnitzel?

Market Basket Analysis oder: isst man Salat zum Schnitzel? Market Basket Analysis oder: isst man Salat zum Schnitzel? SAS Forum Switzerland, 07. Mai 2013 Ralph Wenzl Migros-Genossenschafts-Bund Customer & Web Intelligence Agenda 1 2 3 4 Muster in Warenkörben 3

Mehr

WAS IST DER KOMPARATIV: = The comparative

WAS IST DER KOMPARATIV: = The comparative DER KOMPATATIV VON ADJEKTIVEN UND ADVERBEN WAS IST DER KOMPARATIV: = The comparative Der Komparativ vergleicht zwei Sachen (durch ein Adjektiv oder ein Adverb) The comparative is exactly what it sounds

Mehr

Grundlagen der Datenanalyse am Beispiel von SPSS

Grundlagen der Datenanalyse am Beispiel von SPSS Grundlagen der Datenanalyse am Beispiel von SPSS Einführung Dipl. - Psych. Fabian Hölzenbein hoelzenbein@psychologie.uni-freiburg.de Einführung Organisatorisches Was ist Empirie? Was ist Statistik? Dateneingabe

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

Geometrie und Bedeutung: Kap 5

Geometrie und Bedeutung: Kap 5 : Kap 5 21. November 2011 Übersicht Der Begriff des Vektors Ähnlichkeits Distanzfunktionen für Vektoren Skalarprodukt Eukidische Distanz im R n What are vectors I Domininic: Maryl: Dollar Po Euro Yen 6

Mehr

ZIV-Schulung. Statistik mit Excel 2010

ZIV-Schulung. Statistik mit Excel 2010 ZIV-Schulung Statistik mit Excel 2010 Statistische Möglichkeiten mit Excel 2010 2 Zur Unterstützung quantitativer Datenanalysen dienen in Excel 2010 vor allem: > die Basisfunktionen für Berechnungen in

Mehr

Next Generation SEO Author Markups und Schema Integrationen Marcus Tober Köln 16.10.2013

Next Generation SEO Author Markups und Schema Integrationen Marcus Tober Köln 16.10.2013 Next Generation SEO Author Markups und Schema Integrationen Marcus Tober Köln 16.10.2013 10/21/2013 Searchmetrics Inc. 2013 Page 1 Gründer von Searchmetrics Ich liebe SEO und Search seit 2001 Informatik-Studium

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Einführung: Deskriptive Statistik

Wahrscheinlichkeitsrechnung und Statistik für Biologen Einführung: Deskriptive Statistik Wahrscheinlichkeitsrechnung und Statistik für Biologen Einführung: Deskriptive Statistik Martin Hutzenthaler & Dirk Metzler 17. April 2012 Inhaltsverzeichnis 1 Einführung 1 1.1 Konzept und Quellen.........................................

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009. Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelationsanalysen Kovariation und Kovarianz Korrelation: - Interpretation

Mehr

Challenges for the future between extern and intern evaluation

Challenges for the future between extern and intern evaluation Evaluation of schools in switzerland Challenges for the future between extern and intern evaluation Michael Frais Schulentwicklung in the Kanton Zürich between internal evaluation and external evaluation

Mehr

Kollektives Sozialkapital als individuelle Ressource?

Kollektives Sozialkapital als individuelle Ressource? Kollektives Sozialkapital als individuelle Ressource? Vortrag im Rahmen der Tagung Soziale Netzwerke und Sozialkapital 10./11.11.2005 Sandra Landhäußer er,, Heinz-Günter nter Micheel Fakultät t für f r

Mehr

Inhaltliche Schwerpunkte der einzelnen Methodenmodule

Inhaltliche Schwerpunkte der einzelnen Methodenmodule Inhaltliche Schwerpunkte der einzelnen Methodenmodule PM 1: Ü: Erkundungen zur Forschungspraxis Die Übung zielt darauf ab, erste Einblicke in zentrale Fragen des sozialwissenschaftlichen Forschungsprozesses

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Selbstlernmodul bearbeitet von: begonnen: Inhaltsverzeichnis:

Selbstlernmodul bearbeitet von: begonnen: Inhaltsverzeichnis: bearbeitet von: begonnen: Fach: Englisch Thema: The Future Deckblatt des Moduls 1 ''You will have to pay some money soon. That makes 4, please.'' ''Oh!'' Inhaltsverzeichnis: Inhalt bearbeitet am 2 Lerntagebuch

Mehr

Einfache statistische Auswertungen mit dem TI-Nspire

Einfache statistische Auswertungen mit dem TI-Nspire 1. Neues Dokument und darin eine neue Seite anlegen Als Typ 6: Lists & Spreadsheet wählen. Darin die Messwerte in einer Spalte erfassen. Dies ergibt die Urliste. Wenn mehrere Messwerte vorliegen, die diejenigen,

Mehr

a lot of, much und many

a lot of, much und many Aufgabe 1, und In bejahten Sätzen verwendest du für die deutschen Wörter viel und viele im Englischen Bsp.: I have got CDs. We have got milk. There are cars on the street. Bei verneinten Sätzen und Fragen

Mehr

EXPERT SURVEY OF THE NEWS MEDIA

EXPERT SURVEY OF THE NEWS MEDIA EXPERT SURVEY OF THE NEWS MEDIA THE SHORENSTEIN CENTER ON THE PRESS, POLITICS & PUBLIC POLICY JOHN F. KENNEDY SCHOOL OF GOVERNMENT, HARVARD UNIVERSITY, CAMBRIDGE, MA 0238 PIPPA_NORRIS@HARVARD.EDU. FAX:

Mehr

Institut für Computational Science Prof. Dr. H. Hinterberger. Praxismodul 3. Visualisierung als Werkzeug zur Analyse mehrdimensionaler Daten

Institut für Computational Science Prof. Dr. H. Hinterberger. Praxismodul 3. Visualisierung als Werkzeug zur Analyse mehrdimensionaler Daten Institut für Computational Science Prof. Dr. H. Hinterberger Praxismodul 3 Visualisierung als Werkzeug zur Analyse mehrdimensionaler Daten Praxis 3 - Visualisierung 2 Institut für Computational Science,

Mehr

Überblick und Ausblick

Überblick und Ausblick Letzte Vorlesung Statistik Vorlesung Datenanalyse und Statistik Gliederung 1 Sortiert nach dem Inhalt der Vorlesung Sortiert nach Daten 2 Kovarianzmatrizen Klusteranalyse Hauptkomponentenanalyse Faktorenanalyse

Mehr

26. GIL Jahrestagung

26. GIL Jahrestagung GeorgAugustUniversität Göttingen 26. GIL Jahrestagung Einsatz von künstlichen Neuronalen Netzen im Informationsmanagement der Land und Ernährungswirtschaft: Ein empirischer Methodenvergleich Holger Schulze,

Mehr

Grammar New Inspiration 2 + 3

Grammar New Inspiration 2 + 3 Bildungsdepartement Amt für Volksschulen und Sport Abteilung Schulfragentwicklung und -betrieb Kollegiumstrasse 28 Postfach 2191 6431 Schwyz Telefon 041 819 19 11 Telefax 041 819 19 17 Grammar + 3 Verteilung

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Asset Management für Instandhalter: Alter Wein in neuen Schläuchen?

Asset Management für Instandhalter: Alter Wein in neuen Schläuchen? Asset Management für Instandhalter: Alter Wein in neuen Schläuchen? Prof. Dr. Christoph Heitz Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften Winterthur, Switzerland

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr