6.6 Vorlesung: Von OLAP zu Mining

Größe: px
Ab Seite anzeigen:

Download "6.6 Vorlesung: Von OLAP zu Mining"

Transkript

1 6.6 Vorlesung: Von OLAP zu Mining Definition des Begriffs Data Mining. Wichtige Data Mining-Problemstellungen, Zusammenhang zu Data Warehousing,. OHO - 1 Definition Data Mining Menge von Techniken zum Erkennen bisher unbekannter, interessanter Zusammenhänge in grossen Datenbanken, interessant heisst bezogen auf die anderen Zusammenhänge, die gerade entdeckt werden Information Mining anstatt Data Mining. OHO - 2 1

2 Data Mining ist für grosse Datenbestände. Es eistieren schon relativ lange vielfältige statistische Verfahren. Problem mit grossem Datenbestand: Hauptspeicher eines Rechners reicht nicht aus. Zugriffslücke : Zugriff auf Disk ist um Grössenordnungen teurer als Zugriff auf Hauptspeicher. Data Mining-Verfahren zielen darauf ab, mit möglichst wenig Disk-Zugriffen auszukommen. OHO - 3 Wichtige Data Mining- Problemstellungen Die wichtigen Problemstellungen sind recht einfach: Finden von Association Rules, Teilproblem: Finden von Frequent, zahlreiche Verfeinerungen, z.b. Quantitative Association Rules, Zeitreihenanalyse, Clustering, Classification. OHO - 4 2

3 Association Rules Transaktion z.b. Menge der Waren, die ein Kunde kauft (oder Menge von Symptomen im Bereich Krankenhaus ) Milch, Eier, Zucker, Brot Milch, Eier, Cornflakes, Brot Eier, Zucker Transaktion1 Transaktion2 Transaktion3 Frequent Itemset Menge von Waren, die in vielen Transaktionen vorkommt (d.h. häufiger als ein Schwellenwert) Beispiel: {Milch, Brot}, wenn Schwellenwert=2. Finden aller Frequent ist Grundlage für die Ermittlung von Association Rules. Association Rules sind Zusammenhänge der Form Wer Bier kauft, kauft auch Chips (mit relativ hoher Wahrscheinlichkeit). oder Patienten mit Pipapo-Syndrom haben oft auch Krämpfe. OHO - 5 Clustering Identifizieren von Gruppen von Items, die nahe beieinanderliegen; Beispiel: Kundengruppen. Bier 0 Wein OHO - 6 3

4 Classification Ziel: Item hat mehrere Attribute, man will anhand der Werte von n Attributen den (n+1)-ten vorhersagen. Grundlage für Voraussage: Menge von Tupeln (Trainingsmenge), für die alle n+1 Werte bekannt sind. Beispiel: Attribute 1,, n: Alter, Einkommen, Beruf, Attribut n+1: Kreditwürdigkeit Information, die i.d.r. erst zu spaeterem Zeitpunkt bekannt wird Ein mögliches Vorgehen: Entscheidungsbaum aufbauen mit Hilfe einer möglichst grossen Trainingsmenge. OHO - 7 Zusammenhang zu Data Warehousing 1. Data Warehousing als Plattform für Data Mining (s.b. vorige Folie), Data Warehousing beinhaltet Technologie zum Zusammenführen und Konsolidieren der Daten. 2. Gleiche Motivation: Zusammenhänge erkennen, die Grundlage für strategische Entscheidungen sein könnten. Data Warehousing - bestimmte, relativ klar definierte Anfragen, Data Mining - Analysetechniken, vagere Anfragen. OHO - 8 4

5 Zugrundeliegende Definitionen, Übersicht, Finden von Frequent, Finden von Association Rules, gegeben die Frequent. OHO - 9 Association Rules - zugrundeliegende Definitionen Transaktion T - Menge von Items, z.b. Warenangebot im Supermarkt Association Rule - Ausdruck der Form X Y, (X, Y sind Mengen von Items, und X Y =.) Beispiele: {Bier} {Chips} Wer Bier kauft, kauft auch Chips (mit relativ hoher Wahrscheinlichkeit). Diese Association Rule ist aussagekräftiger als Aussage der Form Bier und Chips werden oft zusammen gekauft. {Bier, Korn, Wodka} {Aspirin, Wasser} OHO

6 Association Rules - zugrundeliegende Definitionen Wir sind nur an Regeln mit einer gewissen Aussagekraft interessiert, deswegen die folgenden Definitionen: Support eines X andere Bezeichnung für relative Häufigkeit; minsup untere Schranke für Support, mit Support grösser als minsup: large itemsets; Regel X Y hat Support s gdw. s % der Transaktionen X und Y enthalten; Regel X Y hat Confidence c gdw. c % der Transaktionen, die X enthalten, enthalten auch Y; minconf - untere Schranke für Algorithmus; high confidence ; Regel X Y ist interessant gdw. Confidence deutlich höher ist als die erwartete WS, wenn Items zufällig gekauft werden. wird im folgenden nicht eplizit betrachtet OHO - 11 Beispiel T1 T2 T3 T4 T5 {Zahnpasta, Schokolade, Milch} {Schokolade, Milch} {Brot, Käse} {Zahnpasta, Milch, Käse} {Milch, Brot, Käse} Confidence Support Brot Käse 100% 40% Käse Milch 66.6% 40% Zahnpasta Schokolade 50% 20% OHO

7 Identifizieren aller Association Rules Identifizieren aller Association Rules in zwei Teilprobleme unterteilbar: Finden aller mit ausreichendem Support - Algorithmus ; Ermitteln der Association Rules aus diesen. Der erste Schritt ist i.a. der aufwendigere; Prinzip: Large der Grösse k Candidate Itemset der Grösse k+1 OHO Identifizieren von Finden aller mit ausreichendem Support: Beginn mit einelementigen Sets (1-Sets) - einfaches Abzählen Berechnung der k-sets aus den (k-1)-sets: Join-Step: Ermittlung von Kandidaten; -Trick: alle (k-1)-elementigen Teilmengen eines k-sets sind (k-1)-sets, Prune-Step: Löschen aller Kandidaten, die eine unzulässige (k-1)-elementige Teilmenge haben. Verkleinert die Menge der Kandidaten, man muss aber noch einmal durch die Daten gehen. Abzählen über die Daten. (darauffolgende Folie) Generierung der Kandidaten (nächste zwei Folien) OHO

8 Beispiel für Candidate Generation Berechnung der Kandidaten besteht aus zwei Schritten, wie auf Folie zuvor angegeben. 3-Sets {1 2 3} {1 2 4} {1 3 4} {1 3 5} {2 3 4} Join Kandidaten für 4-Sets 4-Sets { } { } { } Prune OHO - 15 Algorithmus L 1 = {large 1-itemsets}; for (k=2; L k-1 ; k++) do begin C k =apriori-gen(l k-1 ); // Generierung neuer Kandidaten // gemäss voriger Folie forall transactions t D do begin C t = subset(c k, t); // candidates contained in t forall candidates c C t do c.count++; end L k ={c C k c.count minsup} end Answer = k L k ; Abzählen für alle Transaktionen OHO

9 Ist Candidate Itemset in t enthalten? Wie führt man diese Überprüfung effizient für viele t durch? Verwendung eines Hash-Trees - Beispiel: Kandidaten: {1 2 3}, {1 2 4}, {1 3 4}, {1 3 5}, {1 3 9}, {2 3 4} t = { } 1, {2 3 4} 1, , 9 {1 2 3} {1 2 4} {1 3 4} {1 3 5}, {1 3 9} Eplizit sagen: Was sind die gruenen Kanten? Hash-Baum: mehrere Werte fuer eine Kante Einfuegen neuer von oben. Blaetter haben Kapazitaet. Fuer jedes Element von t eine Ebene nach unten steigen. Ein Blatt mit mehreren Kandidaten OHO - 17 Ermitteln der Association Rules aus den Betrachtung aller Subsets a eines I. Noch einmal zur Erinnerung Regel X Y hat Support s gdw. s % der Transaktionen X und Y enthalten; Regel X Y hat Confidence c gdw. c % der Transaktionen, die X enthalten, enthalten auch Y; (bzw. enthalten auch X Y, ist egal) a (I - a) ist Association Rule, wenn Support(I) Support(a) >= minconf OHO

10 I={2,3,4} [40% Support] Subsets: minconf=75% {2,3} {4} Support(I) = 40% Support(a)= 50% {2} {3,4} Support(I) = 40% Support(a) = 80% Beispiel {2,3} {2,4} {3,4} {2} {3} {4} 50% 70% 60% 80% 60% 70% Confidence = 80 % OK! Confidence = 50 % NO! OHO

Kapitel 11: Association Rules

Kapitel 11: Association Rules Kapitel 11: Association Association Einleitung Association : Eine wichtige Art von Mustern, an der man im Data-Mining Kontext interessiert ist. Muster mit einfacher Struktur. Ziel im folgenden: Finden

Mehr

Kapitel 11: Association Rules

Kapitel 11: Association Rules Kapitel 11: Association Association Einleitung Association : Eine wichtige Art von Mustern, an der man im Data-Mining Kontext interessiert ist. Muster mit einfacher Struktur. Ziel im folgenden: Finden

Mehr

Kapitel 12: Schnelles Bestimmen der Frequent Itemsets

Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Einleitung In welchen Situationen ist Apriori teuer, und warum? Kapitel 12: Schnelles Bestimmen der Frequent Itemsets Data Warehousing und Mining 1 Data Warehousing und Mining 2 Schnelles Identifizieren

Mehr

Kapitel 7: Assoziationsregeln

Kapitel 7: Assoziationsregeln Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases im Wintersemester 2007/2008 Kapitel

Mehr

5. Assoziationsregeln

5. Assoziationsregeln 5. Generieren von Assoziationsregeln Grundbegriffe 5. Assoziationsregeln Assoziationsregeln beschreiben gewisse Zusammenhänge und Regelmäßigkeiten zwischen verschiedenen Dingen, z.b. den Artikeln eines

Mehr

Skript zur Vorlesung. Knowledge Discovery in Databases. im Wintersemester 2009/2010. Assoziationsregeln

Skript zur Vorlesung. Knowledge Discovery in Databases. im Wintersemester 2009/2010. Assoziationsregeln Ludwig Maximilians Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases im Wintersemester 2009/2010 Kapitel

Mehr

Kapitel 7: Assoziationsregeln

Kapitel 7: Assoziationsregeln Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases im Wintersemester 2010/2011 Kapitel

Mehr

Mining über RDBMSe. von. Christian Widmer. Wie gut lässt sich Mining mit SQL realisieren?

Mining über RDBMSe. von. Christian Widmer. Wie gut lässt sich Mining mit SQL realisieren? Mining über RDBMSe von Christian Widmer Wie gut lässt sich Mining mit SQL realisieren? Müssen neue Konstrukte zur Verfügung gestellt werden, wenn ja welche? Vortragsüberblick Association Rules Apriori

Mehr

Assoziationsregeln & Sequenzielle Muster. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007

Assoziationsregeln & Sequenzielle Muster. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007 Assoziationsregeln & Sequenzielle Muster 0 Übersicht Grundlagen für Assoziationsregeln Apriori Algorithmus Verschiedene Datenformate Finden von Assoziationsregeln mit mehren unteren Schranken für Unterstützung

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Association Rule Mining Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Association Rule Mining (ARM) A-Priori Algorithmus Varianten Ulf Leser:

Mehr

Apriori-Algorithmus zur Entdeckung von Assoziationsregeln

Apriori-Algorithmus zur Entdeckung von Assoziationsregeln Apriori-Algorithmus zur Entdeckung von PG 42 Wissensmanagment Lehrstuhl für Künstliche Intelligenz 22. Oktober 21 Gliederung Motivation Formale Problemdarstellung Apriori-Algorithmus Beispiel Varianten

Mehr

Kapitel 8: Assoziationsregeln

Kapitel 8: Assoziationsregeln Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases im Sommersemester 2015 Kapitel 8: Assoziationsregeln

Mehr

Kapitel 8: Assoziationsregeln

Kapitel 8: Assoziationsregeln Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Skript zur Vorlesung Knowledge Discovery in Databases im Sommersemester 2014 Kapitel 8: Assoziationsregeln

Mehr

Unüberwachtes Lernen: Clusteranalyse und Assoziationsregeln

Unüberwachtes Lernen: Clusteranalyse und Assoziationsregeln Unüberwachtes Lernen: Clusteranalyse und Assoziationsregeln Praktikum: Data Warehousing und Data Mining Clusteranalyse Clusteranalyse Idee Bestimmung von Gruppen ähnlicher Tupel in multidimensionalen Datensätzen.

Mehr

Data Mining und Maschinelles Lernen Wintersemester 2015/2016 Lösungsvorschlag für das 13. Übungsblatt

Data Mining und Maschinelles Lernen Wintersemester 2015/2016 Lösungsvorschlag für das 13. Übungsblatt Data Mining und Maschinelles Lernen Wintersemester 2015/2016 Lösungsvorschlag für das 13. Übungsblatt 9. Februar 2016 1 Aufgabe 1: Apriori (1) Gegeben seien folgende Beobachtungen vom Kaufverhalten von

Mehr

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid

Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Fortgeschrittene Computerintensive Methoden: Assoziationsregeln Steffen Unkel Manuel Eugster, Bettina Grün, Friedrich Leisch, Matthias Schmid Institut für Statistik LMU München Sommersemester 2013 Zielsetzung

Mehr

Übersicht. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007

Übersicht. A. Hinneburg, Web Data Mining MLU Halle-Wittenberg, SS 2007 Übersicht Grundlagen für Assoziationsregeln Apriori Algorithmus Verschiedene Datenformate Finden von Assoziationsregeln mit mehren unteren Schranken für Unterstützung Finden von Assoziationsregeln für

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Maschinelles Lernen: Symbolische Ansätze Wintersemester 2009/2010 Musterlösung für das 13. Übungsblatt Aufgabe 1: Apriori Gegeben seien folgende Beobachtungen vom Kaufverhalten von Kunden: beer chips dip

Mehr

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold

Algorithms for Pattern Mining AprioriTID. Stefan George, Felix Leupold Algorithms for Pattern Mining AprioriTID Stefan George, Felix Leupold Gliederung 2 Einleitung Support / Confidence Apriori ApriorTID Implementierung Performance Erweiterung Zusammenfassung Einleitung 3

Mehr

XML & Intelligente Systeme. - XQuery Teil 2 - Datamining auf XML Dokumenten

XML & Intelligente Systeme. - XQuery Teil 2 - Datamining auf XML Dokumenten - XQuery Teil 2 - Datamining auf XML Dokumenten Seminarvortrag von Dominik Westhues dwesthue@techfak.uni-bielefeld.de 21.11.2005 Überblick XQuery & Datamining Verknüpfungsregeln Apriori Algorithmus Verknüpfungsregel

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB. Unüberwachtes Lernen: Clustern von Attributen

INTELLIGENTE DATENANALYSE IN MATLAB. Unüberwachtes Lernen: Clustern von Attributen INTELLIGENTE DATENANALYSE IN MATLAB Unüberwachtes Lernen: Clustern von Attributen Literatur J. Han, M. Kamber: Data Mining Concepts and Techniques. J. Han et. al: Mining Frequent Patterns without Candidate

Mehr

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus

FernUniversität in Hagen. Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln. Thema 1.1.1 Der Apriori-Algorithmus FernUniversität in Hagen Seminar 01912 Data Mining im Sommersemester 2008 Häufige Muster und Assoziationsregeln Thema 1.1.1 Der Apriori-Algorithmus Referentin: Olga Riener Olga Riener. Thema 1.1.1. Der

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Lernen von Assoziationsregeln Literatur J. Han, M. Kamber: Data Mining i Concepts and Techniques. J. Han et. al: Mining i Frequent Patterns without t Candidate Generation.

Mehr

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 12. Übungsblatt

Data Mining und Maschinelles Lernen Lösungsvorschlag für das 12. Übungsblatt Data Mining und Maschinelles Lernen Lösungsvorschlag für das 12. Übungsblatt Knowledge Engineering Group Data Mining und Maschinelles Lernen Lösungsvorschlag 12. Übungsblatt 1 Aufgabe 1: Apriori (1) Gegeben

Mehr

Data Mining 5-1. Kapitel 5: Frequent Itemsets. Johannes Zschache Wintersemester 2018/19

Data Mining 5-1. Kapitel 5: Frequent Itemsets. Johannes Zschache Wintersemester 2018/19 Data Mining Kapitel 5: Frequent Itemsets Johannes Zschache Wintersemester 2018/19 Abteilung Datenbanken, Universität Leipzig http://dbs.uni-leipzig.de Data Mining 5-1 5-2 Data Mining Übersicht Hochdimension.

Mehr

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Frequent Itemset Mining und FP-Tree

Frequent Itemset Mining und FP-Tree Übung 4 Frequent Itemset Mining und FP-Tree Frequent Itemset Mining Motivation: Es existiert eine Datenbank mit vielen Einträgen Man möchte wissen, welche Einträge oft zusammen vorkommen Frequent Itemset

Mehr

Kapitel 15: Mining von Sequential Patterns

Kapitel 15: Mining von Sequential Patterns Kapitel 15: Mining von Sequential Patterns Lernziele Weitere Art von Sequential Patterns/ Constraints für den Mining Prozeß kennenlernen. Erkennen, daß Generate&Test Paradigma für diverse Mining-Problemstellungen

Mehr

Lernen von Assoziationsregeln

Lernen von Assoziationsregeln Lernen von Assoziationsregeln Gegeben: R eine Menge von Objekten, die binäre Werte haben t eine Transaktion, t! R r eine Menge von Transaktionen S min " [0,] die minimale Unterstützung, Conf min " [0,]

Mehr

Apriori Algortihmus. Endpräsentation. Stefan George, Felix Leupold

Apriori Algortihmus. Endpräsentation. Stefan George, Felix Leupold Apriori Algortihmus Endpräsentation Stefan George, Felix Leupold Gliederung 2 Wiederholung Apriori Erweiterung: Parallelisierung Parallele Programmierung in Python Parallelisierungszenarien Implementierung

Mehr

Data Mining. Informationssysteme, Sommersemester 2017

Data Mining. Informationssysteme, Sommersemester 2017 Data Mining Informationssysteme, Sommersemester 2017 Literatur zu Data-Mining Pang-Ning Tan, Michael Steinbach, Vipin Kuma. Introduction to Data Minig. Ein paar relevante Kapitel sind frei verfügbar unter

Mehr

Algorithmen zur Entdeckung von Assoziationsregeln unter Vermeidung von redundanten und missverständlichen Regeln

Algorithmen zur Entdeckung von Assoziationsregeln unter Vermeidung von redundanten und missverständlichen Regeln Algorithmen zur Entdeckung von Assoziationsregeln unter Vermeidung von redundanten und missverständlichen Regeln PG 402 Wissensmanagment Lehrstuhl für Künstliche Intelligenz Prof. Katarina Morik und Stefan

Mehr

Maschinelles Lernen und Data Mining

Maschinelles Lernen und Data Mining Semestralklausur zur Vorlesung Maschinelles Lernen und Data Mining Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2004/05 Termin: 14. 2. 2005 Name: Vorname: Matrikelnummer:

Mehr

Datenbanksysteme 2009

Datenbanksysteme 2009 Datenbanksysteme 2009 Kapitel 17: Data Warehouse Oliver Vornberger Institut für Informatik Universität Osnabrück 1 OLTP versus OLAP OLTP (Online Transaction Processing) z.b. Flugreservierung, Handelsunternehmen

Mehr

4. Assoziationsregeln

4. Assoziationsregeln 4.1 Einleitung 4. Assoziationsregeln Inhalt dieses Kapitels Transaktionsdatenbanken, Warenkorbanalyse 4.2 Einfache Assoziationsregeln Grundbegriffe, Aufgabenstellung, Apriori-Algorithmus, Hashbäume, Interessantheit

Mehr

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 -

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 - Vorlesung Grundlagen betrieblicher Informationssysteme Prof. Dr. Hans Czap Email: Hans.Czap@uni-trier.de - II - 1 - Inhalt Kap. 1 Ziele der Datenbanktheorie Kap. 2 Datenmodellierung und Datenbankentwurf

Mehr

4.2 Constraints für Assoziationsregeln

4.2 Constraints für Assoziationsregeln 4.2 Constraints für Assoziationsregeln zu viele Frequent Item Sets Effizienzproblem zu viele Assoziationsregeln Evaluationsproblem Motivation manchmal Constraints apriori bekannt nur Assoziationsregeln

Mehr

Kapitel 17: Date Warehouse

Kapitel 17: Date Warehouse Kapitel 17: Date Warehouse 1 OLTP versus OLAP OLTP (Online Transaction Processing) z.b. Flugreservierung, Handelsunternehmen kleine, kurze Transaktionen jeweils auf jüngstem Zustand OLAP (Online Analytical

Mehr

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung

Ermittlung von Assoziationsregeln aus großen Datenmengen. Zielsetzung Ermittlung von Assoziationsregeln aus großen Datenmengen Zielsetzung Entscheidungsträger verwenden heutzutage immer häufiger moderne Technologien zur Lösung betriebswirtschaftlicher Problemstellungen.

Mehr

Vorlesung Methodische Grundlagen des Software-Engineering im Sommersemester 2013

Vorlesung Methodische Grundlagen des Software-Engineering im Sommersemester 2013 Vorlesung des Software-Engineering im Sommersemester 2013 Prof. Dr. Jan Jürjens TU Dortmund, Fakultät Informatik, Lehrstuhl XIV Teil 2.3: Data-Mining v. 11.06.2013 1 [mit freundlicher Genehmigung basierend

Mehr

Data Mining auf Datenströmen Andreas M. Weiner

Data Mining auf Datenströmen Andreas M. Weiner Technische Universität Kaiserslautern Fachbereich Informatik Lehrgebiet Datenverwaltungssysteme Integriertes Seminar Datenbanken und Informationssysteme Sommersemester 2005 Thema: Data Streams Andreas

Mehr

Kapitel 13: Pattern Mining unter Constraints

Kapitel 13: Pattern Mining unter Constraints Kapitel 13: Pattern Mining unter Dieses Kapitel: Nicht mehr Suche nach allen Frequent Itemsets/Association Rules, sondern Einschränkung der Ziel-Menge. Strukturen, auf denen wir operieren, sind wie bisher

Mehr

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede. Daniel Meschenmoser

Data Mining und Statistik: Gemeinsamkeiten und Unterschiede. Daniel Meschenmoser Data Mining und Statistik: Gemeinsamkeiten und Unterschiede Daniel Meschenmoser Übersicht Gemeinsamkeiten von Data Mining und Statistik Unterschiede zwischen Data Mining und Statistik Assoziationsregeln

Mehr

VII.3 Assoziationsregeln

VII.3 Assoziationsregeln VII.3 Assoziationsregelverfahren VII.3. Einführung [Bollinger 96] VII.3 Assoziationsregeln Algorithmen zum Entdecken von Assoziationsregeln sind typische Vertreter von Data Mining Verfahren. Assoziationsregeln

Mehr

Kapitel 2: Mathematik- und Informatik-Grundlagen

Kapitel 2: Mathematik- und Informatik-Grundlagen Kapitel 2: Mathematik- und Informatik-Grundlagen Data Warehousing und Mining - 1 einer Menge gibt an, wie zufällig die Daten in einer Menge verteilt sind (bzw. wie zufällig die Ausprägung eines Attributs

Mehr

Vorlesung Data Warehousing und Mining Kapitel 1: Einleitung

Vorlesung Data Warehousing und Mining Kapitel 1: Einleitung Data Warehousing und Mining Kapitel 1: Einleitung Data Warehousing und Mining - 1 Gliederung dieses Kapitels für Datenanalyse (und Thema der ), Begriffsbildung Data Warehousing, im Bereich Data Warehousing,

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Frequent Itemset Mining + Association Rule Mining

Frequent Itemset Mining + Association Rule Mining Frequent Itemset Mining + Association Rule Mining Studiengang Angewandte Mathematik WS 2015/16 Frequent Itemset Mining (FIM) 21.10.2015 2 Einleitung Das Frequent-Itemset-Mining kann als Anfang des modernen,

Mehr

Gliederung. 1. Einleitung (1) 1. Einleitung (2) On detecting differences between groups

Gliederung. 1. Einleitung (1) 1. Einleitung (2) On detecting differences between groups Seminar im Fach Informatik Sommersemester 2006 Sascha Rüger Gliederung 1. Einleitung 2. Data Mining Systeme 3. Auswertung 4. Weitere Untersuchungen 5. Fazit 1. Einleitung (1) wichtige Aufgabe der Datenanalyse:

Mehr

Häufige Mengen ohne Kandidatengenerierung. FP-Tree: Transaktionen. Konstruktion eines FP-Trees. FP-Tree: Items

Häufige Mengen ohne Kandidatengenerierung. FP-Tree: Transaktionen. Konstruktion eines FP-Trees. FP-Tree: Items Häufige Mengen ohne Kandidatengenerierung Jiawei Han, Micheline Kamber 2006 (2nd ed.)! Ziel 1: Kompression der Datenbank in eine Frequent-Pattern Tree Struktur (FP-Tree)! Stark komprimiert, vollständig

Mehr

4. Assoziationsregeln. 4.1 Einleitung. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation

4. Assoziationsregeln. 4.1 Einleitung. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation 4.1 Einleitung 4. Assoziationsregeln Inhalt dieses Kapitels Transaktionsdatenbanken, Warenkorbanalyse 4.2 Einfache Assoziationsregeln Grundbegriffe, Aufgabenstellung, Apriori-Algorithmus, Hashbäume, Interessantheit

Mehr

Datenanalyse mit Data Mining

Datenanalyse mit Data Mining Datenanalyse mit Data Mining von Jan-Christoph Meier Hamburg, 19.01.2012 1 Ablauf Motivation Speicherung der Daten für das Data Mining Data Mining Algorithmen Ausblick auf die Masterarbeit Konferenzen

Mehr

4.1 Einleitung. 4. Assoziationsregeln. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation. Assoziationsregeln

4.1 Einleitung. 4. Assoziationsregeln. 4.2 Einfache Assoziationsregeln. 4.1 Einleitung. Inhalt dieses Kapitels. Motivation. Assoziationsregeln 4.1 Einleitung 4. Assoziationsregeln Inhalt dieses Kapitels Transaktionsdatenbanken, Warenkorbanalyse 4.2 Einfache Assoziationsregeln Grundbegriffe, Aufgabenstellung, Apriori-Algorithmus, Hashbäume, Interessantheit

Mehr

Assoziationsmining. Datalab Brown-Bag-Seminar. Thoralf Mildenberger

Assoziationsmining. Datalab Brown-Bag-Seminar. Thoralf Mildenberger Assoziationsmining Datalab Brown-Bag-Seminar Thoralf Mildenberger Institut für Datenanalyse und Prozessdesign School of Engineering Zürcher Hochschule für Angewandte Wissenschaften 09.07.2014 Thoralf Mildenberger

Mehr

Mining conjunctive sequential patterns

Mining conjunctive sequential patterns Mining conjunctive sequential patterns Chedy Raïssi Toon Calders Pascal Poncelet Manh Linh Nguyen TU Dortmund Fakultät für Informatik Lehrstuhl 8.5.29 Inhalt. Einleitung 2. Mining von frequent sequences

Mehr

Moment: Maintaining Closed Frequent Itemsets over a Stream Sliding Window

Moment: Maintaining Closed Frequent Itemsets over a Stream Sliding Window Institut für Informatik Moment: Maintaining Closed Frequent Itemsets over a Stream Sliding Window Yun Chi, Haixun Wang, Philip S. Yu, Richard R. Muntz Hauptseminar Data Science - SS 2016 Team D: Julian

Mehr

Häufige Mengen ohne Kandidatengenerierung

Häufige Mengen ohne Kandidatengenerierung Häufige Mengen ohne Kandidatengenerierung Jiawei Han, Micheline Kamber 2006 (2nd ed.) Ziel 1: Kompression der Datenbank in eine Frequent-Pattern Tree Struktur (FP-Tree) Stark komprimiert, vollständig bzgl.

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Semestralklausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz / Dr. G. Grieser Technische Universität Darmstadt Wintersemester 2005/06 Termin: 23. 2. 2006 Name: Vorname: Matrikelnummer:

Mehr

Inhalt. 7.1 Motivation. 7.2 Artikelmengen. 7.3 Assoziationsregeln. 7.4 Sequenzen. Entscheidungsunterstützende Systeme / Kapitel 7: Mustererkennung

Inhalt. 7.1 Motivation. 7.2 Artikelmengen. 7.3 Assoziationsregeln. 7.4 Sequenzen. Entscheidungsunterstützende Systeme / Kapitel 7: Mustererkennung 7. Mustererkennung Inhalt 7.1 Motivation 7.2 Artikelmengen 7.3 Assoziationsregeln 7.4 Sequenzen 2 7.1 Motivation Mustererkennung (pattern mining) sucht in oft großen Datenmengen nach häufig auftretenden

Mehr

6. Überblick zu Data Mining-Verfahren

6. Überblick zu Data Mining-Verfahren 6. Überblick zu Data Mining-Verfahren Einführung Clusteranalyse k-means-algorithmus Canopy Clustering Klassifikation Klassifikationsprozess Konstruktion eines Entscheidungsbaums Assoziationsregeln / Warenkorbanalyse

Mehr

DBS5 Kap. 4. Data Mining

DBS5 Kap. 4. Data Mining DBS5 Kap. 4 Data Mining Klassifikationen und Cluster-Bildung: Auffinden von Regeln zur Partitionierung von Daten in disjunkte Teilmengen (Anwendungsbeispiel: Risikoabschätzung) bzw. Herstellen von Gruppierungen

Mehr

Vorlesung. Datenschutz und Privatheit in vernetzten Informationssystemen

Vorlesung. Datenschutz und Privatheit in vernetzten Informationssystemen Vorlesung Datenschutz und Privatheit in vernetzten Informationssystemen Kapitel 7: Privacy Preserving Data Mining Thorben Burghardt, Erik Buchmann buchmann@ipd.uka.de Thanks to Chris Clifton & Group IPD,

Mehr

6. Überblick zu Data Mining-Verfahren

6. Überblick zu Data Mining-Verfahren 6. Überblick zu Data Mining-Verfahren Einführung Clusteranalse k-means-algorithmus Klassifikation Klassifikationsprozess Konstruktion eines Entscheidungsbaums Assoziationsregeln / Warenkorbanalse Support

Mehr

Effiziente Algorithmen

Effiziente Algorithmen Effiziente Algorithmen Aufgabe 5 Gruppe E Martin Schliefnig, 0160919 Christoph Holper, 9927191 Ulrike Ritzinger, 0125779 1. Problemstellung Gegeben ist eine Datei, die eine Million reelle Zahlen enthält.

Mehr

Erkennung Sequenzieller Muster Algorithmen und Anwendungen

Erkennung Sequenzieller Muster Algorithmen und Anwendungen Achim Eisele, Thema 1.4.3: Sequenzielle Muster 1 FernUniversität in Hagen Seminar 01912 im Sommersemester 2008 Erkennung Sequenzieller Muster Algorithmen und Anwendungen Thema 1.4.3: Sequenzielle Muster

Mehr

Data Mining im Einzelhandel Methoden und Werkzeuge

Data Mining im Einzelhandel Methoden und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Professur Technische Informationssysteme Proseminar Technische Informationssysteme Data Mining im Einzelhandel Methoden und Werkzeuge Betreuer: Dipl.-Ing.

Mehr

Entscheidungsbäume. Minh-Khanh Do Erlangen,

Entscheidungsbäume. Minh-Khanh Do Erlangen, Entscheidungsbäume Minh-Khanh Do Erlangen, 11.07.2013 Übersicht Allgemeines Konzept Konstruktion Attributwahl Probleme Random forest E-Mail Filter Erlangen, 11.07.2013 Minh-Khanh Do Entscheidungsbäume

Mehr

Induktion von Assoziationsregeln. Stefan Mandl

Induktion von Assoziationsregeln. Stefan Mandl Induktion von Assoziationsregeln Stefan Mandl Inhalt Was sind Assoziationsregeln? Qualitätsbewertung Algorithmus Was sind Assoziationsregeln? Assoziationsregeln Assoziationsregeln beschreiben Korrelationen

Mehr

Cognitive Interaction Technology Center of Excellence

Cognitive Interaction Technology Center of Excellence Kanonische Abdeckung Motivation: eine Instanz einer Datenbank muss nun alle funktionalen Abhängigkeiten in F + erfüllen. Das muss natürlich immer überprüft werden (z.b. bei jedem update). Es reicht natürlich

Mehr

5 Data Warehouses und Data Mining

5 Data Warehouses und Data Mining 5 Data Warehouses und Data Mining Mittels OLAP Techniken können große Datenmengen unterschiedlich stark verdichtet und gezielt aufbereitet werden. Mittels Data Mining können große Datenmengen nach bisher

Mehr

Datenbanken Unit 10: Ranking und Data Mining Erstellen und Ändern von Datenbanken

Datenbanken Unit 10: Ranking und Data Mining Erstellen und Ändern von Datenbanken Datenbanken Unit 10: Ranking und Data Mining Erstellen und Ändern von Datenbanken 7. VI. 2016 Organisatorisches nächste Woche am 14. Juni Abschlusstest (Gruppe 1: 10:00 11:15, Gruppe 2: 11:30 12:45 ) Übungsblatt

Mehr

ID3 und Apriori im Vergleich

ID3 und Apriori im Vergleich ID3 und Apriori im Vergleich Lassen sich bei der Klassifikation mittels Apriori bessere Ergebnisse als durch ID3 erzielen? Sebastian Boldt, Christian Schulz, Marc Thielbeer KURZFASSUNG Das folgende Dokument

Mehr

Datenbanken Unit 11: Data Mining

Datenbanken Unit 11: Data Mining Datenbanken Unit 11: Data Mining 11. VI. 2018 Organisatorisches Diesen Mittwoch UE-Abschlusstest (Gruppe 1: 17:30 18:30, Gruppe 2: 16:15 17:15 ) Klassifikation Outline 1 Organisatorisches 2 Data Mining

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Was wissen Sie jetzt?

Was wissen Sie jetzt? Was wissen Sie jetzt?! Sie haben drei Prinzipien für die Regelbewertung kennen gelernt:! Unabhängige Mengen sollen mit bewertet werden.! Der Wert soll höher werden, wenn die Regel mehr Belege hat.! Der

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Datenbanken Unit 9: OLAP, OLTP, Data Warehouse Ranking Algorithmen

Datenbanken Unit 9: OLAP, OLTP, Data Warehouse Ranking Algorithmen Datenbanken Unit 9: OLAP, OLTP, Data Warehouse Ranking Algorithmen 28. V. 2018 Outline 1 Organisatorisches 2 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 3 Ranking 4 SQL Organisatorisches Ergebnisse

Mehr

Beschreibung von Web- Nutzungsverhalten unter Verwendung von Data Mining Techniken

Beschreibung von Web- Nutzungsverhalten unter Verwendung von Data Mining Techniken Diplomarbeit Beschreibung von Web- Nutzungsverhalten unter Verwendung von Data Mining Techniken Irina Alesker Diplomarbeit am Fachbereich Informatik der Universität Dortmund 23. Juni 2005 Betreuer: Prof.

Mehr

Data Mining and Knowledge Discovery zielt darauf ab, verwertbare Erkenntnisse aus Daten zu gewinnen

Data Mining and Knowledge Discovery zielt darauf ab, verwertbare Erkenntnisse aus Daten zu gewinnen Rückblick Data Mining and Knowledge Discovery zielt darauf ab, verwertbare Erkenntnisse aus Daten zu gewinnen Klassifikation ordnet neue Datenpunkte in Klassen ein, deren Charakteristika vorab anhand von

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Domain-independent. independent Duplicate Detection. Vortrag von Marko Pilop & Jens Kleine. SE Data Cleansing

Domain-independent. independent Duplicate Detection. Vortrag von Marko Pilop & Jens Kleine. SE Data Cleansing SE Data Cleansing Domain-independent independent Duplicate Detection Vortrag von Marko Pilop & Jens Kleine http://www.informatik.hu-berlin.de/~pilop/didd.pdf {pilop jkleine}@informatik.hu-berlin.de 1.0

Mehr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr

Folien zu Data Mining von I. H. Witten und E. Frank. übersetzt von N. Fuhr Folien zu Data Mining von I. H. Witten und E. Frank übersetzt von N. Fuhr Von Naivem Bayes zu Bayes'schen Netzwerken Naiver Bayes Annahme: Attribute bedingt unabhängig bei gegebener Klasse Stimmt in der

Mehr

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2015/16 WS 2015/16 G. Kern-Isberner (TU Dortmund) DVEW WS 2015/16 1 / 169

Mehr

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund WiSe 2016/17 G. Kern-Isberner (TU Dortmund) DVEW WiSe 2016/17 1 / 169 Kapitel 5 Entscheidungsbäume

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2015/16 WS 2015/16 G. Kern-Isberner (TU Dortmund) DVEW WS 2015/16 1 / 169

Mehr

Maschinelles Lernen: Symbolische Ansätze

Maschinelles Lernen: Symbolische Ansätze Klausur zur Vorlesung Maschinelles Lernen: Symbolische Ansätze Prof. J. Fürnkranz Technische Universität Darmstadt Wintersemester 2014/15 Termin: 17. 2. 2015 Name: Vorname: Matrikelnummer: Fachrichtung:

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Einführungsveranstaltung Überblick Organisation Literatur Inhalt und Ziele der Vorlesung Beispiele aus der Praxis 2 Organisation Vorlesung/Übung + Projektarbeit. 4 Semesterwochenstunden.

Mehr

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer LETZTE ÄNDERUNG: 15. NOVEMBER 2006 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 2. Vorlesung 24. Oktober 2006 Guido Schäfer 1.3 Beste-Antwort Funktion Notation: Definiere A i := j N\{i} A j.

Mehr

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion

Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Entwicklung einer Entscheidungssystematik für Data- Mining-Verfahren zur Erhöhung der Planungsgüte in der Produktion Vortrag Seminararbeit David Pogorzelski Aachen, 22.01.2015 Agenda 1 2 3 4 5 Ziel der

Mehr

Kapitel 4: Data Warehouse Architektur

Kapitel 4: Data Warehouse Architektur Kapitel 4: Data Warehouse Architektur Data Warehousing und Mining 1 Data Warehousing, Motivation Zugriff auf und Kombination von Daten aus mehreren unterschiedlichen Quellen, Source Source Source komplexe

Mehr

Konzeptbeschreibung Ziel: Methode: Vorgehen: Entfernen von Attributen Verallgemeinerung von Attributen Relevanzanalyse der restlichen Attribute

Konzeptbeschreibung Ziel: Methode: Vorgehen: Entfernen von Attributen Verallgemeinerung von Attributen Relevanzanalyse der restlichen Attribute Konzeptbeschreibung Ziel: Knappe Charakterisierung einer Datenmenge im Vergleich zu einer anderen Datenmenge (Kontrastmenge) Methode: Herausfinden charakteristischer Attribute auf angemessener Abstraktionsebene

Mehr