R. Brinkmann Seite

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010"

Transkript

1 R. rinkmnn Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl vollständig estimmt. Solhe Größen sind eispielsweise: Länge, Msse, reit, Energie, Zeit, Tempertur und Potentil. Diese Größen können uf einer Skl drgestellt werden und heißen deshl sklre Größen oder Sklre. Größen, die zu ihrer eindeutigen estimmung neen der nge der Mßzhl noh die der Rihtung enötigen, heißen vektorielle Größen oder Vektoren. Die Geshwindigkeit und die eshleunigung sind solhe Größen. Vektoren werden durh Pfeile drgestellt. Die Pfeillänge estimmt den etrg des Vektors, die Rihtung des Pfeils estimmt die Rihtung des Vektors. Ein Vektor ist somit im Vergleih zu einem Sklr eine gerihtete Größe. Untershieden werden freie Vektoren, liniengeundene Vektoren und ortsgeundene Vektoren. Die wesentlihe Eigenshft eines freien Vektors ist, dss er entlng seiner Wirkungslinie und prllel im Rum vershoen werden drf. Vektoren von gleiher Länge und gleiher Rihtung sind einnder gleih. = und D = = = D = = D Die Krft, die n einem Körper ngreift, stellt einen liniengeundenen Vektor dr. Dieser drf entlng seiner Wirkungslinie elieig vershoen werden, niht er prllel dzu. F Wirkungslinie Ein ortsgeundener Vektor, uh Ortsvektor gennnt ht einen festen ngriffspunkt und drf niht vershoen werden. ddition von Vektoren. Einen Vektor zu einem Vektor ddieren heißt, den Vektor prllel zu sih selst so zu vershieen, dss sein nfngspunkt uf den Endpunkt des Vektors fällt. Die Verindung des nfngspunktes von mit dem Endpunkt von ergit den Summenvektor. = + Erstellt von R. rinkmnn p5_vektor_.do :28 Seite von 5

2 R. rinkmnn Seite ddition zweier Vektoren = + Für die ddition zweier Vektoren gilt ds Kommuttivgesetz. + = ei der ddition von drei Vektoren müssen diese niht in einer Eene liegen. Jeder der drei Vektoren ist eine gerihtete Streke im Rum. Die drei Vektoren können ein räumlihes Geilde ufspnnen. Es gilt ds ssozitivgesetz: ( + ) + = + ( + ) = Zwei etrgsgleihe Vektoren mit entgegengesetzter Rihtung heißen Gegenvektoren. ddiert mn diese, so erhält mn ls Summe einen Vektor, dessen nfngspunkt mit seinem Zielpunkt zusmmenfällt. D der etrg dieses Summenvektors Null ist, heißt er Nullvektor. Er ht keine estimmte Rihtung. - + = Sutrktion von Vektoren. Sutrktion zweier Vektoren Die Vektorsutrktion knn uf die Vektorddition zurükgeführt werden. Ein Vektor wird sutrhiert, indem mn den Gegenvektor ddiert. = - - Erstellt von R. rinkmnn p5_vektor_.do :28 Seite 2 von 5

3 R. rinkmnn Seite eispiel : Vektorddition zeihnerish. n einem Stromverteilermst greifen in einem Punkt 4 Kräfte n, die in einer Eene liegen sollen. Zeihnerish ist der etrg und die Rihtung der Resultierenden zu estimmen. Zeihenmßst: m entspriht N. ufgenstellung: Zeihnerishe Lösung: = 4N F3 = 3N = 4N F3 = 3N 7 F = 38N F4 = 44N 42 F = 38N 8 F4 = 44N R = 22N R = F+ + F3 + F4 R = 22N und ( F,R) = 42 Der etrg der Resultierenden eträgt 22 N. Ds edeutet, n dem Verteilermst wirkt eine Restkrft von 22 N. Die Wirkungsrihtung eträgt in ezug uf F 42 oder 38 emerkung: Gegen den Uhrzeigersinn (links herum) werden Winkel von der ezugsgerden usgehend positiv gezählt, im Uhrzeigersinn (rehts herum) hingegen negtiv. Die zeihnerishe Lösung ist immer nur eine Näherungslösung. Sie ist nur so genu, wie gezeihnet werden knn. Eine rehnerishe Lösung, die in einem späteren Kpitel ehndelt wird liefert ls exktes Ergenis: R = 224,9N und F,R = 4,585 ( ) eispiel 2: Gesuht ist die Entfernung des Hlierungspunktes E der Streke D vom Punkt, wenn der Endpunkt des Vektors und D der Endpunkt des Vektors D ist und die Vektoren und D vom Punkte usgehen. D E Erstellt von R. rinkmnn p5_vektor_.do :28 Seite 3 von 5

4 R. rinkmnn Seite Lösung: D + D = D = D D E der Hlierungspunkt der Streke D ist, gilt: D D DE = = D + D Für E gilt dnn E = D + DE = D + = Für die Streke E gilt: E = + D 2 D er = + D ist, muss E uh Hlierungspunkt der Streke sein. Dmit ist ewiesen, dss im Prllelogrmm die Digonlen durh ihren Shnittpunkt hliert werden. Kosinus- und Sinusstz ls Hilfsmittel für Vektorerehnungen. islng wurden Vektoren zeihnerish ddiert. Ergenisse von zeihnerishen Lösungen sind niht immer genu. Kosinusstz: In jedem Dreiek lässt sih ds Qudrt einer Seite us den eiden nderen Seiten und deren eingeshlossenem Winkel erehnen = + 2 os( ) = + 2 os( ) = + 2 os Sinusstz: In jedem Dreiek ist ds Verhältnis von Seitenlänge zum Sinus des gegenüerliegenden Winkels für lle Seiten dssele: = = sin( ) sin( ) sin( ) eispiel 3 Zwei Kräfte F und F 2 mit F = F = 6N und = = 4N shließen miteinnder einen Winkel von = 5 ein. Wie groß ist die resultierende Krft R? Welhen Winkel ildet R mit F zw. F? 2 Erstellt von R. rinkmnn p5_vektor_.do :28 Seite 4 von 5

5 R. rinkmnn Seite R = F + F F,F ist = = 8 5 = 3 Nh dem Kosinusstz gilt: 2 2 R = F + F 2 F F os ( os( 3 )) 9,24N 2 = + Nh dem Sinusstz gilt: R sin( ) = sin = sin F sin R 2 4 ( ) N sin = sin 3,337 9,24 F 2 2 F R = r sin,337 9,672 ist der von R und F eingeshlossene Winkel. D und sih zu = 5 ergänzen, wird der zwishen F und R liegende Winkel 2 = 5 = 5 9,672 3,328 2 F 2 Zusmmenfssung:. Ein Vektor ist eine gerihtete, orientierte Streke im Rum. 2. Vektoren sind gleih, wenn sie in etrg, Rihtung und Orientierung üereinstimmen. 3. Zwei Vektoren werden ddiert, indem mn den nfngspunkt des einen Vektors n die Spitze des nderen setzt. Der Summenvektor + zeigt dnn vom nfngspunkt des ersten Vektors zum Endpunkt des zweiten Vektors Vektor und Gegenvektor hen den gleihen etrg und die gleihe Rihtung, er entgegengesetzte Orientierung. 5. Den Differenzvektor = - erhält mn, indem mn zu den Gegenvektor von ddiert : = + ( ) = - Erstellt von R. rinkmnn p5_vektor_.do :28 Seite 5 von 5

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Mthemtik: Mg. Schmid Wolfgng Areitsltt 3 5. Semester ARBEITSBLATT 3 PARAMETERDARSTELLUNG EINER GERADEN Wir wollen eine Gerde drstellen, welche durch die Punkte A(/) und B(5/) verläuft. Die Idee ist folgende:

Mehr

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V.

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V. 0.05.0 Geometrie und Trigonometrie ) Spezielle Winkel ei shneidenden Gerden und Prllelen 4 4 Sheitelwinkel sind gleih (z.. zw. ) Neenwinkel ergänzen sih zu 80 0 (z.. + 80 0 ) Stufenwinkel sind gleih (z..

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Checkliste Sinus, Kosinus, Tangens

Checkliste Sinus, Kosinus, Tangens Chekliste Sinus, Kosinus, Tngens Nr. K 1 K K 3 K 4 K 5 K 6 K 7 K 8 Kompetenz Ih knn... in einem rehtwinkligen Dreiek Kthete, Gegenkthete und Hypotenuse estimmen in einem rehtwinkligen Dreiek die Seitenverhältnisse

Mehr

Grundwissen 6. Klasse

Grundwissen 6. Klasse Grundwissen Mthemtik Klsse / Grundwissen Klsse Positive Brühe ) Grundegriffe z Brühe hen die Form n mit z I N0, n I N z heißt der Zähler, n der Nenner des Bruhes Bezeihnung Bedingung Beispiele Ehter Bruh

Mehr

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck Downlod Mihel Frnk sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm, Dreiek Downloduszug us dem Originltitel: sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm,

Mehr

ARBEITSBLATT 14 ARBEITSBLATT 14

ARBEITSBLATT 14 ARBEITSBLATT 14 Mthemtik: Mg. Schmid Wolfgng reitsltt. Semester RBEITSBLTT RBEITSBLTT RBEITSBLTT RBEITSBLTT DS VEKTORPRODUKT Definition: Ds vektorielle Produkt (oder Kreuprodukt) weier Vektoren und ist ein Vektor mit

Mehr

H Dreiecke und Vierecke

H Dreiecke und Vierecke H Dreieke und Viereke 1 eziehungen zwishen Seiten und Winkeln im Dreiek In einem Dreiek liegt der längsten Seite der größte Winkel gegenüer. Umgekehrt liegt dem größten Winkel uh die längste Seite gegenüer.

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps 1 GeshäftsdiGrmme Wenn mn eine deutshe Üersetzung des Begriffes usiness hrts suht, so ist mn mit dem Wort Geshäftsdigrmme gnz gut edient. Wir verstehen unter einem Geshäftsdigrmm die Visulisierung von

Mehr

Inhaltsübersicht. Vektorrechnung in der Ebene. Ungleichungen in zwei Variablen. Der Vektorraum R n, Vektoroperationen.

Inhaltsübersicht. Vektorrechnung in der Ebene. Ungleichungen in zwei Variablen. Der Vektorraum R n, Vektoroperationen. Inhltsüersicht Kpitel 5: evil forces: Vektorrechnung Vektorrechnung in der Eene Ungleichungen in zwei Vrilen Der Vektorrum R n, Vektoropertionen Eenen im Rum Linere Gleichungssysteme Gußsche Elimintion

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

AT = λ TB. Kapitel 5: Teilverhältnisse und Ähnlichkeit. Definition Teilverhältnis λ. Allgemeiner

AT = λ TB. Kapitel 5: Teilverhältnisse und Ähnlichkeit. Definition Teilverhältnis λ. Allgemeiner Definition Teilverhältnis Definition Teilverhältnis Üung Kpitel 5: Teilverhältnisse und Ähnlihkeit Definition Teilverhältnis λ λ T T llgemeiner T λ T T T T T ist innerer Teilpunkt, flls λ > 0 T ist äußerer

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik

GRUNDWISSEN MATHEMATIK. Gymnasium Ernestinum Coburg Fachschaft Mathematik GRUNDWISSEN MTHEMTIK Gymnsium Ernestinum Coburg Fchschft Mthemtik GM 5.1 Zhlen und Mengen Grundwissen Jhrgngsstufe 5 Mengen werden in der Mthemtik mit geschweiften Klmmern geschrieben: Menge der ntürlichen

Mehr

Chemisches Gleichgewicht

Chemisches Gleichgewicht TU Ilmenu Chemishes Prktikum Versuh Fhgebiet Chemie 1. Aufgbe Chemishes Gleihgewiht Stellen Sie 500 ml einer 0,1m N her! estimmen Sie die genue onzentrtion der hergestellten N mit zwei vershiedenen Anlysenmethoden

Mehr

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz Seminr zum norgnish-hemishen Prktikum I Quntittive Anlyse Prof. Dr. M. Sheer Ptrik Shwrz itertur A. F. Hollemn, E. Wierg, ehruh der Anorgnishen Chemie, de Gruyter Verlg, Berlin, New York (Ahtung, neue

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel:

Download. Hausaufgaben: Trigonometrie. Üben in drei Differenzierungsstufen. Otto Mayr. Downloadauszug aus dem Originaltitel: Downlod Otto Myr Husufgen: Üen in drei Differenzierungsstufen Downloduszug us dem Originltitel: Husufgen: Üen in drei Differenzierungsstufen Dieser Downlod ist ein uszug us dem Originltitel Husufgen Mthemtik

Mehr

ADSORPTIONS-ISOTHERME

ADSORPTIONS-ISOTHERME Institut für Physiklishe Chemie Prktikum Teil und B 8. DSORPTIONS-ISOTHERME Stnd 30/0/008 DSORPTIONS-ISOTHERME. Versuhspltz Komponenten: - Büretten - Pipetten - Shütteltish - Wge - Filtriergestell - Behergläser.

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2

Es soll der Betrag eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordinatenschreibweise gegeben ist. a 3. x 2 R. Brinkmnn http://brinkmnn-du.de Seite 8.. Vektoren im krtesischen Koordintensystem Betrg eines Vektors Es soll der Betrg eines Vektors berechnet werden, wenn dieser in Komponenten oder Koordintenschreibweise

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

10 Anwendungen der Integralrechnung

10 Anwendungen der Integralrechnung 9 nwendungen der Integrlrechnung Der Inhlt von 9 wren die verschiedenen Verfhren zur Berechnung eines Integrls Der Inhlt von sind die verschiedenen Bedeutungen, die ein Integrl hen knn Die Integrlrechnung

Mehr

(Analog nennt man a die und b die des Winkels β.)

(Analog nennt man a die und b die des Winkels β.) Mthemtik Einführung Ws edeutet ds Wort und mit ws eschäftigt sich die? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Eck' Beispiel: Pentgon ds Fünfeck mit 5 Winkeln

Mehr

10. Lineare Gleichungen mit zwei Variabeln Eine lineare Gleichung in 2 Variablen... 19

10. Lineare Gleichungen mit zwei Variabeln Eine lineare Gleichung in 2 Variablen... 19 Alger Vorlesung (.Teil) Mg. Dniel Zeller INHALTSVERZEICHNIS 0. Linere Gleihungen mit zwei Vrieln... 9 Eine linere Gleihung in Vrilen... 9 Geometrishe Deutung einer lineren Gleihung in Vrilen... Gleihungssystem

Mehr

Geometrie - Lösungen C E. Bestimmungsaufgaben Aufgabe 1) Geg.: (a) DE AC; (c) FDB = 145 ; Ges.: = ECG; = DEB. (Bezeichnungen siehe Figur)

Geometrie - Lösungen C E. Bestimmungsaufgaben Aufgabe 1) Geg.: (a) DE AC; (c) FDB = 145 ; Ges.: = ECG; = DEB. (Bezeichnungen siehe Figur) Geometrie - Lösungen estimmungsufgben ufgbe 1) Geg.: () ; (b) ; () F = 145 ; Ges.: = G; =. (ezeihnungen siehe Figur) F G Lösung: () (1) = 180-145 = 35 ; [Nebenwinkelstz für F]. (),(1) () = = 35 ; [Stufenwinkelstz].

Mehr

Spannung galvanischer Zellen (Zellspannungen)

Spannung galvanischer Zellen (Zellspannungen) Spnnung glvnisher Zellen (Zellspnnungen) Ziel des Versuhes Kennenlernen der Abhängigkeit der Zellspnnung von den Konzentrtionen der potenzilbestimmenden Ionen (Nernst-Gleihung). Anwendung der Zellspnnungsmessung

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

der reellen Zahlen umfasst alle rationalen und irrationalen Zahlen.

der reellen Zahlen umfasst alle rationalen und irrationalen Zahlen. . Zhlen. Die Qudrtwurzel Die Qudrtwurzel ist die positive Lösung der Gleihung Ein Teil der Qudrtwurzeln sind rtionle Zhlen. 0! z.b. 9, 0,0 0, oder, 0 0! 9 heißt Rdiknd ndere dgegen irrtionle Zhlen z. B.,

Mehr

Satzgruppe des Pythagoras

Satzgruppe des Pythagoras Stzgruppe des Pythgors Jürgen Zumdik I. ntdeken des Stzes 1) Seilspnnergeshihte oder Zimmermnnsgeshihte (in Zimmermnn legt us Ltten der Länge 1,0 m, 1,60 m und,00 m ein Dreiek). ) us einer Werung von Ritter-Sport

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

Flächensätze am rechtwinkligen Dreieck

Flächensätze am rechtwinkligen Dreieck Flähensätze m rehtwinkligen Dreiek ufge: Zeihne ein rehtwinkliges Dreiek us = 7 m, = 5 m γ = 90 o und zeihne die Höhe h ein. γ Kthete h Kthete q Hypotenusenshnitte Hypotenuse p MERKE: Ktheten: Hypotenuse:

Mehr

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis

750 + 142,50 = 892,50 Nettopreis Umsatzsteuer Bruttopreis 2.7 Verminderter und vermehrter Grundwert 41 Beispiel: Bruttobetrg, Nettobetrg, Umstzsteuer Profirdfhrer Klus kuft sih ein Mountinbike. Ds Fhrrd kostet einshließlih 19 % Umstzsteuer 892,50. Ds Finnzmt

Mehr

1 152.17. 1. Gegenstand und Zweck

1 152.17. 1. Gegenstand und Zweck 5.7. März 0 Verordnung üer die Klssifizierung, die Veröffentlihung und die Arhivierung von Dokumenten zu Regierungsrtsgeshäften (Klssifizierungsverordnung, KRGV) Der Regierungsrt des Kntons Bern, gestützt

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor)

Kurvenintegrale. 17. Juli 2006 (Korrigierte 2. Version) 1 Kurvenintegrale 1. Art (d.h. f ist Zahl, kein Vektor) Kurvenintegrle Christin Mosch, Theoretische Chemie, Universität Ulm, christin.mosch@uni-ulm.de 7. Juli 26 (Korrigierte 2. Version Kurvenintegrle. Art (d.h. f ist Zhl, kein Vektor Bei Kurvenintegrlen. Art

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2013/2014

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 2. Runde 2013/2014 Lndeswettewer Mthemtik Bden-Württemerg Musterlösungen. Runde 0/04 Aufge Eine Zhlenfolge eginnt mit den positiven Zhlen und. Die weiteren Zhlen werden geildet, indem mn wehselnd die Summe und den Quotienten

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie

Allgemeines. Mail an muenster.de. Motivation für die Veranstaltung Übung zur Markt und Preistheorie Allgemeines Nme: Emil: Stefn Shrmm stefn.shrmm@wiwi.uni muenster.de Motivtion für die Vernstltung Üung zur Mrkt und Preistheorie Inhlt der Klusur Vorlesung Skrit und Üung Sehr gut vorzuereiten! Tis zur

Mehr

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN Felix Brndl Münhen ZDfB_Ü01_LV_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 40 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Bitte lesen Sie den folgenden

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

Das customized Alignersystem

Das customized Alignersystem Inwieweit durh Einstz modernster Computertehnologie die Aktivierung von Korrekturshienen noh präziser relisiert werden knn, demonstriert Dr. Wjeeh Khn nhnd des von ihm entwikelten orthops -Alignersystems*.

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Trnsportnetze Bernhr Gnter WS 2009/10 Gerihtete Grphen Ein shlingenloser gerihteter Grph ist ein Pr (V, A), woei V eine elieige Menge ist, eren Elemente wir Eken nennen un

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid)

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernzirkel / Stationenlernen: Höhensätze (Pythagoras und Euklid) Unterrihtsmterilien in digitler und in gedrukter Form uszug us: Lernzirkel / Sttionenlernen: Höhensätze (Pythgors und Euklid) Ds komplette Mteril finden Sie hier: Downlod ei Shool-Soutde SHOOL-SOUT Lernzirkel

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen:

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen: Körpererehnungen Grunwissen Grunwissen Viele mthemtishe Körper lssen sih us en eknnten geometrishen Grunkörpern zusmmensetzen: us geren Prismen, Zylinern, Kegeln, Pyrmien un Kugeln. Hinsihtlih er Oerflähen-

Mehr

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007

Dr. Michael Gieding ph-heidelberg.de/wp/gieding. Skript zur gleichnamigen Vorlesung im Wintersemester 2006/2007 Dr. Mihel Gieding h-heidelerg.de/w/gieding Einführung in die Geometrie Skrit zur gleihnmigen Vorlesung im Wintersemester 2006/2007 Kitel 3: Prllelität Vo r l e s u n g 1 1 : D e r I n n e n w i n k e l

Mehr

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben

Grundkurs Mathematik. Einführung in die Integralrechnung. Lösungen und Ergebnisse zu den Aufgaben Seite Einführung in die Integrlrechnung Lösungen und Ergenisse Gr Stefn Gärtner Grundkurs Mthemtik Einführung in die Integrlrechnung Lösungen und Ergenisse zu den Aufgen Von llen Wissenschftlern können

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

3 Exzisionstechniken und Defektdeckungen in speziellen Lokalisationen

3 Exzisionstechniken und Defektdeckungen in speziellen Lokalisationen 95 3 Exzisionstehniken und Defektdekungen in speziellen Loklistionen 3.1 Kopf-Hls-Region Voremerkungen Die Häufigkeit störender Veränderungen sowie enigner und mligner kutner Neuildungen im Kopf-Hls- Bereih

Mehr

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1

Fachhochschule Jena Fachbereich GW. Serie Nr.: 2 Semester: 1 Fchhochschule Jen Fchbereich GW Tutorium Mthemtik I Studiengng: BT/MT - Bchelor Serie Nr.: 2 Semester: Them: Vektorrechnung und Geometrie Auf die Lehrmterilien im Internet ( Zum selbständigen Üben ) empfehle

Mehr

Mobile radiographische Untersuchung von Holz und Bäumen

Mobile radiographische Untersuchung von Holz und Bäumen Moile rdiogrphishe Untersuhung von Holz und Bäumen K. Osterloh, A. Hsenst, U. Ewert, M. Kruse, J. Goeels Bundesnstlt für Mterilforshung und -prüfung (BAM), Berlin Zusmmenfssung Sowohl im Buholz ls uh in

Mehr

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1 Busteine er Digitltehnik - Binäre Shlter un Gtter Kpitel 7. Dr.-Ing. Stefn Wilermnn ehrstuhl für rwre-softwre-co-design Entwurfsrum - Astrktionseenen SYSTEM-Eene + MODU-/RT-Eene (Register-Trnsfer) ogik-/gatter-eene

Mehr

SPRACHFERIEN KÜNZELSAU 2008

SPRACHFERIEN KÜNZELSAU 2008 SPRACHFERIEN KÜNZELSAU 2008 (Mittelstufe) CODENUMMER: I. Lesen Sie den Text. Entsheiden Sie, welhe der Antworten ( ) psst. Es git jeweils nur eine rihtige Lösung. GEMEINSAM FÚR SPRACHE UND KULTUR Ashenputtel,

Mehr

Logarithmen und Logarithmengesetze

Logarithmen und Logarithmengesetze R. Brinkmnn http://brinkmnn-du.de Seite 9.. Logrithmen und Logrithmengesetze Wir betrhten die Gleihung 5 = 5 Auf der linken Seite steht eine Potenz mit der Bsis 5 und dem Eponenten. Auf der rehten Seite

Mehr

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch

Der Tigerschwanz kann als Stimmungsbarometer gesehen werden. a) Richtig b) Falsch. Tiger sind wasserscheu. a) Richtig b) Falsch ?37??38? Der Tigershwnz knn ls Stimmungsrometer gesehen werden. Tiger sind wssersheu.?39??40? Ds Gerüll der Tigermännhen soll die Weihen nloken. Die Anzhl der Südhinesishen Tiger eträgt nur mehr ) 2 )

Mehr

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern!

2 Kinobesuch GRAMMATIK. perfekt. Im September LEICHT. wann die Vorstellung beginnt. Schreiben Sie Sätze! Beginnen Sie mit den grün markierten Wörtern! DEUTSCH GRAMMATIK VERBPOSITION S. 0 Im Septemer LEICHT Shreien Sie Sätze! Beginnen Sie mit den grün mrkierten Wörtern! der Herst / m. Septemer / eginnt ds Oktoerfest / in Münhen / findet sttt die Österreiher

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele

Grundwissen. Die Menge der reellen Zahlen 0 =0. Beispiele Grundwissen Klsse 9 Die Menge der reellen Zhlen Die Umkehrung des Qudrierens wird für nicht negtive Zhlen ls Ziehen der Wurzel oder Rdizieren ezeichnet. Die Qudrtwurzel us (kurz: Wurzel us ) ist dei die

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

Mittelwerte. Sarah Kirchner & Thea Göllner

Mittelwerte. Sarah Kirchner & Thea Göllner Mittelwerte Srh Kirher The Göller Mittelwerte sid vershiedee mthemtish defiierte Kegröße. Uter dem Mittelwert zweier oder mehrerer Zhle versteht m meistes de Durhshitt, owohl viele dere Mittelilduge vorkomme.

Mehr

1. Elektrostatische Felder E

1. Elektrostatische Felder E 1. Elektrosttishe Felder E Zusmmenfssung wihtiger Formeln Die Elektrosttik beshäftigt sih mit den Feldern zeitlih konstnter Ldungsverteilungen. Grundlge dfür ist die Coulomb-Krft uf eine infinitesimle

Mehr

Klausur Grundlagen der Elektrotechnik (Version 5 für Diplom)

Klausur Grundlagen der Elektrotechnik (Version 5 für Diplom) Prüfung Grundlgen der Elektrotehnik Seite 1/34 Klusur Grundlgen der Elektrotehnik (Version 5 für Diplom) Die Klusur esteht us 11 Aufgen, dvon 10 Textufgen à 5 Punkte und ein Single-Choie-Teil mit 30 Punkten.

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

Technische Mechanik 1 Statik

Technische Mechanik 1 Statik 12., ktulisierte uflge Russell. Hieler Tehnishe Mehnik 1 Sttik Üersetung us dem meriknishen: Georgi Mis, rnk Lngenu hlihe etreuung und Erweiterungen: Jörg Wuer, Wolfgng Seemnn Higher Edution Münhen Hrlow

Mehr

Vorkurs Mathematik DIFFERENTIATION

Vorkurs Mathematik DIFFERENTIATION Vorkurs Mthemtik 6 DIFFERENTIATION Beispiel (Ableitung von sin( )). Es seien f() = sin g() = h() =f(g()) = sin. (f () =cos) (g () =) Also ist die Ableitung von h: h () =f (g())g () =cos = cos. Mn nennt

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge.

Domäne und Bereich. Relationen zwischen Mengen/auf einer Menge. Anmerkungen zur Terminologie. r Relationen auf/in einer Menge. Reltionen zwischen Mengen/uf einer Menge! Eine Reltion R A B (mit A B) ist eine Reltion zwischen der Menge A und der Menge B, oder uch: von A nch B. Drstellung: c A! Wenn A = B, d.h. R A A, heißt R eine

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Mtrizen und Determinnten Im bschnitt Vektorlgebr Rechenregeln für Vektoren Multipliktion - Sklrprodukt, Vektorprodukt, Mehrfchprodukte wurde in einem Vorgriff bereits eine interessnte mthemtische Konstruktion

Mehr

VIESMANN. VITODENS Abgassysteme für Gas-Brennwertkessel 3,8 bis 105,0 kw. Planungsanleitung ABGASSYSTEME VITODENS

VIESMANN. VITODENS Abgassysteme für Gas-Brennwertkessel 3,8 bis 105,0 kw. Planungsanleitung ABGASSYSTEME VITODENS VIESMANN VITODENS Agssysteme für Gs-Brennwertkessel 3,8 is 105,0 kw Plnungsnleitung ABGASSYSTEME VITODENS 5369 08 5/011 Inhltsverzeihnis Inhltsverzeihnis 1. Agssysteme 1.1... 4 Butehnishe Einheit... 4

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Ingwer Borg. Zentrum für Umfragen, Methoden und Analysen, Mannheim Universität Gießen

Ingwer Borg. Zentrum für Umfragen, Methoden und Analysen, Mannheim Universität Gießen Ingwer Borg Zentrum für Umfrgen, Methoden und Anlysen, Mnnheim Universität Gießen 1 Als Ausgngspunkt unserer Betrhtungen verwenden wir einen Fll, der typish ist für die Verwendung der MDS in den Sozilwissenshften.

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhlt: 1 Qudrt und Rechteck Prllelogrmm 3 Dreieck 4 Trpez 5 Drchen und Rute 6 Exkurs: Höhen zeichnen 7 heckliste Kopiervorlge: Formeln herleiten 8 Hinweise zur Benutzung 6 10 13 17 0 3 4 Die vorliegenden

Mehr

Grundwissen Mathematik 5/1

Grundwissen Mathematik 5/1 1. Wihtie Symole Grundwissen Mthemtik 5/1 Wihtie Symole Rehenrten Qudrtzhlen IN Mene der ntürlihen Zhlen { 1; 2; 3; 4;... } IN 0 Mene der ntürlihen Zhlen einshließlih der Null {0; 1; 2; 3; 4;... } GI Grundmene

Mehr

1 Das dreidimensionale Koordinatensystem

1 Das dreidimensionale Koordinatensystem Schüleruchseite 90 9 Lösungen vorläufig Ds dreidimensionle Koordintensystem S. 90. Möglichkeit: : Linke vordere oere Ecke des gnz linken Würfels : rechte hintere oere Ecke des gnz rechten Würfels : rechte

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

Das Coulombsche Gesetz

Das Coulombsche Gesetz . ei r = 0 befindet sich eine Ldung Q = 4,0nC und bei r = 40cm eine Ldung Q = 5,0nC ortsfest, so dss sie sich nicht bewegen können. Ds Coulombsche Gesetz Q = 4,0nC Q = 5,0nC r Lösung: Wo muss eine Ldung

Mehr

Mathematik Regelheft Klasse 6

Mathematik Regelheft Klasse 6 Mthemtik Regelheft Klsse 6 Inhltsverzeihnis I Them: Teilrkeit 6.) Teiler un Vielfhe 6.) Teilrkeitsregeln 6.) Primzhlen un Primfktorzerlegung 6.) ggt 6.) kgv II Them: Winkel 6.6) Kreissklen un ihre Einteilung

Mehr

Solatube Brighten Up -Serie

Solatube Brighten Up -Serie Soltue Brighten Up -Serie Soltue 60 DS DS-Tgeslihteleuhtungssystem Soltue 290 DS DS-Tgeslihteleuhtungssystem Montgenleitung 8 Teileliste * Anzhl Kuppel mit Ryender 3000-Tehnologie (). Kuppelstoßdämpfer*

Mehr

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden.

Die nächste Übung ist vom 12.1. auf den 19.1.2012 verlegt worden. Allgemeines Einige Hinweise: Die nähste Üung ist vom.. auf den 9..0 verlegt worden. Die alten Klausuren findet Ihr unter folgendem Link: http://www.wiwi.uni muenster.de/vwt/studieren/pruefungen_marktpreis.htm

Mehr

Abiturvorbereitung Mathematik Lineare Algebra / Analytische Geometrie. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Lineare Algebra / Analytische Geometrie. Copyright 2013 Ralph Werner Abiturvorbereitung Mthemtik Linere Algebr / Anlytische Geometrie Copyright 2013 Rlph Werner 1 Linere Gleichungssysteme Ein lineres Gleichungssystem (LGS) besteht us einer Anzhl linerer Gleichungen. (m,n)-lgs

Mehr

Kapitel 6 E-Mails schreiben und organisieren

Kapitel 6 E-Mails schreiben und organisieren Kpitel 6 E-Mils shreien und orgnisieren Die Kommuniktion vi E-Mil ist heute essenziell. Und Ihr M ist estens gerüstet für den Empfng, ds Verfssen und die Orgnistion von E-Mils. Wie Sie effektiv mit dem

Mehr

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist,

Wurzeln. bestimmen. Dann braucht man Wurzeln. Treffender müsste man von Quadratwurzeln sprechen. 1. Bei Quadraten, deren Fläche eine Quadratzahl ist, Seitenlängen von Qudrten lssen sich mnchml sehr leicht und mnchml etws schwerer Wurzeln bestimmen. Dnn brucht mn Wurzeln. Treffender müsste mn von Qudrtwurzeln sprechen. Sie stehen in enger Beziehung zu

Mehr

Bruchrechnen. Faßt man zwei Drittel eines Ganzen zusammen, so schreibt man 3. Bezeichnungen bei Brüchen: Der Bruch als Quotient:

Bruchrechnen. Faßt man zwei Drittel eines Ganzen zusammen, so schreibt man 3. Bezeichnungen bei Brüchen: Der Bruch als Quotient: Bruhrehnen Zerlegt mn ein Gnzes (einen Li Brot, eine Torte, einen Apfel, einen Geletrg, eine Kreisflähe, ein Rehtek, eine Streke,... ) in,,... gleihe Teile, so heißt ein solher Teil (Bruhteil es Gnzen)

Mehr

Zusammenfassung Lineare Algebra und Analytische Geometrie

Zusammenfassung Lineare Algebra und Analytische Geometrie Technik Zsmmenfssng Linere Alger nd Anlytische Geometrie Begriff Ortsvektor Vektor mit Anfngspnkt im Koordintenrsprng: OA æ ö = ç ; ç çè ø OB Berechnng æ ö = ç ç çè ø Addition zweier Vektoren Die Komponentenwerte

Mehr

DV1_Kapitel_5.doc Seite 5-1 von 36 Rüdiger Siol 12.09.2009 16:31

DV1_Kapitel_5.doc Seite 5-1 von 36 Rüdiger Siol 12.09.2009 16:31 Rvensurg-Weingrten Vorlesung zur Dtenverreitung Tehnishe Informtik Inhltsverzeihnis 5 TECHNISCHE INFORMATIK...5-2 5. ENTWURF DIGITALER SYSTEME...5-2 5.2 KOMBINATIONSSCHALTUNGEN (SCHALTNETZE)...5-3 5.2.

Mehr