Diskrete Integratoren und Ihre Eigenschaften

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Diskrete Integratoren und Ihre Eigenschaften"

Transkript

1 Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus wurden die regelungsechnischen Srukuren mi Hilfe zeikoninuierlicher Modelle realisier. Die im Laufe der Jahre einziehende echnerechnik ha zu einer Diskreisierung im Zei- und Ampliudenbereich geführ. Die Diskreisierung (Quanisierung) im Ampliudenbereich führ zu einem Diskreisierungsrauschen und den dami zusammenhängenden Phänomenen, wie z.b. maximal erreichbare Dynamik. Die zeiliche Diskreisierung (Abasung) führ uner anderem zu einer maximal erreichbaren Signalfrequenz, die mi dem abgeaseen Signal eindeuig rekonsruier werden kann. In der egelungsechnik komm ein weierer Effek hinzu, der lezendlich auf den oben beschriebenen Effeken beruh, der aber einer besonderen Inerpreaion bedarf. Dieser Effek wird of vergessen und unerschäz. Er beruh auf den eingesezen Elemenen zur ealisierung von zeidiskreen eglern, Beim Einsaz dieser egelbauseine solle man ses diese andbedingungen im Hinerkopf behalen. e() K i K P Bild : Zeikoninuierliches Modell eines eglers x() Der koninuierliche egler G (s) kann mi folgender Gleichung beschrieben werden. x( ) = ki e( τ ) dτ + kpe( ) () Bei der Berachung von Gl. und dem folgenden zeidiskreen Modell eines eglers erkenn man unschwer, dass lediglich der Inegraor eine zeiveränderliche Größe darsell, die neben dem Eingangssignal, einer genauen Berachung der Auswirkungen der zeilichen Diskreisierung bedarf. e(n) K i Diskreer Inegraor x(n) Bild zeig das ypische Modell einer egelsrecke. u() e() x() y() G (s) G S (s) Bild : Modell einer egelsrecke Diese egelsrecke kann mi folgender Gleichung beschrieben werden. G( s) GS( s) s) = U( s) G ( s) G ( s) S () K P Bild 3: Zeidiskrees Modell eines eglers Wie kann nun ein diskreer Inegraor realisier werden. Wir erinnern uns sicher alle noch, mehr oder minder, an unser erses Zusammenreffen mi der Inegralrechnung. Unsere Lehrer versuchen uns, mehr oder minder gu versändlich, mi Hilfe von iemanschen echecken und Übergängen zu unendlich schmalen echecken die Fläche uner einer Kurve und den Übergang zur koninuierlichen Inegraion näher zu bringen. Lezendlich is dies die erse Approximaionsformel für die Berechnung eines diskreen Inegraions. Wir nähern die Fläche uner einer Kurve mi Hilfe von echecken an, deren Breie der Abaszei ensprich. Berlin +49 () Frankfur +49 () Schweiz +4 ()5 7455

2 echeckregel f() f() n- n n+ n- n n+ Bild4: Flächenapproximaion mi Hilfe der echeckregel Bild5: Flächenapproximaion mi Hilfe der rapezregel Diese Approximaion kann nun mi Hilfe der folgenden Formel beschrieben werden. Diese Approximaion kann nun mi Hilfe der folgenden Formel beschrieben werden. y ( n) = y ( n ) + x( n )* (3) Diese Differenzengleichung berechne ieraiv eine Approximaion des Inegrals mi Hilfe von zeilich äquidisan abgeaseen Ampliudenweren. Diese Differenzengleichung kann nun mi Hilfe der z-ransformaion uner Berücksichigung der Voraussezungen in den z-bereich ransferier werden. G ( = z = z (4) Neben der echeckregel is eine Vielzahl weierer Approximaionsverfahren für die zeiliche Diskreisierung von Inegraoren bekann. Eine der bekannesen is die rapezregel, die auch als bilineare ransformaion zur Diskreisierung von koninuierlichen Überragungsfunkionen eingesez wird. rapezregel Bei der rapezregel wird neben dem echeck uner der Kurve noch das Dreieck berücksichig, dass sich durch die lineare Verbindung zwischen zwei aufeinanderfolgenden Abaspunken und dem echeckaneil aufspannen läss. y ( n) = y ( n ) + x( n ) + [ x( n) x( n ) ] (5) Die Z-Überragungsfunkion berechne sich daraus wie folg. G ( = + z = z Mi Hilfe der Gleichung: z = e = cos( Ω) + j sin( Ω) (6) (7), lassen sich nun der Ampliuden- und Phasenfrequenzgang des Inegraors berechnen. Dami ergeben sich folgende komplexe Frequenzgänge: G ( e ) = = e Ω sin( ) π Ω (8) Berlin +49 () Frankfur +49 () Schweiz +4 ()5 7455

3 G ( e ) = = e Ω an( ) π (9) Im Ampliudenbereich ergeben sich die größen Abweichungen im Bereich der halben Abasfrequenz. Die rapezregel führ zu einer Nullselle bei der halben Abasfrequenz, was zu einer zunehmenden Dämpfung bei hohen Frequenzen führ. Die echeckregel führ zu einer Überhöhung bei hohen Frequenzen im Vergleich zu einem koninuierlichen Inegraor. In der Abbildung 6 und 7 werden die Ampliuden- und Phasenfrequenzgänge der beiden oben besprochenen Inegraoren dargesell. db echeckregel.b rapezregel.b Koninuierlich.b Der Phasenfrequenzgang der rapezregel ensprich dem Phasenfrequenzgang des koninuierlichen Inegraors bei 9. Demgegenüber weiß der Inegraor nach der echeckregel ein komple abweichendes Verhalen auf. Der Sarwer dieses Inegraors lieg für f= bei 9 und weiß dann eine lineare Phase (konsane Gruppenlaufzei) auf. Die Phase geh für die halbe Abasfrequenz gegen 8. Wenn ein maximaler Ampliudenfehler von. % zwischen den Ergebnissen des koninuierlichen Inegraors und den Inegraoren nach echeck- und rapezregel zugelassen wird, erhäl man folgende Bandbreien: -9-3 Bild 6: Ampliudenfrequenzgang von echeck- und rapezinegraor echeckregel: rapezregel: Beragsfehler_echeckregel %. ca..5 % der Abasrae ca..7 % der Abasrae Beragsfehler_rapezregel echeckregel.p rapezregel.p Koninuierlich.p Grad Bild7: Phasenfrequenzgang von echeck- und rapezinegraor Bild 8: Differenz der Ampliudenfrequenzgänge zwischen echeck- und rapezinegraor sowie koninuierlichem Inegraor Sowohl im Ampliuden- als auch im Phasenbereich ergeben sich Abweichungen zwischen den diskreen und koninuierlichen Inegraoren. Berlin +49 () Frankfur +49 () Schweiz +4 ()

4 Phasenfehler_echeckregel Phasenfehler_rapezregel yr y yk % ^ Bild 9: Differenz der Phasenfrequenzgänge zwischen echeck- und rapezinegraor sowie koninuierlichem Inegraor Wenn nun für die oben berechneen Frequenzen mi. % Ampliudenfehler die Phasenfehler besimm werden, ergeben sich folgende Zahlen: echeckregel: rapezregel: ca. 5 % Fehler ca. % Fehler Bei einer Anwendung der unerschiedlichen Inegraoren auf ein Cosinussignal mi der Ampliude erhäl man die in Abbildung dargesellen Zeiverläufe. 3 4 Bild : Anwendung der unerschiedlichen Inegraoren auf eine Cosinusschwingung mi der Ampliude und der Frequenz 5 bei k Abasfrequenz (yr= echeckregel, y= rapezregel, yk= koninuierliches Modell) Schallinensiäsberechnung Eine weiere Applikaion bei der ein Inegraionsverfahren eingesez wird, is die Schallinensiäsberechnung. Die Schallinensiä is definier als Produk aus der Schallschnelle und dem Schalldruck an dem Messpunk. Die Inensiä gib an, wie viel Energie pro Flächeneinhei durch ein Flächenelemen ri. Sie is aufgrund der Schallschnelle eine vekorielle Größe. ms ^-3 yr y yk I = pv () Die Messung kann mi Hilfe einer Mikrofonsonde erfolgen. Dabei wird an zwei benachbaren Punken der Schalldruck gemessen und mi Hilfe folgender Berechnungsformel, die Schallinensiä in einer ichung berechne ms Bild : Anwendung der unerschiedlichen Inegraoren auf eine Cosinusschwingung mi der Ampliude und der Frequenz bei k Abasfrequenz (yr= echeckregel, y= rapezregel, yk= koninuierliches Modell) I ( ) = p( ) v ( ) x x ( p ( ) + p ( ) ) x ρ x * ( p ) x( τ) px( τ) x dτ Berlin +49 () Frankfur +49 () Schweiz +4 ()

5 P Vorversärker AD- Wandler + / x I P Vorversärker AD- Wandler - Bild : Schema der Berechnung der Schallinensiä Die Differenz der Schalldrucksignale wird vor der Muliplikaion über einen Inegraor geführ. Für diesen Inegraor können bei einer digialen ealisierung unerschiedliche Inegraionsverfahren verwende werden. Berlin +49 () Frankfur +49 () Schweiz +4 ()

6 Weiere Informaionen erhalen Sie uner: imc Meßsyseme GmbH Volasr. 5 D-3355 Berlin elefon: +49 () Fax: +49 () Inerne: hp:// Sei über Jahren enwickel, ferig und verreib die imc Meßsyseme GmbH welwei Hard- und Sofwarelösungen im Bereich der physikalischen Messechnik. Ob im Fahrzeug, an Prüfsänden oder beim Überwachen von Anlagen und Maschinen Messdaenerfassung mi imc-sysemen gil als produkiv, leich ausführbar und renabel. Dabei kommen in Enwicklung, Forschung, Versuch und Inberiebnahme sowohl schlüsselferige imc- Messsysemlösungen als auch sandardisiere Messgeräe und Sofwareproduke zum Einsaz. imc-geräe arbeien in mechanischen und mecharonischen Anwendungen bis k pro Kanal mi nahezu allen gängigen Sensoren zur Erfassung physikalischer Messgrößen wie z.b. Drücke, Kräfe, Drehzahlen, Vibraionen, Geräusche, emperauren, Spannungen oder Sröme. Das Spekrum der imc-messechnik reich von der einfachen Messdaenaufzeichnung über inegriere Echzeiberechnungen bis hin zur Einbindung von Modellen und vollsändigen Auomaisierung von Prüfsänden. Am Haupsiz Berlin beschäfig das 988 gegründee Unernehmen rund 6 Miarbeier, die das Produkporfolio seig weierenwickeln. Inernaional werden imc-produke durch rund 5 Parnerunernehmen verrieben. imc es & Measuremen GmbH Max-Planck-Sr. b D-638 Friedrichsdorf/s. elefon: +49 () Fax: +49 () Inerne: hp:// Die imc es & Measuremen GmbH is ein Sysemhaus, das Produke und Diensleisungen für messechnische Anwendungen anbiee. Unser eam beseh aus ca. 4 praxiserproben Experen mi überwiegend ingenieur- oder naurwissenschaflichen Abschlüssen realisier produkive, kundenorieniere und anwendungsspezifische Lösungen rund um das hema elekrisches Messen physikalischer Größen. Die imc es & Measuremen GmbH vermarke die anerkann innovaiven und leisungssarken Hard- und Sofwareproduke unseres sraegischen Parners imc Meßsyseme GmbH, Berlin. Wir ergänzen diese Produke mi umfangreichen Ingenieurdiensleisungen. Diese reichen von der Konzepion über die Beraung und den Verkauf mi Preund Afer-Sales-Service bis zu kunden- und anwendungsspezifischen Erweierungen, Syseminegraion, Inberiebnahme, Schulung sowie Vermieung von Messsysemen und Personal u.v.m Nuzungshinweise: Dieses Dokumen is urheberrechlich geschüz. Alle eche sind vorbehalen. Dier Berich darf ohne Genehmigung weder bearbeie, abgewandel noch in anderer Weise veränder werden. Ausdrücklich gesae is das Veröffenlichen und Vervielfäligen des Dokumens. Bei Veröffenlichung bien wir darum, dass der Name des Auors, des Unernehmens und eine Verlinkung zur Homepage genann werden. roz inhallicher sorgfäliger Ausarbeiung, kann dieser Berich Fehler enhalen. Sollen Ihnen unzureffende Informaionen auffallen, bien wir um einen ensprechenden Hinweis an: Eine Hafung für die ichigkei der Informaionen wird grundsäzlich ausgeschlossen. Berlin +49 () Frankfur +49 () Schweiz +4 ()

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Signal- und Systemtheorie for Dummies

Signal- und Systemtheorie for Dummies FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10 Fachhochschule Augsburg SS 20001 Fachbereich Elekroechnik Modulaion digialer Signale Übungen zur Vorlesung Nachrichenüberragungsechnik E5iK Bla 10 Fragen 1. Welche Voreile biee die digiale Überragung von

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

Vom singenden Draht zum DVB-C

Vom singenden Draht zum DVB-C Vom singenden Drah zum DVB-C Is digiale Kommunikaion effiziener? Gerolf Ziegenhain TU Kaiserslauern Übersich Einleiung Begriffsklärung Ziel Analoge Modulaion AM FM Muliplexverfahren Digiale Modulaion QPSK

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

Bernhard Geiger, 2004 MODULATION. Unterrichtsskript aus dem TKHF-Unterricht 2003

Bernhard Geiger, 2004 MODULATION. Unterrichtsskript aus dem TKHF-Unterricht 2003 Bernhard Geiger, 4 MODULATION Unerrichsskrip aus dem TKHF-Unerrich 3 Was is Modulaion? Was is Modulaion? Modulaion is die Veränderung eines Signalparameers (Ampliude, Frequenz, hasenwinkel) eines Trägersignals

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Abb.4.1: Aufbau der Versuchsapparatur

Abb.4.1: Aufbau der Versuchsapparatur 4. xperimenelle Unersuchungen 4. Aufbau der Versuchsanlage Für die Unersuchungen zum Schwingungs- und Resonanzverhalen sowie Soffausauschprozess wurde eine Versuchsanlage aufgebau. In der Abbildung 4.

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen

Überblick. Beispielexperiment: Kugelfall Messwerte und Messfehler Auswertung physikalischer Größen Darstellung von Ergebnissen Überblick Beispielexperimen: Kugelfall Messwere und Messfehler Auswerung physikalischer Größen Darsellung von Ergebnissen Sicheres Arbeien im abor Beispielexperimen : Kugelfall Experimen: Aus der saionären

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Machen Sie Ihre Kanzlei fi für die Zukunf! Grundvoraussezung für erfolgreiches Markeing is die Formulierung einer Kanzleisraegie. Naürlich, was am meisen zähl is immer noch Ihre fachliche Kompeenz. Aber

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

1 Einführung. Bild 1-1: Ein digitales Kommunikationssystem

1 Einführung. Bild 1-1: Ein digitales Kommunikationssystem 1 Einführung Ein digiales Kommunikaionssysem, das sicherlich viele Leser aus eigener Erfahrung kennen, zeig Bild 1-1: Ein Compuer is über ein Modem mi einem Kommunikaionsnez verbunden und ausch Daen mi

Mehr

Bosch Klima-Kälte-Prüfstand Ein Messsystem für den Fahrversuch und den Einsatz am Prüfstand

Bosch Klima-Kälte-Prüfstand Ein Messsystem für den Fahrversuch und den Einsatz am Prüfstand Bosch Klima-Kälte-Prüfstand Ein Messsystem für den Fahrversuch und den Einsatz am Prüfstand von Kamil Pogorzelski Anwendungsbericht Automobil- & Fahrzeugindustrie Prüfstand Einleitung Die Firma Bosch führt

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge

14 Kurven in Parameterdarstellung, Tangentenvektor und Bogenlänge Dr. Dirk Windelberg Leibniz Universiä Hannover Mahemaik für Ingenieure Mahemaik hp://www.windelberg.de/agq 14 Kurven in Parameerdarsellung, Tangenenvekor und Bogenlänge Aufgabe 14.1 (Tangenenvekor und

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Ines Rennert Bernhard Bundschuh. Signale und Systeme. Einführung in die Systemtheorie

Ines Rennert Bernhard Bundschuh. Signale und Systeme. Einführung in die Systemtheorie Ines Renner Bernhard Bundschuh Signale und Syseme Einführung in die Sysemheorie Renner/Bundschuh Signale und Syseme Bleiben Sie auf dem Laufenden! Hanser Newsleer informieren Sie regel mäßig über neue

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik 3. Nichperiodische Signale 3.1 ω ω ω dω Nichperiodische Signale endlicher Länge Die Fourierransformaion zerleg nichperiodische Signale endlicher Länge in ein koninuierliches endliches Frequenzspekrum.

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Digitale und Analoge Modulationsverfahren. Inhaltsverzeichnis. Abbildungsverzeichnis. ADM I Analoge & Digitale Modulationsverfahren

Digitale und Analoge Modulationsverfahren. Inhaltsverzeichnis. Abbildungsverzeichnis. ADM I Analoge & Digitale Modulationsverfahren ADM I Analoge & Digiale Modulaionsverfahren Digiale und Analoge Modulaionsverfahren Inhalsverzeichnis 1 Idealisiere analoge und digiale Signale 1 2 Bezeichnungen für digiale Modulaionsverfahren 2 3 Eingriffsmöglichkeien

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung

1 Theorie. Versuch 3: Halbleiterbauelemente im Schaltbetrieb. 1.1 Bipolarer Transistor als Schalter in Emitterschaltung Labor Elekronische Prof. Dr. P. Suwe Dipl.-ng. B. Ahrend Versuch 3: Halbleierbauelemene im Schalberieb 1 Theorie Bipolare Transisoren und Feldeffekransisoren lassen sich sowohl zum Versärken von Klein-

Mehr

2 Messsignale. 2.1 Klassifizierung von Messsignalen

2 Messsignale. 2.1 Klassifizierung von Messsignalen 7 2 Messsignale Messwere beinhalen Informaionen über physikalische Größen. Die Überragung dieser Informaionen erfolg in Form eines Signals. Allerdings wird der Signalbegriff im äglichen Leben mehrdeuig

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

Aufgabensammlung. Signale und Systeme 1. Einführung in die Signal- und Systemtheorie. Kontaktinformation: Dr. Mike Wolf, Tel. 2619

Aufgabensammlung. Signale und Systeme 1. Einführung in die Signal- und Systemtheorie. Kontaktinformation: Dr. Mike Wolf, Tel. 2619 Aufgabensammlung Signale und Syseme 1 für die BA-Sudiengänge EIT, II, BT, MTR, OTR, MT, IN (3. FS) Einführung in die Signal- und Sysemheorie für den BA-Sudiengang WIW-ET (5. FS) Konakinformaion: Dr. Mike

Mehr

Antriebstechnik \ Antriebsautomatisierung \ Systemintegration \ Services. Sicher Flexibel Wirksam. safetydrive Funktionale Sicherheit

Antriebstechnik \ Antriebsautomatisierung \ Systemintegration \ Services. Sicher Flexibel Wirksam. safetydrive Funktionale Sicherheit Anriebsechnik \ Anriebsauomaisierung \ Syseminegraion \ Services 1 Sicher Flexibel Wirksam safeydrive Funkionale Sicherhei 2 safeydrive Funkionale Sicherhei safeydrive: funkional sichere Anriebsechnik

Mehr

Versuche mit Oszilloskop und Funktionsgenerator

Versuche mit Oszilloskop und Funktionsgenerator Fachhochschule für Technik und Wirschaf Berlin EMT- Labor Versuche mi Oszilloskop und Funkionsgeneraor Sephan Schreiber Olaf Drzymalski Messung am 4.4.99 Prookoll vom 7.4.99 EMT-Labor Versuche mi Oszilloskop

Mehr

Thema 3: Dynamischer versus statischer Vorteilhaftigkeitsvergleich

Thema 3: Dynamischer versus statischer Vorteilhaftigkeitsvergleich hema 3: Dynamischer versus saischer Voreilhafigkeisvergleich Vor allem in der Wirschafspraxis belieb: Gewinnorieniere sa zahlungsorieniere Ansäze zum reffen von Invesiionsenscheidungen. sogenanne saische

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Faktor 4x Short Natural Gas II Zertifikat (SVSP-Produktcode: 2300)

Faktor 4x Short Natural Gas II Zertifikat (SVSP-Produktcode: 2300) Fakor 4x Shor Naural Gas II Zerifika (SVSP-Produkcode: 2300) KAG Hinweis Emienin: Raing: Zerifikaear: SVSP-Code Verbriefung: Die Werpapiere sind keine Kollekivanlage im Sinne des schweizerischen Bundesgesezes

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Preisliste 1-2010 Transportankersysteme Befestigungs- und Verbindungstechnik

Preisliste 1-2010 Transportankersysteme Befestigungs- und Verbindungstechnik B A U T E C H N I K Preislise 1-2010 Transporankersyseme Befesigungs- und Verbindungsechnik Den akuellen Legierungszuschlag finden Sie im Inerne uner PFEIFER SEIL- UND HEBETECHNIK GMBH DR.-KARL-LENZ-STRASSE

Mehr

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11

INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 INSIU FÜR NGENDE HYSI hysikalisches rakikum für Suierene er Ingenieurswissenschafen Universiä Hamburg, Jungiussraße 11 elier-ärmepumpe 1 Ziel äleleisung, ärmeleisung un ie Leisungsziffer einer elier-ärmepumpe

Mehr

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300)

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300) Fakor 4x Long Zerifikae (SVSP-Produkcode: 1300) Index Valor / Symbol / ISIN / WKN Bezugswer Fakor 4x Long Copper Index CBLKU4 / 12306935 / CZ33RK / DE000CZ33RK2 üblicherweise der an der Maßgeblichen erminbörse

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt

sammeln speichern C [F = As/V] Proportionalitätskonstante Q = CU I = dq/dt sammeln i - speichern u i (t)dt d t u c = 1 C i(t) dt Elekronische Sseme - 3. Kapaziä und Indukiviä 1 -------------------------------------------------------------------------------------------------------------- G. Schaer 26. Mai 24 3. Kapaziä und Indukiviä

Mehr

Nutzung der inhärenten sensorischen Eigenschaften von piezoelektrischen Aktoren

Nutzung der inhärenten sensorischen Eigenschaften von piezoelektrischen Aktoren Nuzung der inhärenen enorichen Eigenchafen von piezoelekrichen Akoren K. Kuhnen; H. Janocha Lehruhl für Prozeßauomaiierung (LPA), Univeriä de Saarlande Im Sadwald, Gebäude 13, 6641 Saarbrücken Tel: 681

Mehr

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme

1 Kinematik der geradlinigen Bewegung eines Punktes 1.1 Freier Fall; Geschwindigkeit, Fallzeit, kinematische Diagramme Inhal / Übersich der Aufgaben mi Lösungen XI Aufgabe Erläuerung "Info"-Bild Seie 1 1 Kinemaik der geradlinigen Bewegung eines Punkes 1.1 Freier Fall; Geschwindigkei, Fallzei, kinemaische Diagramme 5 1.2

Mehr

Flugzeugaerodynamik I Lösungsblatt 2

Flugzeugaerodynamik I Lösungsblatt 2 Flugzeugaerodynamik I Lösungsbla 2 Lösung Aufgabe Bei der vorliegenden Aufgabe handel es sich um die Nachrechenaufgabe der Skele Theorie. a) Der Koeffizien A 1 is durch die Wölbung des gegebenen Skeles

Mehr

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven -

Der Zeitwert des Geldes - Vom Umgang mit Zinsstrukturkurven - - /8 - Der Zeiwer des Geldes - Vom Umgang mi Zinssrukurkurven - Dr. rer. pol. Helmu Sieger PROBLEMSELLUNG Zinsänderungen beeinflussen den Wer der Zahlungssröme, die Krediinsiue, Versicherungen und sonsige

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300)

Faktor 4x Long Zertifikate (SVSP-Produktcode: 1300) Fakor 4x Long Zerifikae (SVSP-Produkcode: 1300) Index Valor / Symbol / ISIN / WKN Bezugswer Fakor 4x Long Naural Gas Index 18377042 CBLNG4 DE000CZ33US9 CZ33US üblicherweise der an der Massgeblichen erminbörse

Mehr

Information zum Dimmen von LED-Lichtquellen

Information zum Dimmen von LED-Lichtquellen nformaion zum Dimmen von LED-Lichquellen Zenralverband Elekroechnik- und Elekronikindusrie mpressum nformaion zum Dimmen von LED-Lichquellen Herausgeber: ZVE - Zenralverband Elekroechnikund Elekronikindusrie

Mehr

Exponential- und Logarithmusfunktionen

Exponential- und Logarithmusfunktionen . ) Personen, Personen bzw. Personen ) Ewas weniger als Minuen. (Nach,... Minuen sind genau Personen informier.) ) Ja. Bereis um : Uhr sind (heoreisch) Personen informier. ) Informiere Miarbeierinnen und

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

Amateurfunkkurs. Modulation. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Modulation. R. Schwarz OE1RSA. Übersicht

Amateurfunkkurs. Modulation. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Modulation. R. Schwarz OE1RSA. Übersicht saren Amaeurfunkkurs Landesverband Wien im ÖVSV Ersell: 2010-2011 Leze Bearbeiung: 16. Sepember 2012 Themen saren 1 2 saren 3 4 Elekromagneische Welle als Informaionsräger Träger Informaion saren Schwingungen......

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Faktor 4x Short Zertifikate (SVSP-Produktcode: 1300)

Faktor 4x Short Zertifikate (SVSP-Produktcode: 1300) Fakor 4x Shor Zerifikae (SVSP-Produkcode: 1300) Index Valor / Symbol / ISIN / WKN / Common Code Fakor 4x Shor DAXF Index 11617870 / CBSDX DE000CZ33BA7 / CZ33BA Bezugswer üblicherweise der an der Maßgeblichen

Mehr

1 Rasterelektronenmikroskop (vorbereitete Aufgabe, 1. Prüfungsteil)

1 Rasterelektronenmikroskop (vorbereitete Aufgabe, 1. Prüfungsteil) nur für den inernen Gebrauch Beispiel für eine mündliche Abiurprüfung im Fach Physik MündlicheAbiurprüfung Seie 1 von 6 Hilfsmiel: Zugelassener Taschenrechner, Wörerbuch der deuschen Rechschreibung. 1

Mehr

Kapitel : Exponentielles Wachstum

Kapitel : Exponentielles Wachstum Wachsumsprozesse Kapiel : Exponenielles Wachsum Die Grundbegriffe aus wachsum 1.xmcd werden auch hier verwende! Wir verwenden im Beispiel 2 auch fas die gleiche Angabe wie in Beispiel 1 - lediglich eine

Mehr

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008

Phillips Kurve (Blanchard Ch.8) JKU Linz Riese, Kurs Einkommen, Inflation und Arbeitslosigkeit SS 2008 Phillips Kurve (Blanchard Ch.8) 151 Einleiung Inflaion und Arbeislosigkei in den Vereinigen Saaen, 1900-1960 In der beracheen Periode war in den USA eine niedrige Arbeislosigkei ypischerweise von hoher

Mehr

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu

Berücksichtigung naturwissenschaftlicher und technischer Gesetzmäßigkeiten. Industriemeister Metall / Neu Fragen / Themen zur Vorbereiung auf die mündliche Prüfung in dem Fach Berücksichigung naurwissenschaflicher und echnischer Gesezmäßigkeien Indusriemeiser Meall / Neu Die hier zusammengesellen Fragen sollen

Mehr

Seminararbeitspräsentation Risiko und Steuern. On the Effects of Redistribution on Growth and Entrepreneurial Risk-taking

Seminararbeitspräsentation Risiko und Steuern. On the Effects of Redistribution on Growth and Entrepreneurial Risk-taking Seminararbeispräsenaion Risiko und Seuern On he Effecs of Redisribuion on Growh and Enrepreneurial Risk-aking aus der Vorlesung bekann: Posiionswahlmodell Selbssändigkei vs. abhängige Beschäfigung nun

Mehr

8. Betriebsbedingungen elektrischer Maschinen

8. Betriebsbedingungen elektrischer Maschinen 8. Beriebsbedingungen elekrischer Maschinen Neben den Forderungen, die die Wirkungsweise an den Aufbau der elekrischen Maschinen sell, müssen bei der Konsrukion noch die Bedingungen des Aufsellungsores

Mehr

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast:

Für die sekundäre Scheinleistung S und die primäre Netzleistung S Netz gelten bei reiner Widerstandslast: 4. Fremdgeführe Sromricher Fremdgeführe Sromricher benöigen eine fremde, nich zum Sromricher gehörende Wechselspannungsquelle, die ihnen während der Dauer der Kommuierung die Kommuierungsspannung zur Verfügung

Mehr

ESIGN Scanservice. High-End-Scansystem für die Erstellung professioneller Produktfotos

ESIGN Scanservice. High-End-Scansystem für die Erstellung professioneller Produktfotos Mi dem ESIGN Scanservice ersellen Sie hochaufgelöse und farbkorreke Produk foos Ihrer Bodenbeläge und anderer Oberflächenmaerialien aus dem Inerieurbereich. Die Einsazberei - che der Produkfoos reichen

Mehr

vom 22. November 2012

vom 22. November 2012 rüfungs- und Sudienordnung des Bachelorsudiengangs Eleroechni und Informaionsechni des Deparmens Informaions- und Eleroechni an der Faulä Techni und Informai der Hochschule für Angewande Wissenschafen

Mehr

Versuchsprotokoll. Datum:

Versuchsprotokoll. Datum: Laborveruch Elekroechnik I eruch 2: Ozillokop und Funkiong. Hochchule Bremerhaven Prof. Dr. Oliver Zielinki / Han Sro eruchprookoll Teilnehmer: Name: 1. 2. 3. 4. Tea Daum: Marikelnummer: 2. Ozillokop und

Mehr

Institut für Industriebetriebslehre und Industrielle Produktion (IIP) - Abteilung Arbeitswissenschaft- REFA. Eine Zeitstudie Kapitel 10, S.

Institut für Industriebetriebslehre und Industrielle Produktion (IIP) - Abteilung Arbeitswissenschaft- REFA. Eine Zeitstudie Kapitel 10, S. REA Eine Zeisudie Kapiel 10, S. 1-24 Gliederung Theoreische Grundlagen Ziele von REA Voraussezungen für eine REA-Zeiaufnahme Ablauf einer REA-Zeiaufnahme Vor- und Nacheile Praxiseil REA 2 Theoreische Grundlagen

Mehr

1 Lokale Änderungsrate und Gesamtänderung

1 Lokale Änderungsrate und Gesamtänderung Schülerbuchseie Lösungen vorläufig I Inegralrechnung Lokale Änderungsrae und Gesamänderung S. S. b h = m s ( s) + m s s + m s ( s) = 7 m Fläche = 7 FE a) s =, h km h +, h km h +, h km h +, h km h +,, h

Mehr

EIB Interoperable Applikationen #106-D-1

EIB Interoperable Applikationen #106-D-1 Ineroperable Applikaionen #06-D- Belimo Gaeay /-KNX kombinier mi einem IRC Regler für Im Dokumen erden ypische Applikaionsbeispiele beschrieben, die mi einem fähigen Einzelraumregler im Zusammenirken mi

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung:

DSS1. Digitaler Sprachspeicher Einschub mit RAM- und Flash- Speicherbänken. Abb. DSS1 (L- Nr. 2.600) 16 Speicheradressen für Sprachaufzeichnung: mi RAM- und Flash- peicherbänken Abb. (L- Nr. 2.600) Auf einen Blick: 16 peicheradressen für prachaufzeichnung: - bis zu 8 Bänke im RAM- peicher (flüchig) - bis zu 8 Bänke im Flash- peicher (permanen)

Mehr

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur:

Thema 6: Kapitalwert bei nicht-flacher Zinsstruktur: Thema 6: Kapialwer bei nich-flacher Zinssrukur: Markzinsmehode Bislang unersell: i i kons. (, K, T) (flache Zinskurve) Verallgemeinerung der KW-Formel auf den Fall beliebiger Zinskurven jedoch ohne weieres

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

Praktikum Elektronik für FB Informatik

Praktikum Elektronik für FB Informatik Fakulä Elekroechnik Hochschule für Technik und Wirschaf resden Universiy of Applied Sciences Friedrich-Lis-Plaz, 0069 resden ~ PF 2070 ~ 0008 resden ~ Tel.(035) 462 2437 ~ Fax (035) 462 293 Prakikum Elekronik

Mehr

Schutz vor Lärm. Die Lärm- und Vibrations-Arbeitsschutzverordnung

Schutz vor Lärm. Die Lärm- und Vibrations-Arbeitsschutzverordnung Schuz vor Lärm Die Lärm- und Vibraions-Arbeisschuzverordnung Allgemeines Mi der Lärm- und Vibraions-Arbeisschuzverordnung vom 6. März 2007 wurden zwei europäische Arbeisschuz- Richlinien zu Lärm (2003/10/EG)

Mehr

Stochastischer Prozess S(t) z.b. Rauschspannung

Stochastischer Prozess S(t) z.b. Rauschspannung s () () s (2) () s (i) () Sochasischer Prozess S() z.b. Rauschspannung 0 Bild : Analoges zufälliges Signal 2 P(S ) 0, P(S s ) P(S s 2 ) s s 2, P(S ). s() P S (s) b a /2 M b s a Bild 2: Sochasisches Signal

Mehr

26 31 7 60 64 10. 16 6 12 32 33 9

26 31 7 60 64 10. 16 6 12 32 33 9 Lineare Algebra / Analyische Geomerie Grundkurs Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 4 Fruchsäfe in Berieb der Geränkeindusrie produzier in zwei Werken an verschiedenen Sandoren

Mehr

4.7. Exponential- und Logarithmusfunktionen

4.7. Exponential- und Logarithmusfunktionen ... Eonenialfunkionen Definiion:.. Eonenial- und Logarihmusfunkionen Die Funkion f() = c a mi D = R, c und a R + \{}heiß Eonenialfunkion zur Basis a. Die Eonenialfunkion zur Basis a = e mi der Eulerschen

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Regelungstechnik für den Praktiker. Manfred Schleicher

Regelungstechnik für den Praktiker. Manfred Schleicher Regelungsechnik für den Prakiker Manfred Schleicher Vorwor und Hinweise zum Inhal dieser Broschüre Bezüglich der Regelungsechnik is eine Vielzahl von Büchern und Abhandlungen erhällich, welche häufig

Mehr

4 Bauteile kennenlernen

4 Bauteile kennenlernen 4 Baueile kennenlernen 4.1 Widersand Widersände sind Baueile mi einem gewünschen Widersandsverhalen. Sie sezen der Elekronensrömung Widersand engegen. Man unerscheide zwischen linearen und nichlinearen

Mehr

Warnung der Bevölkerung

Warnung der Bevölkerung Bonn, Sepember 2012 Warnung der Bevölkerung Die heuige Konzepion der Warnung Zu den Grundpfeilern des Zivil- und Kaasrophenschuzes gehör es, die Bevölkerung angemessen, rechzeiig, schnell und flächendeckend

Mehr

Aufgaben zur Zeitreihenanalyse (Kap. 5)

Aufgaben zur Zeitreihenanalyse (Kap. 5) Prof. Dr. Reinhold Kosfeld Fachbereich Wirschafswissenschafen Aufgaben zur Zeireihenanalyse (Kap. 5) Aufgabe 5.1 Welches Phänomen läss sich mi ARCH-Prozessen modellieren und welche prognosische Relevanz

Mehr

16 Spezielle Schaltungsbeispiele mit Operationsverstärkern

16 Spezielle Schaltungsbeispiele mit Operationsverstärkern 6 Spezielle Schalungsbeispiele mi Operaionsversärkern 6. Insrumenenversärker Abbildung 6- er Insrumenenversärker A OP 4 6 OP3 E OP 3 (= ) 5 7 B ie beiden gegengekoppelen Versärker OP und OP halen jeweils

Mehr

Analysis: Exponentialfunktionen Analysis

Analysis: Exponentialfunktionen Analysis www.mahe-aufgaben.com Analysis: Eponenialfunkionen Analysis Übungsaufgaben u Eponenialfunkionen Pflich- und Wahleil gesames Soffgebie (insbesondere Funkionsscharen) ohne Wachsum Gymnasium ab J Aleander

Mehr

Zentrale schriftliche Abiturprüfungen im Fach Mathematik

Zentrale schriftliche Abiturprüfungen im Fach Mathematik Zenrale schrifliche Abiurprüfungen im Fach Mahemaik Aufgabe 9: Radioakiver Zerfall Beim radioakiven Zerfall einer Subsanz S 1 beschreib m 1 () die Masse der noch nich zerfallenen Subsanz zum Zeipunk mi

Mehr

PPS-Auswahl und -einsatz - weniger ist mehr!

PPS-Auswahl und -einsatz - weniger ist mehr! Prof. Dr.-Ing. Wilhelm Dangelmaier Einleiung Die eine Aussage dieser Überschrif is: Auswahlprozesse für die Produkionsplanung und -seuerung laufen nich immer so ab, dass schließlich das geeigneese Sysem

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Wechselströme (WS) Frühjahrssemester Physik-Institut der Universität Zürich Anleiung zum Physikprakikum für Obersufenlehrpersonen Wechselsröme (WS) Frühjahrssemeser 2017 Physik-nsiu der Universiä Zürich nhalsverzeichnis 11 Wechselsröme (WS) 11.1 11.1 Einleiung........................................

Mehr

Sensorik. Ziel: Messung physikalischer Größen durch Wandlung in elektrische Größen (i. d. R. Spannung) physikalische Messgröße

Sensorik. Ziel: Messung physikalischer Größen durch Wandlung in elektrische Größen (i. d. R. Spannung) physikalische Messgröße Überblick Grundlagen: Spannung, Srom, Widersand, IV-Kennlinien Elekronische Messgeräe im Elekronikprakikum Passive Filer Signalranspor im Kabel Transisor Operaionsversärker Sensorik PID-Regler Lock-In-Versärker

Mehr

Motivation. Finanzmathematik in diskreter Zeit

Motivation. Finanzmathematik in diskreter Zeit Moivaion Finanzmahemaik in diskreer Zei Eine Hinführung zu akuellen Forschungsergebnissen Alber-Ludwigs-Universiä Freiburg Prof. Dr. Thorsen Schmid Abeilung für Mahemaische Sochasik Freiburg, 22. April

Mehr