Herbstworkshop Flexible Regressionsmodelle Magdeburg, 22./23. November der LMS-Methode

Größe: px
Ab Seite anzeigen:

Download "Herbstworkshop Flexible Regressionsmodelle Magdeburg, 22./23. November 2007. der LMS-Methode"

Transkript

1 Herbsworkshop Flexble Regressonsmodelle Magdebrg./3. November 007 Schäzng von en- nd zwedmensonalen Perzenlkrven m der LMS-Mehode Segfred Kropf 1 Brge Peers 1 Karl-Oo Dbowy 1 Ins f. Bomere. Medznsche Informak Oo-von-Gercke-Unversä Magdebrg Klnk für Angeborene Herzfehler Herzzenrm NRW Bad Oeynhasen

2 Problemsellng Gesch: alersabhängge Referenzwere für dagnossche Parameer as großen Schproben Deekon von pahologschen Befnden häfg Perzenle 90 nd 97 Umrechnen von Rohweren n SDS-Were Sandard Devaon Scores HR_peak 1/mn 0 weblch Perz. HR_peak 1/mn 0 männlch Aler n Jahren Aler n Jahren

3 Z berückschgende Probleme: Parameerwere werden n der Regel nch normalverel sen. Vollsändg nchparamersche Perzenlschäzng könne z große Schproben erfordern. Alersabhänggke s vorhanden aber zmes nch lnear z.b. Wachsmsschübe be Körpergröße. Alersgrppen wären andererses rgendwe künslch; de Nar ha kene Sprünge. Vorschlag von Cole nd Green 199: Erweerng des Normalmodells: es wrd nersell dass für de nersche Zfallsgröße y = y be fxem de Größe y λ normalverel s Box-Cox-Poenz λ; dam schefe Verelngen modellerbar. Für de Parameer der reslerenden Verelng wrd angenommen dass se seg nd gla über de Ze vareren; Schäzng über enen penalseren Lkelhoodansaz.

4 Verelngsmodell be fxerem Aler Zelgröße y soll nr posve Were annehmen Medan µ y λ soll normalverel sen bzw. m Grenzfall λ = 0 soll lny normalverel sen Enbezehng rsprünglch schefer Verelngen berachen dann Box-Cox-ransformere Größe λ /µ 1 x = y λ 0 λ bzw. x = ln y /µ λ = 0 Abbldng µ 0 zenrere Normalverelng für x Sandardabwechng von x se σ; für λ =1 s σ Varaonskoeffzen von y

5 Anwendngen: Sandard Devaon Score für enen Wer y der Zelgröße: z λ x y /µ 1 = = λ 0 bzw. z = x / σ = ln y σ λσ /µ/ σ λ = 0 zr Charakerserng z.b. enes medznschen Parameerweres n enem Sandardforma Berechnng von Perzenlen: C 100 = µ 1+ λσz 1/ λ λ 0 bzw. C 100 = µ e σz λ = 0 Z = -Qanl der Sandardnormalverelng

6 Berückschgen der Alersabhänggke De dre Parameer λ µ nd σ werden jez als alersabhängge Größen berache bzw. abhängg von anderer Enflssgröße. Man nersell enen segen nd glaen Verlaf. De Zeverläfe der dre Parameer werden als L M nd S bezechne nd geben der Mehoden den Namen LMS-Mehode. y / M 1 As der Sandardserngsformel z = nd der für z L S angenommenen Sandardnormalverelng läss sch de Dche für y nd dam de Loglkelhood-Fnkon der Schprobe ableen: L l = l L M S = n = 1 ln π ln y + L y ln M ln S z

7 Um den segen nd glaen Verlaf der Fnkonen L M nd S z gewährlesen wrd für jede deser Fnkonen be der Maxmserng der Lkelhood-Fnkon en Sraferm engefüg penalzed lkelhood: l 1 λ µ σ 1 { L } d { M } d { S } d max 1 λ µ nd σ snd Glängsparameer Genagke vs. Glahe Zwschen den beobacheen Zepnken wrd mels kbscher Splnes nerpoler. Opmerng erav über Fsher-Scorng erse nd zwee Ablengen können explz angegeben werden. Für Glängsparameer werden Empfehlngen gegeben de aber nch mmer g fnkoneren. Ach Tess angeboen. Praxs häfg: nach opschem Endrck zers für µ dann λ nd σ.

8 Möglches Problem: nerschedlche Varablä über Aler Gläng kann n nerschedlchen Berechen der nabhänggen Varablen z.b. Aler nerschedlch wchg sen. Vorschlag von Pan nd Cole 004: Zwephasges Vorgehen ers normale Anpassng der Perzenlkrven dann Aler mskaleren so dass 50%-Perzenlkrve af ene Gerade verzerr wrd falls überhap monooner Verlaf nee Analyse m mskalerem Aler.

9 LMS-Programm nach Cole and Green 199 Bassverson fre

10 Anwendngen m KN Angeborene Herzfehler Erse passve Anwendngen der LMS-Mehode n nserem Ins be Qalässcherng n Pädarscher Endokrnologe Röhl Mohnke Akell akve Normwerermlngen bzw. Alers- nd Geschlechssandardserng für kardologsche Dagnosk z.b. Lafbandergomere. Prookoll zr Lafbandergomere 15 Mnen Sfen; Erholng km/h eben Sfe I 5 km/h 0% Segng Sfe II 30 km/h 3% Segng Sfe III 35 km/h 6% Segng Sfe IV 40 km/h 9% Segng Sfe V 45 km/h 1% Segng Sfe VI 50 km/h 15% Segng Sfe VII 55 km/h 18% Segng Sfe VIII 60 Km/h 1% Segng Sfe IX 65km/h 1% Segng ec. Dbowy/Baden 00 n = 484 weblch n = 580 männlch Aler 3 78 Jahre

11 Ca. 50 Fnkonsparameer berache. Werden aomasch besmm nd n Sandardforma gespecher. Kennns aller alersabhänggen Normwere ach für Experen schwer Umrechnng n Perzenle oder SDS-Were hlfrech. Ensprechende Tabellen gerenn nach Geschlech erarbee. Beresellng von Umrechnngen / Grafken über Web vorberee zsammen m CIO n Göngen noch Copyrghs z klären. Enba der Umrechnngen n Ergomere-Sofware angedach. In klnschen Sden Enflss von Sörgrößen wegehend elmner Basvermedng nd Varanzredkon; m Kndes- nd Jgendaler besonders wchg.

12 Bespele: HR_peak 1/mn 0 weblch Perz. HR_peak 1/mn 0 männlch Aler n Jahren Aler n Jahren

13 Erweerng af -dmensonale Grndmenge Frage: Lassen sch Referenzbereche angeben n Abhänggke von zwe Enflssgrößen z.b. Aler nd Größe oder Aler nd BMI? Erse zaghafe Versche! Problem schen neressan z sen aber sehr rechennensv wenn man nr asgewähle Sandardsofware benzen wll. Grndansaz ähnlch we bslang: λ x y /µ 1 z = = λ 0 bzw. z = x / σ = ln y σ λσ /µ/ σ λ = 0 bleb nr dass de Parameer λ µ nd σ jez as Fnkonen zweer nabhängger Varabler asgelesen werden: L M nd S.

14 = + = n z S M y L y 1 ln ln ln π ln l Loglkelhood analog: Gläng jez n zwe Dmensonen: max d d 1 d d 1 d d 1 σ σ σ σ µ µ µ µ λ λ λ λ S S S M M M L L L l Glängsparameer für L M nd S n jewels zwe Rchngen

15 Größere Varablä zwng be glechblebenden Schprobenmfängen z särkerer Gläng. Im Enzelfall abzwägen ob man sch drch zwee Enflssgröße wrklch verbesser oder ob man sch besser anders behlf z.b. drch de Nzng von Zelgröße de beres af Körperoberfläche sandardser s. Man kann drch geegnee Wahl der - nd - Komponenen der Glängsparameer Proräen sezen hnschlch der Genagke der Modellerng des Enflsses der beden nabhänggen Varablen.

16 Probleme be Realserng m be ns vorhandener Sofware: SAS/STAT bzw. SAS/IML: nersüz zwar Splnes aber nch zwedmensonal? MaLab: nersüz prnzpell zwedmensonale Splnes kene Specherng der Splne-Koeffzenen nr Asgabe der ferg gefeen Daen af Zelraser ren nmersche Bldng der Ablengen Inegrale nd Opmerng. Asgangswere für Inerpolaon müssen af Recheckger vorlegen

17 Aler Körpergröße Bespel: as 1 Messweren werden 70 Gerpnke geblde berächlche Erhöhng der Dmenson des Opmerngsproblems sehr narakve Rechenzeen > 4 Snden; Mehrfachläfe m verschedenen Glängen erforderlch

18 Bespeldarsellng zwedmensonaler Referenzwere: en dagnosscher Parameer über Aler nd Körpergröße Medan Ober- nd Unergrenze 3 % 50 % 97% Darsellng her nr anhand enes Tels der Daen nd m noch z schwacher Gläng über de Körpergröße Dagnosscher Parameer Körpergröße Für praksche Anwendng wäre Sofware-Unersüzng erforderlch oder mehrere zwedm. Tabellen z.b. Parameer über Aler n separaen Tabellen nach Körpergröße Aler

19 Förderhnwes: De Arbe wrde nersüz drch das Kompeenznez Angeborene Herzfehler geförder vom Bndesmnserm für Bldng nd Forschng Förderkennzechen: 01G1010 Lerar Cole T.J. and Green P.J Smoohng reference cenle crves: he LMS mehod and penalzed lkelhood. Sascs n Medcne Dbowy K.-O. Bernzk ST. Peers B Objekve Belasbarke von Paenen m angeborenen Herzfehlern. De medznsche Wel Pan H. and Cole T.J A comparson of goodness of f ess for age-relaed reference ranges. Sascs n Medcne

Aerodynamik des Flugzeugs Numerische Strömungssimulation

Aerodynamik des Flugzeugs Numerische Strömungssimulation Aerodnamk des Flgzegs Nmersche Srömngssmlaon Enleng Srömngssmlaon n Wndkanälen 3 Nmersche Srömngssmlaon 4 Poenalsrömngen 5 Tragflügel nendlcher Sreckng n nkompressbler Srömng 6 Tragflügel endlcher Sreckng

Mehr

Vorlesung: "Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA)"

Vorlesung: Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA) 6 Zuverlägke und Produklebenzyklu 6. Genaugke und Fehlerverhalen 6.2 Technche Zuverlägke 6.2. Klafkaon von Aufällen 6.2.2 Aufall- und Überlebenwahrchenlchke 6.2.3 Fehlerrae 6.3 Zuverlägke von Hardware-Funkonen

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Spule, Induktivität und Gegeninduktivität

Spule, Induktivität und Gegeninduktivität .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973)

4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973) 4. Raenmonoones Schedulng Rae-Monoonc Schedulng (LIU/LAYLAND 973) 4.. Tasbeschrebung Tas Planungsenhe. Perodsche Folge von Jobs. T = {,..., n } Tasparameer Anforderungsze, Bereze (release me) Bearbeungs-,

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

IK: Einkommen, Beschäftigung und Finanzmärkte (Wintersemester 2011/12) Wichtige makroökonomische Variablen

IK: Einkommen, Beschäftigung und Finanzmärkte (Wintersemester 2011/12) Wichtige makroökonomische Variablen IK: Enkommen, Beschäfgung und Fnanzmärke (Wnersemeser 2011/12) Wchge makroökonomsche Varablen 1 Überblck Aggregerer Oupu Agg. Oupu hs. Abrss Berechnung des BIP; reales vs. nomnales BIP, BIP vs. BNE, verkeees

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

MC Datenexport und Übernahme in Excel

MC Datenexport und Übernahme in Excel MC Daenexpor und Übernahme n Excel Schr-für-Schr-Anleung zur Daenübernahme aus der MC- Applkaon und Überführung der Daen n en lokales Excel-Fle. Tel A: Daenübernahme aus MC (Wndows XP):. See 1 Tel B: Daenkonverson

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Nachtrag Nr. 72 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt

Nachtrag Nr. 72 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt London Branch Nachrag Nr. 72 a gemäß 10 Verkaufsprospekgesez (n der vor dem 1. Jul 2005 gelenden Fassung) vom 6. November 2006 zum Unvollsändgen Verkaufsprospek vom 31. März 2005 über Zerfkae auf * über

Mehr

Lernsituation: Eine Leuchtstofflampe an Wechselspannung untersuchen. Arbeitsauftrag 1: Errechnen von Spannungswerten und Zeichnen einer Sinuslinie

Lernsituation: Eine Leuchtstofflampe an Wechselspannung untersuchen. Arbeitsauftrag 1: Errechnen von Spannungswerten und Zeichnen einer Sinuslinie 8 Elektroenergeversorgng nd cherhet von Betrebsmtteln gewährlesten ernstaton: Ene echtstofflampe an Wechselspannng nterschen Ihr Betreb soll n ener chle de veraltete Deckenbelechtng enger Unterrchtsräme

Mehr

Energieeffizienz-Betrachtung einer Anlage durch Energiemessung

Energieeffizienz-Betrachtung einer Anlage durch Energiemessung Applcaon Noe DK9221-1109-0007 Messechnk Keywords Energemessung Lesungsfakor Energeanalyse EherCAT-Klemme Busklemme KL3403 EL3403 Energeeffzenz-Berachung ener Anlage durch Energemessung Deses Applcaon Example

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

6 Mathematische Modelle II: Bewegungsgleichungen eindimensionaler Kontinua

6 Mathematische Modelle II: Bewegungsgleichungen eindimensionaler Kontinua Dynamk II 6 Mahemasche Modee II: ndmensonae Konna 6 Mahemasche Modee II: Bewegngsgechngen endmensonaer Konna De m Fogenden beracheen mechanschen Srkren besehen as enem konnerchen massebehafeen verformbaren

Mehr

Grundlagen der Elektrotechnik. Teil B

Grundlagen der Elektrotechnik. Teil B Grndlagen der Elekroechnk Tel B Bebläer zr Vorlesng Prof. Dr.-Ing. Joachm Böcker nversä Paderborn esngselekronk nd Elekrsche Anrebsechnk Sommersemeser 6 Grndlagen der Elekroechnk B S. Vorwor Dese Bebläer

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

I. II. I. II. III. IV. I. II. III. I. II. III. IV. I. II. III. IV. V. I. II. III. IV. V. VI. I. II. I. II. III. I. II. I. II. I. II. I. II. III. I. II. III. IV. V. VI. VII. VIII.

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt

Mehr

Transformation in der Gesichtserkennung

Transformation in der Gesichtserkennung Transformaon n der Geschserkennung en Proek m Rahmen des Proekkurses Bldanalse und Obekerkennung Seffen Mankecz Mchael Rommel Rober Sen Sebasan Thebes. Enleung De Erkennung von Geschern und Gennung von

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F

Entladung Wanderung Entladung Wanderung H + --- Q -t - F OH - - F. Q --- +t - F B - - Überführgszahle d Wadergsgeschwdgke fgabe: Besmmg der orfsche Überführgszahle vo - d O - -oe 0N O oder vo 2 - d SO 4 -oe 0N 2SO 4 d Berechg hrer oeäqvalelefähgkee 2 Besmmg der Wadergsgeschwdgkee

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft VU Quanave BWL.Tel: odukon und Logsk [Sefan Rah] 2.Tel: Fnanzwschaf [Tomáš Sedlačk] Quanave BWL: Fnanzwschaf Ogansaosches De LV beseh aus zwe Telen:. Tel: odukon und Logsk [4.0.203 22..203] Sefan Rah Insu

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Beraterì. Bewe Bege stern.

Beraterì. Bewe Bege stern. / c Prvaumzüge Schndlauer,l ;l ü[ o] Êl. Sffñ DMS Beraerì. Bewe Begesern. gen. Lokal verrau und global verbunden. Se 1968 s de Deusche Möbelspedon deuschlandwe enes der führenden melsändschen Transporunernehmen

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Produktinfo und Benutzerhandbuch CMS

Produktinfo und Benutzerhandbuch CMS Produknfo und Benuzerhandbuch CMS K&K hosng und EDV-Servce Tel 0761/ 767074-0 Aprl 2007 Unernehmensexpose Das Unernehmen K&K Hosng & EDV-Servce beseh se 1998 Es handel sch um en nhabergeführes Unernehmen

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Do climate policies crowd out individual contributions? An experimental study on instantenous and permanent crowding out

Do climate policies crowd out individual contributions? An experimental study on instantenous and permanent crowding out Do lmae poles rowd o ndvdal onrbons? An expermenal sdy on nsanenos and permanen rowdng o Mahas Frhow, Roland Menges (TU Clashal) Sefan Trab (Un Bremen) Berag zr IEWT 2011 TU Wen 16.-18. Febrar 2011 1 An

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft

Zukunft der Arbeit Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft "Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Portfolioeffekte bei der Kreditrisikomodellierung

Portfolioeffekte bei der Kreditrisikomodellierung Porfoloeffeke be der Kredrskomodellerung 1 Porfoloeffeke be der Kredrskomodellerung Mark Wahrenburg 1 und Susanne Nehen Kurzfassung Für vele Fragesellungen m Rahmen der Bewerung kredrskobehafeer Fnanzel

Mehr

Auswirkungen steiler Stromänderungen auf elektrochemische Systeme

Auswirkungen steiler Stromänderungen auf elektrochemische Systeme Komponenen & Perphere swrkngen seler Sromänderngen af elekrochemsche Syseme Ralf Benger Carsen Ropeer Henz Wenzl Hans-Peer Beck Der zelche erlaf der Spannng ener Nckel-Meallhydrd- Baere (NMH) während ener

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing

Die Schnittstellenmatrix Autor: Jürgen P. Bläsing QUALITY-APPs Applkatonen für das Qaltätsmanagement Prozessmanagement De Schnttstellenmatrx Ator: Jürgen P. Bläsng Schnttstellen (Übergangsstellen, Verbndngsstellen) n betreblchen Prozessen ergeben sch

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Kapitel 5: Koordination der Personalführung im Führungssystem

Kapitel 5: Koordination der Personalführung im Führungssystem Kapel 5: Koordnaon der Personalführung m Führungssysem 5.1 Bezehungen zwschen Conrollng und Personalführung Kapel 5 5.2 Koordnaon der Personalführung m dem Informaonssysem 5.3 Koordnaon der Personalführung

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

Empfehlungs-Systeme. Recommender-Systeme. Buch-Recommender. Personalisierung. Kollaboratives Filtern & inhaltsbasierte Empfehlungen

Empfehlungs-Systeme. Recommender-Systeme. Buch-Recommender. Personalisierung. Kollaboratives Filtern & inhaltsbasierte Empfehlungen Epfehlngs-Systee Recoender-Systee Kollaboratves Fltern & nhaltsbaserte Epfehlngen Systee, Ntzern Dnge z epfehlen (z.b. Bücher, Fle, Ds, Webseten, Nesgrop Nachrchten, de af hren vorgen Präferenzen baseren.

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

14 Überlagerung einfacher Belastungsfälle

14 Überlagerung einfacher Belastungsfälle 85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung

Mehr

Kriterien zur Auswahl eines geeigneten Phasenrauschmessverfahrens. Dietmar Köther, Jörg Berben. IMST GmbH

Kriterien zur Auswahl eines geeigneten Phasenrauschmessverfahrens. Dietmar Köther, Jörg Berben. IMST GmbH Enleung Kreren zur Auswhl enes geegneen Phsenruschmessverfhrens Demr Köher, Jörg Berben IMST GmbH Crl-Fredrch-Guß-Sr. 2 47475 Kmp-Lnfor, Germny hp://www.ms.com DK, vorrg ITG 2001.pp 02.10.2001 Pge 1 Überblck

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

ANSÄTZE ZUR (AUF-)LÖSUNG EINES ALTEN METHODENSTREITS: ÖKONOMETRISCHE SPEZIFIKATION VON PROGRAMMIERUNGSMODELLEN ZUR AGRARANGEBOTSANALYSE

ANSÄTZE ZUR (AUF-)LÖSUNG EINES ALTEN METHODENSTREITS: ÖKONOMETRISCHE SPEZIFIKATION VON PROGRAMMIERUNGSMODELLEN ZUR AGRARANGEBOTSANALYSE ASÄTZE ZUR (AUF-)LÖSUG EIES ALTE METHODESTREITS: ÖKOOMETRISCHE SPEZIFIKATIO VO PROGRAMMIERUGSMODELLE ZUR AGRARAGEBOTSAALYSE Refera von Thomas Heckele und Hendrk Wolff * * Insu für Agrarpolk, Markforschung

Mehr

Glossar: Determiniertheit: nter zeitlichem Determinisumus ist die Berechenbarkeit des Zeitverhaltens des Rechensystems zu verstehen.

Glossar: Determiniertheit: nter zeitlichem Determinisumus ist die Berechenbarkeit des Zeitverhaltens des Rechensystems zu verstehen. Eregns aufgereen 5 8 Reaonsze mn max Re aonsberech mn Re aon max Anforderungsfunon E E E E E p _mn = T 5 7 8 9 5 7 p _max p = T T + T = = T Gesamauslasung u = = e p Proräenvergabe Tass m urzer Ausführungsze

Mehr

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1

Projektmanagement / Netzplantechnik Sommersemester 2005 Seite 1 Projektmanagement / Netzplantechnk Sommersemester 005 Sete 1 Prüfungs- oder Matrkel-Nr.: Themenstellung für de Kredtpunkte-Klausur m Haupttermn des Sommersemesters 005 zur SBWL-Lehrveranstaltung Projektmanagement

Mehr

Personelle Einzelmaßnahmen - 99 BetrVG. Eingruppierung G 4 G 3 G 2 G 1 G 4. Bei Neueinstellungen oder Arbeitsplatzwechsel. Personelle Einzelmaßnahmen

Personelle Einzelmaßnahmen - 99 BetrVG. Eingruppierung G 4 G 3 G 2 G 1 G 4. Bei Neueinstellungen oder Arbeitsplatzwechsel. Personelle Einzelmaßnahmen - 99 BetrVG Enstellung Engrupperung Umgrupperung Versetzung 95 Abs. 3 BetrVG G 4 G 4 G 3 G 2 G 1 G 3 G 2 G 1 neue Arbetsverhältnsse Verlängerung befrsteter AV Umwandlung n unbefrstete AV Beschäftgung von

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

Controlling (Nebenfach) Wintersemester 2012/2013

Controlling (Nebenfach) Wintersemester 2012/2013 echnsche Unversä München Conrollng (Nebenfach) Wnersemeser 22/23 Mschrf der orlesung vom 3..22 Dr. Markus Brunner Lehrsuhl für Berebswrschafslehre Conrollng echnsche Unversä München Conrollng WS 22/3 2

Mehr

Berechnung der Kriech- und Schwindwerte

Berechnung der Kriech- und Schwindwerte Berehnung der Kreh- und Shwndwere Grundlagen Beon zeg bere uner üblhen Gebrauhbedngungen en augepräge zeabhängge Verhalen wodurh Dehnungen aufreen können de en Mehrfahe der elahen Dehnung beragen: laabhängge

Mehr

Entgelte für die Netznutzung, Messung und Abrechnung im Gasverteilnetz

Entgelte für die Netznutzung, Messung und Abrechnung im Gasverteilnetz Entgelte für de Netznutzung, Messung und Abrechnung m Gasvertelnetz Gültg vom 22.12.2006 bs 30.09.2007 reslste (netto) 1. Netzentgelt (netto) De Netzentgelte der Kunden der Stadtwerke Osnabrück AG werden

Mehr

Nullstellen Suchen und Optimierung

Nullstellen Suchen und Optimierung Nullstellen Suchen und Optmerung Typsche Probleme: De optmale Bahnkurve De Mnmerung des Erwartungswertes ür den Hamltonan Wr möchten ene Funkton mnmeren oder mameren solch en Problem wrd Optmerung genannt!

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Technische Universität Dresden Medizinische Fakultät Carl Gustav Carus Poliklinik für Zahnärztliche Prothetik Fetscherstraße 74 01307 Dresden

Technische Universität Dresden Medizinische Fakultät Carl Gustav Carus Poliklinik für Zahnärztliche Prothetik Fetscherstraße 74 01307 Dresden Smuaon und Bewerung der nraoraen Dgaserung und funkonees Kaufächendesgn Weerenwckung ener Reverse-Engneerng-CAM-Prozeßkee für fesszende zahnärzche Resauraonen (BR05334/02) See 1 Abschußberch für das Projek:

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

Johannes Mitzscherlich Multi-Channel Management im CRM: Der Kommunikationsaspekt Strukturen, Strategien und Kommunikationspolitik

Johannes Mitzscherlich Multi-Channel Management im CRM: Der Kommunikationsaspekt Strukturen, Strategien und Kommunikationspolitik DasMul ChannelManagemen( MCM) s mehral se nerandno z m Cus omer Rel a ons h pmanagemen ;mehral se nwe ßerF ar bkl ec ks aufp nkenpap er! D es e gendeanz ahlanmögl c henkommun ka ons kanäl enl äs s dem

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare

phil omondo phil omondo Skalierung von Organisationen und Innovationen gestalten Sie möchten mehr Preise und Leistungen Workshops und Seminare Skalerung von Organsatonen und Innovatonen gestalten phl omondo Se stehen vor dem nächsten Wachstumsschrtt hrer Organsaton oder haben berets begonnen desen aktv zu gestalten? In desem Workshop-Semnar erarbeten

Mehr