Einleitung. ROLLUP, CUBE und GROUPING. Markus Jägle Art der Info Technische Background Info (April 2002)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einleitung. ROLLUP, CUBE und GROUPING. Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002)"

Transkript

1 Betrifft Autör: GROUPING_ID Markus Jägle Art der Info Technische Background Info (April 2002) Quelle Aus dem Oracle9i Data Warehousing Guide und den Kursen New Features Oracle9i und SQL für Fortgeschrittene der Trivadis Einleitung Mit der Version Oracle8i wurden die GROUP BY-Funktionen ROLLUP und CUBE eingeführt. Zur Analyse der Aggregate, die durch diese Funktionen erzeugt werden, bot Oracle mit der gleichen Version die Funktion GROUPING an. Da diese Funktion unter Umständen aber viel Speicherplatz in Anspruch nehmen kann, wurde mit der Version Oracle9i eine neue Funktion entwickelt, die dieses Problem lösen soll: die Funktion GROUPING_ID. ROLLUP, CUBE und GROUPING Die mit Oracle8i eingeführte ROLLUP-Funktion erlaubt das Bilden von sortierten Zwischensummen auf jeder Ebene einer Aggregation bis zum Gesamttotal. Zuerst berechnet ROLLUP die in der GROUP BY Klausel spezifizierten Aggregate. Dann werden progressiv Subtotale der höheren Ebenen kreiert und zwar von rechts nach links durch die gruppierenden Attribute navigierend. Zuletzt wird das Gesamttotal ausgegeben (siehe folgendes Beispiel).

2 SQL> SELECT deptno, job, COUNT(*), SUM(sal) 2 FROM emp 3 GROUP BY ROLLUP (deptno, job); DEPTNO JOB COUNT(*) SUM(SAL) CLERK MANAGER PRESIDENT ANALYST CLERK MANAGER CLERK MANAGER SALESMAN rows selected. Beispiel 1: ROLLUP Die CUBE-Funktion, die ebenfalls mit Oracle8i eingeführt wurde, bildet alle möglichen Kombinationen von Subtotalen inklusive das Gesamttotal (asymmetrische Aggregation). Dies erlaubt einfachste Kreuz-Tabellen Reports, wie dies auch in Drill-Down Funktionalitäten von Client-Tools benötigt wird. Die CUBE-Funktion generiert bei Multidimensionalen Analysen alle Subtotale, welche für einen Würfel mit den spezifizierten Dimensionen gebildet werden können (siehe folgendes Beispiel).

3 SQL> SELECT deptno, job, COUNT(*), SUM(sal) 2 FROM emp 3 GROUP BY CUBE(deptno, job); DEPTNO JOB COUNT(*) SUM(SAL) CLERK MANAGER PRESIDENT ANALYST CLERK MANAGER CLERK MANAGER SALESMAN ANALYST CLERK MANAGER PRESIDENT SALESMAN Beispiel 2: CUBE Mit Hilfe der GROUPING Funktion ist es möglich innerhalb einer GROUP BY Expression (siehe ROLLUP und CUBE) die Superaggregate-Rows zu identifizieren. Das folgende Beispiel zeigt die Verwendung der GROUPING-Funktion. GROUPING liefert den Wert 1 zurück, wenn es sich bei dieser Zeile um ein Aggregat/Subtotal handelt, andernfalls wird der Wert 0 zurückgeliefert.

4 SQL> SELECT deptno 2,job 3,COUNT (*) 4,SUM (sal) 5,GROUPING(deptno) AS group_dept 6,GROUPING(job) AS group_job 7 FROM emp 8 GROUP BY CUBE (deptno, job); DEPTNO JOB COUNT(*) SUM(SAL) GROUP_DEPT GROUP_JOB CLERK MANAGER PRESIDENT ANALYST CLERK MANAGER CLERK MANAGER SALESMAN ANALYST CLERK MANAGER PRESIDENT SALESMAN Beispiel 3: CUBE mit GROUPING Im Ergebnis dieses Statements wird in den Spalten GROUP_DEPT und GROUP_JOB durch den Wert 1 ersichtlich, ob es sich bei der jeweiligen Zeile um ein Total handelt. Ist zum Beispiel in der Spalte GROUP_JOB eine 1 vorhanden dann handelt es sich hierbei um das Subtotal aller JOBs einer DEPTNO (wie im Beispiel unter anderem in der 4. Zeile). Die Zeile des Gesamttotals ist dadurch erkennbar, dass in alle GROUPING-Funktionen für alle GROUP BY-Spalten eine 1 zurückgegeben wird (siehe letzte Zeile im Beispiel). GROUPING_ID Da für die Identifizierung der Superaggregate-Rows für jede GROUP BY-Spalte die Information der GROUPING Funktion ausgegeben werden muss, kann dies sehr viel Platz in Anspruch nehmen, wenn das Query-Ergebnis in Tabellen gespeichert werden soll, wie zum Beispiel mit Materialized Views. Zum Beispiel benötigt ein Select-Statement, dass ein GROUP BY über vier Spalten verwendet vier GROUPING Funktionen, um analysiert zu werden.

5 Die Funktion GROUPING_ID bietet eine Möglichkeit, bei der Identifizierung der Superaggregate-Rows Platz zu sparen. Ähnlich wie die GROUPING Funktion identifiziert diese Funktion diese Rows und gibt den GROUP BY-Level als Bit-Vektor zurück. GROUPING_ID nimmt alle 1er und 0er die bei einer Benutzung der GROUPING-Funktion erzeugt würden und formt daraus durch Zusammenfügen einen Bit-Vektor. Der Bit-Vektor wird als Binäre Nummer behandelt und der Wert wird durch die Funktion GROUPING_ID zurückgegeben. Wenn zum Beispiel mit dem Ausdruck CUBE(a, b) eine Gruppierung durchgeführt wird sind folgende Werte möglich. Aggregation Level Bit Vector GROUPING_ID a, b a b Gesamttotal Die folgenden SQL-Statements sollen diese Funktionalität an einem einfachen Beispiel verdeutlichen. In diesen Statements wird lediglich die CUBE-Funktion benutzt, GROUPING_ID lässt sich aber genauso in Kombination mit der ROLLUP-Funktion verwenden.

6 SQL> SELECT deptno,job 2,COUNT (*) 3,SUM (sal) 4,GROUPING(deptno) AS grp_dept 5,GROUPING(job) AS grp_job 6,GROUPING_ID(deptno, job) AS grp_id 7 FROM emp 8 GROUP BY CUBE (deptno, job); DEPTNO JOB COUNT(*) SUM(SAL) GRP_DEPT GRP_JOB GRP_ID CLERK MANAGER PRESIDENT ANALYST CLERK MANAGER CLERK MANAGER SALESMAN ANALYST CLERK MANAGER PRESIDENT SALESMAN Beispiel 4: CUBE mit GROUPING und GROUPING_ID Im Ergebnis des Beispiels 4 wird in der letzen Spalte zusätzlich der Wert des BIT-Vektors (vgl. Beispiel 3) dargestellt. Zum Beispiel ist der BIT-Vektor der letzten Zeile im obigen Beispiel, welche die Gesamtsummen anzeigt, 1 1 und hat somit den Wert 3, der von der Funktion GROUPING_ID zurückgegeben wird. Der BIT-Vektor der Zwischensummen für die Jobs lautet 1 0 (siehe Zeilen 13 bis 17 im obigen Beispiel) und hat den Wert 2. Der BIT-Vektor für die Zwischensummen der Departments (Zeile 4, 8 und 12 im obigen Beispiel) lautet 0 1 und somit gibt die Funktion GROUPING_ID den Wert 1 zurück. Die Zwischensummen für Departments und Jobs besitzen den BIT-Vektor 0 0 und GROUPING_ID gibt der Wert 0 zurück. Um die Superaggregate-Rows auszuwerten sind nun die beiden Spalten mit den Informationen der Funktion GROUPING nicht mehr notwendig und können weggelassen werden.

7 SQL> SELECT deptno,job 2,COUNT (*) 3,SUM (sal) 4,GROUPING_ID(deptno, job) AS grp_id 5 FROM emp 6 GROUP BY CUBE (deptno, job); DEPTNO JOB COUNT(*) SUM(SAL) GRP_ID CLERK MANAGER PRESIDENT ANALYST CLERK MANAGER CLERK MANAGER SALESMAN ANALYST CLERK MANAGER PRESIDENT SALESMAN Beispiel 5: CUBE mit GROUPING_ID Eine mögliche Verwendung dieser Funktion könnte nun wie im folgenden Beispiel aussehen.

8 SQL> SELECT DECODE(GROUPING_ID(deptno, job), 2 1, 'Zwischensumme Department', 3 2, 'Zwischensumme Job', 4 3, 'Gesamtsumme', 5 null) AS Summen 6,deptno 7,job 8,COUNT (*) 9,SUM (sal) 10 FROM emp 11 GROUP BY CUBE (deptno, job); SUMMEN DEPTNO JOB COUNT(*) SUM(SAL) CLERK MANAGER PRESIDENT Zwischensumme Department ANALYST CLERK MANAGER Zwischensumme Department CLERK MANAGER SALESMAN Zwischensumme Department Zwischensumme Job ANALYST Zwischensumme Job CLERK Zwischensumme Job MANAGER Zwischensumme Job PRESIDENT Zwischensumme Job SALESMAN Gesamtsumme Beispiel 6: CUBE mit DECODE der GROUPING_ID

9 Fazit Die Funktion GROUPING_ID ermöglicht es dem Benutzer schnell und übersichtlich die Superaggregate-Rows bei GROUP BY-Expressions zu identifizieren und zu analysieren und er kann somit die Stufe der Aggregation platzsparend und einfach lesbar in einer Spalte darstellen bzw. auswerten. Markus Jägle Mail: Trivadis Projektentwicklung GmbH Tel: Sasbacher Str. 2 Fax: D Freiburg Internet:

Die bisher bereits bekannten Aggregatsfunktionen MIN, MAX, SUM, AVG, COUNT, VARIANCE und STDDEV wurden um FIRST und LAST erweitert.

Die bisher bereits bekannten Aggregatsfunktionen MIN, MAX, SUM, AVG, COUNT, VARIANCE und STDDEV wurden um FIRST und LAST erweitert. Betrifft Autor FIRST, LAST Markus Jägle (markus.jaegle@trivadis.com) Art der Info Technische Background Info (April 2002) Quelle Aus dem NF9i-Kurs, NF9i-Techno-Circle der Trivadis und Oracle9i Data Warehousing

Mehr

SQL Intensivpraktikum SS 2008

SQL Intensivpraktikum SS 2008 SQL Intensivpraktikum SS 2008 Aggregation von Daten Arbeit mit Gruppen SQL1 basierend auf OAI-Kurs Copyright Oracle Corporation, 1998. All rights reserved. Gruppenfunktionen Gruppenfunktionen verarbeiten

Mehr

Art der Info: Technische Background Info Teil 2 (April 2002)

Art der Info: Technische Background Info Teil 2 (April 2002) Betrifft: Autor: Oracle 9i New Features SQL und PL/SQL Christine Hansen (christine.hansen@trivadis.com) Art der Info: Technische Background Info Teil 2 (April 2002) Quelle: Aus dem NF9i-Kurs und NF9i-Techno-Circle

Mehr

Oracle 8i und 9i New Features. DOAG November Peter Jensch, Trivadis GmbH

Oracle 8i und 9i New Features. DOAG November Peter Jensch, Trivadis GmbH Oracle 8i und 9i New Features DOAG November 200 Peter Jensch, Trivadis GmbH Facts & Figures Über 300 Mitarbeiter (D und CH) Über 200 Oracle Consultant Über 300 Kunden (ohne Schulung) Über 000 Projekte

Mehr

Art der Info: Technische Background Info Teil 1 (April 2002)

Art der Info: Technische Background Info Teil 1 (April 2002) Betrifft: Autor: Oracle 9i New Features SQL und PL/SQL Christine Hansen (christine.hansen@trivadis.com) Art der Info: Technische Background Info Teil 1 (April 2002) Quelle: Aus dem NF9i-Kurs und NF9i-Techno-Circle

Mehr

Art der Info: Technische Background Info Teil 3 (April 2002)

Art der Info: Technische Background Info Teil 3 (April 2002) Betrifft: Autor: Oracle9i New Features SQL und PL/SQL Patrick Malcherek (patrick.malcherek@trivadis.com) Art der Info: Technische Background Info Teil (April 00) Quelle: Aus dem NF9i-Kurs und NF9i-Techno-Circle

Mehr

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter bersicht Niels Schršter EinfŸhrung GROUP BY Roll UpÔs Kreuztabellen Cubes Datenbank Ansammlung von Tabellen, die einen ãausschnitt der WeltÒ fÿr eine Benutzergruppe beschreiben. Sie beschreiben die funktionalen

Mehr

die wichtigsten Caches (SGA) sind on-the-fly änderbar.

die wichtigsten Caches (SGA) sind on-the-fly änderbar. Betrifft Autor Umgang und Verwaltung von Oracle Memory Reno Glass (Reinhold.Glass@trivadis.com) Art der Info Technische Background Info (April 2002) Quelle Aus dem NF9i -Kurs und NF9i-Techno-Circle der

Mehr

SQL. Datenmanipulation. Datenmanipulationssprache. Ein neues Tupel hinzufügen. Das INSERT Statement

SQL. Datenmanipulation. Datenmanipulationssprache. Ein neues Tupel hinzufügen. Das INSERT Statement SQL Datenmanipulation Datenmanipulationssprache Ein DML Statement wird ausgeführt wenn: neue Tupel eingefügt werden existierende Tupel geändert werden existierende Tupel aus der Tabelle gelöscht werden

Mehr

Oracle Analytic Functions

Oracle Analytic Functions Mittwoch, 13.02.2008, 17:00 Uhr Regionaltreffen München/Südbayern Oracle Analytic Functions Seit Jahren auf dem Markt (8.1.6), jedoch unbekannt und selten im Einsatz S e i t e 1 Agenda Einsatzmöglichkeiten

Mehr

Analytische Funktionen erfolgreich eingesetzt

Analytische Funktionen erfolgreich eingesetzt Analytische Funktionen erfolgreich eingesetzt Dani Schnider Trivadis AG Glattbrugg, Schweiz Schlüsselworte: Analytische Funktionen, SQL, Performance Optimierung, Data Warehousing Zusammenfassung Analytische

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Model Klausel - Der Excel-Killer von Oracle?

Model Klausel - Der Excel-Killer von Oracle? Model Klausel - Der Excel-Killer von Oracle? Andrea Kennel Trivadis AG Glattbrugg, Schweiz Schlüsselworte: Model Klausel, SQL, Data Warehousing, OLAP Zusammenfassung Ein Data Mart kann als ein Würfel mit

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

Urs Meier (urs.meier@trivadis.com) Art der Info Technical Info (Februar 2002) Aus unserer Projekterfahrung und Forschung

Urs Meier (urs.meier@trivadis.com) Art der Info Technical Info (Februar 2002) Aus unserer Projekterfahrung und Forschung Betrifft Optimizer Autor Urs Meier (urs.meier@trivadis.com) Art der Info Technical Info (Februar 2002) Quelle Aus unserer Projekterfahrung und Forschung Einführung Mit jedem Oracle Release nimmt die Anzahl

Mehr

Fortgeschrittene OLAP Analysemodelle

Fortgeschrittene OLAP Analysemodelle Fortgeschrittene OLAP Analysemodelle Jens Kübler Imperfektion und erweiterte Konzepte im Data Warehousing 2 Grundlagen - Datenanalyse Systemmodell Datenmodell Eingaben System Schätzer Datentypen Datenoperationen

Mehr

Explizite Cursor. Cursor. Steuerung des expliziten Cursors. Explizite Cursor Funktionen

Explizite Cursor. Cursor. Steuerung des expliziten Cursors. Explizite Cursor Funktionen Explizite Jedes SQL Statement, das der Oracle Server ausführt, hat einen individuellen, der verbunden ist mit: Implizitem : Declariert für alle DML-Statements und PL/SQL SELECT Statements. Explizitem :

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Views erzeugen. Datenbank - Objekte. Wozu braucht man Views? Was ist eine View?

Views erzeugen. Datenbank - Objekte. Wozu braucht man Views? Was ist eine View? Datenbank - Objekte Views erzeugen Objekt Tabelle View Sequence Index Synonym Objekt Beschreibung Basiseinheit zum Speichern; besteht aus Zeilen und Spalten; Logische Repräsentation; kann Teilmengen von

Mehr

SQL Optimizer und SQL Performance

SQL Optimizer und SQL Performance SQL Optimizer und SQL Performance Schlüsselworte SQL, Optimizer, Explain Plan, SQL Trace Marco Mischke Robotron Datenbank Software GmbH Dresden Einleitung Dieser Vortrag beschäftigt sich mit grundlegenden

Mehr

Datawarehouses, Materialized Views, Materialized View Logs, Query Rewrite

Datawarehouses, Materialized Views, Materialized View Logs, Query Rewrite Betrifft DWH1: Materialized Views für Data-Warehouses Art der Info Technische Info, Oracle8i Quelle Aus dem AI8-EF Kurs der Trivadis (Enterprise Features) Autor Andri Kisseleff (andri.kisseleff@trivadis.com)

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

Kap. 6 Data Warehouse

Kap. 6 Data Warehouse 1 Kap. 6 Data Warehouse 6.1 Was ist ein Data Warehouse, Motivation? 6.2 Data Cube und Cube-Operationen 6.3 Workshop: MS SQL Server, Cube Operationen 6.4 Physischer Entwurf, Implementierung von Cubes 6.5

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

WHERE Klausel Generierung mit.net und Oracle. Aus unserer Projekterfahrung und Architektur-Kurs

WHERE Klausel Generierung mit.net und Oracle. Aus unserer Projekterfahrung und Architektur-Kurs Betrifft Art der Info Quelle WHERE Klausel Generierung mit.net und Oracle Technical Info Aus unserer Projekterfahrung und Architektur-Kurs Where ist the WHERE? Der Artikel untersucht die Möglichkeiten,

Mehr

Die Datenmanipulationssprache SQL

Die Datenmanipulationssprache SQL Die Datenmanipulationssprache SQL Daten eingeben Daten ändern Datenbank-Inhalte aus Dateien laden Seite 1 Data Manipulation Language A DML statement is executed when you Add new rows to a table Modify

Mehr

Data Warehousing. Ausführung von OLAP Operationen. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Ausführung von OLAP Operationen. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Ausführung von OLAP Operationen Ulf Leser Wissensmanagement in der Bioinformatik Variante 1 - Snowflake Year id year Productgroup id pg_name Month Id Month year_id Day Id day month_id

Mehr

Aufgaben zu Tabellenanalyse mit SQL

Aufgaben zu Tabellenanalyse mit SQL Aufgaben zu Tabellenanalyse mit SQL Die Tabelle unten enthält die Arbeitsaufträge für ein Team von Software Entwicklern. Jede Zeile entspricht einem Arbeitsauftrag (hier ohne die Beschreibung des Auftrages

Mehr

27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services

27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services 531 27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services Im zweiten Teil dieses Buches haben wir die Eigenschaften der Transact-SQL- Sprache in Bezug auf die Bearbeitung von operativen Daten gezeigt.

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Martin Bracher (martin.bracher@trivadis.com) Technische Background Info und Trivadis Scripts

Martin Bracher (martin.bracher@trivadis.com) Technische Background Info und Trivadis Scripts Betrifft Autor Art der Info Quelle Resize von Tablespaces mit Oracle8i und Oracle9i Martin Bracher (martin.bracher@trivadis.com) Technische Background Info und Trivadis Scripts Aus dem AI9-A Kurs der Trivadis

Mehr

Aufgabe 1: [Logische Modellierung]

Aufgabe 1: [Logische Modellierung] Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines

Mehr

SQL. SQL SELECT Anweisung SQL-SELECT SQL-SELECT

SQL. SQL SELECT Anweisung SQL-SELECT SQL-SELECT SQL SQL SELECT Anweisung Mit der SQL SELECT-Anweisung werden Datenwerte aus einer oder mehreren Tabellen einer Datenbank ausgewählt. Das Ergebnis der Auswahl ist erneut eine Tabelle, die sich dynamisch

Mehr

SOLISYON GMBH TOBIAS GRUBER BEN WEISSMAN. Analyse von Dimensions-Schlüsselfehlern bei der Aufbereitung von SSAS Datenbanken

SOLISYON GMBH TOBIAS GRUBER BEN WEISSMAN. Analyse von Dimensions-Schlüsselfehlern bei der Aufbereitung von SSAS Datenbanken WEITER BLICKEN. MEHR ERKENNEN. BESSER ENTSCHEIDEN. Analyse von Dimensions-Schlüsselfehlern bei der Aufbereitung von SSAS Datenbanken SOLISYON GMBH TOBIAS GRUBER BEN WEISSMAN ANALYSE VON OLAP-AUFBEREITUNGSFEHLERN

Mehr

SQL: Abfragen für einzelne Tabellen

SQL: Abfragen für einzelne Tabellen Musterlösungen zu LOTS SQL: Abfragen für einzelne Tabellen Die Aufgaben lösen Sie mit dem SQL-Training-Tool LOTS der Universität Leipzig: http://lots.uni-leipzig.de:8080/sql-training/ Wir betrachten für

Mehr

cs242: Data Warehousing cs243: Datenbanken für Fortgeschrittene FS 2012

cs242: Data Warehousing cs243: Datenbanken für Fortgeschrittene FS 2012 UNIVERSITÄT BASEL Prof. Dr. Heiko Schuldt Ihab Al Kabary, MSc Ilir Fetai, MSc Nenad Stojnić, MSc Ivan Giangreco, BSc cs242: Data Warehousing cs243: Datenbanken für Fortgeschrittene FS 2012 Übung DW-4 Abgabe:

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

SQL Intensivpraktikum SS 2008

SQL Intensivpraktikum SS 2008 SQL Intensivpraktikum SS 2008 SQL en Einfache en Eingabe arg 1 arg 2 führt Aktion durch Ergebnis Wert Ausgabe arg n SQL1 basierend auf OAI-Kurs Copyright Oracle Corporation, 1998. All rights reserved.

Mehr

Dirk Nachbar (dirk.nachbar@trivadis.com)

Dirk Nachbar (dirk.nachbar@trivadis.com) Betrifft: Autor: Art der Info: Quelle: XSQL Servlet und FOP Dirk Nachbar (dirk.nachbar@trivadis.com) Technische Background Info Aus unserer Projekt- und Schulungserfahrung http://xml.apache.org/fop, http://www.xml.com,

Mehr

Einstellungen zur Verwendung von Flashback-Abfragen

Einstellungen zur Verwendung von Flashback-Abfragen Thema Autor REISE IN DIE VERGANGENHEIT Kamel Bouzenad (kamel.bouzenad@trivadis.com) Art der Info Infos für Entwickler und DBAs (April 2002) Quelle Oracle-Dokumentation sowie beratende Aktivitäten Überblick

Mehr

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014 Lehrstuhl für Praktische Informatik III Prof. Dr. Guido Moerkotte Email: moer@db.informatik.uni-mannheim.de Marius Eich Email: marius.eich@uni-mannheim.de Datenbanksysteme 2 8. Übungsblatt Frühjahr-/Sommersemester

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

10.1 Überblick. 10 Data Warehousing. klassischen Datenbankanwendungen werden Datenbanken im wesentlichen zur Abwicklung des (

10.1 Überblick. 10 Data Warehousing. klassischen Datenbankanwendungen werden Datenbanken im wesentlichen zur Abwicklung des ( 10 Data Warehousing 10.1 Überblick In klassischen Datenbankanwendungen werden Datenbanken im wesentlichen zur Abwicklung des ( operativen ) Tagesgeschäfts verwendet (z.b.: Buchungen, Einkauf/Verkauf, Personal,...)

Mehr

Aufgabensammlung SQL SW4 1. Einfache Anfragen

Aufgabensammlung SQL SW4 1. Einfache Anfragen Aufgabensammlung SQL SW4 1. Einfache Anfragen Buch: Kapitel 4.6 und 4.7. Datenbank: Die folgenden Anfragen beziehen sich auf die Universitätsdatenbank des Buches. Alle Umlaute werden umschrieben (hören

Mehr

<Insert Picture Here> Datenschätze heben: Data Mining Carsten Czarski Leitender Systemberater Business Unit Database ORACLE Deutschland GmbH

<Insert Picture Here> Datenschätze heben: Data Mining Carsten Czarski Leitender Systemberater Business Unit Database ORACLE Deutschland GmbH Datenschätze heben: Data Mining Carsten Czarski Leitender Systemberater Business Unit Database ORACLE Deutschland GmbH Agenda Data Mining... erste Schritte... Der Data Mining-Ansatz

Mehr

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien 1.1 Definition Datenbank Ein Datenbanksystem (DBS) ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS

Mehr

Prakt. Datenbankprogrammierung. Sommersemester I,9: Datenmanipulation. Daten-Manipulations-Sprache. Das INSERT-Statement

Prakt. Datenbankprogrammierung. Sommersemester I,9: Datenmanipulation. Daten-Manipulations-Sprache. Das INSERT-Statement Prakt. Datenbankprogrammierung Sommersemester 2005 I,9: Datenmanipulation Daten-Manipulations-Sprache DML-Statements werden ausgeführt bei: Hinzufügen von Datensätzen Modifizieren von Datensätzen Löschen

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

SQL Wiederholung. Datenbanktechnologien. Verbunde. Aggregation und Gruppierung. Unterabfragen. Hochschule für Technik und Wirtschaft Berlin

SQL Wiederholung. Datenbanktechnologien. Verbunde. Aggregation und Gruppierung. Unterabfragen. Hochschule für Technik und Wirtschaft Berlin SQL Wiederholung Datenbanktechnologien Prof. Dr. Ingo Claÿen Prof. Dr. Martin Kempa Hochschule für Technik und Wirtschaft Berlin Verbunde Aggregation und Gruppierung Unterabfragen Verbunde Inner-Join Nur

Mehr

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Oracle Warehouse Builder 3i

Oracle Warehouse Builder 3i Betrifft Autoren Art der Info Oracle Warehouse Builder 3i Dani Schnider (daniel.schnider@trivadis.com) Thomas Kriemler (thomas.kriemler@trivadis.com) Technische Info Quelle Aus dem Trivadis Technologie

Mehr

Multi-temporale Datenbank Features in Oracle 12c Philipp Salvisberg

Multi-temporale Datenbank Features in Oracle 12c Philipp Salvisberg Multi-temporale Datenbank Features in Oracle 12c Philipp Salvisberg Senior Principal Consultant November 2013 Oracle 12c hat ein neues Feature namens "Temporal Validity". Mit Temporal Validity können eine

Mehr

Übung 3. Interaktive Abfragen auf eine SQL-Datenbank. Prof. Dr. Andreas Schmietendorf. Wirtschaftsinformatik

Übung 3. Interaktive Abfragen auf eine SQL-Datenbank. Prof. Dr. Andreas Schmietendorf. Wirtschaftsinformatik Übung 3 Interaktive Abfragen auf eine SQL-Datenbank 1 Umgang mit der IBOConsole 2 Umgang mit der IBOConsole Zugriff auf Datenbanken - Interbase (Borland) - Firebird (Open Source) Funktionsumfang - Datenbanken

Mehr

Auswertung für Warenwirtschaft/ERP, Interbase und ODBC... 2

Auswertung für Warenwirtschaft/ERP, Interbase und ODBC... 2 Cubix O.L.A.P... 2 Auswertung für Warenwirtschaft/ERP, Interbase und ODBC... 2 Datenverbindung über ODBC... 4 Datenbereitstellung über SQL... 5 Festlegung der Dimensionen... 6 Festlegung der Summen...

Mehr

Informatik 12 Datenbanken SQL-Einführung

Informatik 12 Datenbanken SQL-Einführung Informatik 12 Datenbanken SQL-Einführung Gierhardt Vorbemerkungen Bisher haben wir Datenbanken nur über einzelne Tabellen kennen gelernt. Stehen mehrere Tabellen in gewissen Beziehungen zur Beschreibung

Mehr

Labordatenverarbeitung in der 4ten Dimension!

Labordatenverarbeitung in der 4ten Dimension! VDLUFA-Schriftenreihe 69 Labordatenverarbeitung in der 4ten Dimension! J. Flekna Pragmatis GmbH, Neufahrn 1. Einleitung Telefongesellschaften und große Internetshops machen es schon lange: Operative Daten

Mehr

Details zu den Ausdrücken nach FROM, WHERE, GROUP BY und HAVING finden Sie in den Abschnitten über JOIN, WHERE und GROUP BY.

Details zu den Ausdrücken nach FROM, WHERE, GROUP BY und HAVING finden Sie in den Abschnitten über JOIN, WHERE und GROUP BY. SELECT - Der Grundbefehl zur Auswahl von Daten Die SELECT-Anweisung fragt Daten aus einer Datenbank ab und stellt diese in einer virtuellen Tabelle zur Verfügung. Diese virtuelle Tabelle, eine Menge von

Mehr

Folgendes PL/SQL Codefragment zeigt das grundlegende Statement für diesen Test: Java. http://www.trivadis.com/images/javaperf_tcm16-7133.

Folgendes PL/SQL Codefragment zeigt das grundlegende Statement für diesen Test: Java. http://www.trivadis.com/images/javaperf_tcm16-7133. Page 1 of 7 Betrifft: Java oder PL/SQL? Art der Info: Technische Background Info Autor: Guido Schmutz (guido.schmutz@trivadis.com) Quelle: Aus unserer Schulungs- und Beratungstätigkeit Mit Oracle8.1 besteht

Mehr

Datenbankprogrammierung

Datenbankprogrammierung Datenbankprogrammierung Arbeiten mit DB2 Server DB2- Befehlszeilenprozessor ausführen SQL-Skript-Datei bearbeiten Editor SSH Client Linux SSH-Konsole für Befehlszeilenproz. (ssh) X-Weiterleitung für Editor

Mehr

Oracle DWH Konferenz Neuss

Oracle DWH Konferenz Neuss Oracle DWH Konferenz Neuss Migration OWB to ODI Martin de Gooijer Prinzipal Consultant BI BASEL BERN LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN 1 Migration

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Sprachen für OLAP Operationen Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung OLAP Operationen MDX: Multidimensional Expressions SQL Erweiterungen

Mehr

SQL Result Cache in Oracle 11g

SQL Result Cache in Oracle 11g SQL Result Cache in Oracle 11g Autor: Jürgen Vester, ORACLE Deutschland GmbH Eine der interessantesten Neuerungen in Oracle 11g, da sind sich Tom Kyte und Steven Feuerstein einig, stellt das Caching von

Mehr

Oracle SQL Tutorium - Wiederholung DB I -

Oracle SQL Tutorium - Wiederholung DB I - Oracle SQL Tutorium - Wiederholung DB I - (Version 2.6 vom 24.2.2015) Einleitung Im Folgenden sind zur Wiederholung eine Reihe von SQL-Übungsaufgaben zu lösen. Grundlage für die Aufgaben ist die Mondial

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

cs241: Datenbanken mit Übungen HS 2011

cs241: Datenbanken mit Übungen HS 2011 UNIVERSITÄT BASEL Prof. Dr. Heiko Schuldt MSc. Nenad Stojnić BSc. Ivan Giangreco BSc. Florian Lindörfer cs241: Datenbanken mit Übungen HS 2011 Übung 5 Abgabe bis: 4.11.2011 Hinweise: Modalitäten der Abgabe:

Mehr

Übung 2. Verwendung eines RDBMS. Prof. Dr. Andreas Schmietendorf 1. Übung 2

Übung 2. Verwendung eines RDBMS. Prof. Dr. Andreas Schmietendorf 1. Übung 2 Verwendung eines RDBMS Prof. Dr. Andreas Schmietendorf 1 Aufgabenbeschreibung Prof. Dr. Andreas Schmietendorf 2 Zielstellung Die Vorlesung konzentriert sich auf die Verwendung relationaler Datenbankmanagement-Systeme.

Mehr

SQL - Übungen Bearbeitung der Datenbank Personal (1)

SQL - Übungen Bearbeitung der Datenbank Personal (1) Bearbeitung der Datenbank Personal (1) 1. Abfragen einer einzigen Tabelle 1.1. Zeigen Sie alle Informationen an, die über die Kinder der Mitarbeiter gespeichert sind. 1.2. Zeigen Sie aus der Tabelle stelle

Mehr

Fortgeschrittene SQL-Techniken für APEX-Formulare und Reports

Fortgeschrittene SQL-Techniken für APEX-Formulare und Reports Fortgeschrittene SQL-Techniken für APEX-Formulare und Reports Andreas Wismann WHEN OTHERS Beratung Projektmanagement Coaching rund um Oracle Application Express rund um Application Express Beratung Projektmanagement

Mehr

Datenmanipulation in SQL. Select Anweisung

Datenmanipulation in SQL. Select Anweisung Datenmanipulation in SQL Unter Datenmanipulation wird sowohl der lesende Zugriff auf die Daten (Select Statement) als auch die Änderung von Daten (Insert, Delete, Update) subsummiert. Wir beginnen mit

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben.

MySQL-Befehle. In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. MySQL-Befehle 1. Einleitung In diesem Tutorial möchte ich eine kurze Übersicht der wichtigsten Befehle von MySQL geben. 2. Arbeiten mit Datenbanken 2.1 Datenbank anlegen Eine Datenbank kann man wie folgt

Mehr

Listener: Bei Oracle erfolgt die Steuerung (konventionell) via listener.ora (Listener Konfiguration), tnsnames.ora (Client Konfiguration)

Listener: Bei Oracle erfolgt die Steuerung (konventionell) via listener.ora (Listener Konfiguration), tnsnames.ora (Client Konfiguration) Protokoll 1: Listener: Bei Oracle erfolgt die Steuerung (konventionell) via listener.ora (Listener Konfiguration), tnsnames.ora (Client Konfiguration) Abschnitt 2.1 (Ausführungen zum Shutdown / Startup)

Mehr

Datenbanken mit OpenOffice-Base Tabellen und einfache Abfragen

Datenbanken mit OpenOffice-Base Tabellen und einfache Abfragen Datenbanken mit OpenOffice-Base Tabellen und einfache Abfragen Im Rahmen der IFB - Veranstaltung Nr. 92 177 01 01 Informatik in der Sek I Programmierung vom 21.-22.09.2009 Peter Dauscher Gymnasium am Kaiserdom,

Mehr

Oracle 9i Einführung. Performance Tuning. Kurs. Teil 12 Materialized Views. Universität Hannover. Praxisbeispiel. Migration.

Oracle 9i Einführung. Performance Tuning. Kurs. Teil 12 Materialized Views. Universität Hannover. Praxisbeispiel. Migration. Kurs Oracle 9i Einführung Performance Tuning Teil 12 Materialized Views Timo Meyer Wintersemester 2005 / 2006 Seite 1 von 9 Seite 1 von 9 Agenda 1. Einführung Materialized Views 2. 3. Materialized View

Mehr

Hochschule Karlsruhe Technik und Wirtschaft

Hochschule Karlsruhe Technik und Wirtschaft Hochschule Karlsruhe Technik und Wirtschaft Sommersemester 2009 Seite 1/12 Fakultät: Fakultät für Informatik und Wirtschaftsinformatik Semester: BC3 D4 Prüfungsfach: Datenbanken I Fachnummer: I 3B71 I

Mehr

Einführung in Datenbanken und SQL

Einführung in Datenbanken und SQL Veranstaltung Pr.-Nr.: 101023 Einführung in Datenbanken und SQL Veronika Waue WS 07/08 Übung 5 Welche Lehrangebote haben die Pruefungsnummer 10027? Jeder Titel soll nur einmal ausgegeben werden. (Achtung

Mehr

Einführendes Tutorium zu SQLX

Einführendes Tutorium zu SQLX Einführendes Tutorium zu SQLX (Version 2.3 vom 24.2.2015) Einleitung In den folgenden Lektionen sollen dir die Grundzüge von SQLX näher gebracht werden. SQLX ist der Standard um aus relationalen Datenbeständen

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

MIN oder MAX Bildung per B*Tree Index Hint

MIN oder MAX Bildung per B*Tree Index Hint E-Mail: rainer@lambertz-c.de Internet: http://www.lambertz-c.de MIN oder MAX Bildung per B*Tree Index Hint Zugegeben, der Trick Min- oder Maximalwerte per Index Hint zu ermitteln ist nicht neu. Gewöhnlich

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 Dr. Veit Köppen 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.

Mehr

Kapitel 5: Der SQL-Standard

Kapitel 5: Der SQL-Standard Kapitel 5: Der SQL-Standard 5. Der SQL-Standard 5. Ein Anfrageausdruck in SQL besteht aus einer SELECT-Klausel, gefolgt von einer FROM-Klausel, gefolgt von einer WHERE-Klausel. Grundform eines SFW-Ausdruck

Mehr

Schiller-Gymnasium Hof

Schiller-Gymnasium Hof Datenbanken odellieren Das Erstellen einer Datenbank erfolgt in ehreren Schritten, a Ende besteht eine relationale Datenbank, und nur die werden i Unterricht behandelt, lediglich aus Tabellen. I. Erstellen

Mehr

Martin Wunderli (martin.wunderli@trivadis.com)

Martin Wunderli (martin.wunderli@trivadis.com) Betrifft Standby Aber logisch! Art der Info Lösungskonzept (Januar 2003) Autor Quelle Martin Wunderli (martin.wunderli@trivadis.com) Beratungstätigkeit Schlüsselworte Data Guard, Logische Standby Datenbank

Mehr

Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell

Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell Data Warehousing, Gliederung Kapitel 5: Vom relationalen zum multidimensionalen Datenmodell Dimensionen und Measures Schematypen für Data Warehousing Groupy und Data Cubes Operatoren für den Data Cube

Mehr

5.8 Bibliotheken für PostgreSQL

5.8 Bibliotheken für PostgreSQL 5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9

Mehr

Integration, Migration und Evolution

Integration, Migration und Evolution 14. Mai 2013 Programm für heute 1 2 Quelle Das Material zu diesem Kapitel stammt aus der Vorlesung Datenintegration & Datenherkunft der Universität Tübingen gehalten von Melanie Herschel im WS 2010/11.

Mehr

MCSA: SQL 2016 Database Development

MCSA: SQL 2016 Database Development MCSA: SQL 2016 Database Development Querying Data with Transact-SQL & Developing SQL Databases Seminarziel In diesem 6-tägigen Kurs werden die Teilnehmer von Grund auf in die Entwicklung

Mehr

Objektorientierte PL/SQL-Programmierung für RDBMS

Objektorientierte PL/SQL-Programmierung für RDBMS Willkommen Objektorientierte PL/SQL-Programmierung für RDBMS Andriy Terletskyy Berenberg Bank Neuer Jungfernstieg 20 20354 Hamburg Berenberg stellt sich vor MDV/EDV- Erfahrung Zeitraum Hardware Datenbank

Mehr

SQL/OLAP und Multidimensionalität in der Lehre

SQL/OLAP und Multidimensionalität in der Lehre SQL/OLAP und Multidimensionalität in der Lehre Vortrag auf der DOAG 2008 Prof. Dr. Reinhold von Schwerin Hochschule Ulm, Fakultät für Informatik 1. Dezember 2008 Prof. Dr. Reinhold von Schwerin SQL/OLAP

Mehr

Datenbanken zur Entscheidungsunterstützung - Data Warehousing

Datenbanken zur Entscheidungsunterstützung - Data Warehousing Datenbanken zur Entscheidungsunterstützung - Data Warehousing Prof. Dr. T. Kudraß 1 Einführung Zunehmender Bedarf nach Analyse aktueller und historischer Daten Identifizierung interessanter Patterns Entscheidungsfindung

Mehr

Themen des Kapitels. 2 Grundlagen von PL/SQL. PL/SQL Blöcke Kommentare Bezeichner Variablen Operatoren. 2.1 Übersicht. Grundelemente von PL/SQL.

Themen des Kapitels. 2 Grundlagen von PL/SQL. PL/SQL Blöcke Kommentare Bezeichner Variablen Operatoren. 2.1 Übersicht. Grundelemente von PL/SQL. 2 Grundlagen von PL/SQL Grundelemente von PL/SQL. 2.1 Übersicht Themen des Kapitels Grundlagen von PL/SQL Themen des Kapitels PL/SQL Blöcke Kommentare Bezeichner Variablen Operatoren Im Kapitel Grundlagen

Mehr