Bäume, Suchbäume und Hash-Tabellen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Bäume, Suchbäume und Hash-Tabellen"

Transkript

1 Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche in einer geordneten Menge als hierarchische Datenstruktur (Entscheidungsbaum, Suchbaum) Hash-Tabellen: Abbildung von Objekten auf den Speicher (deren Position darin) wird direkt aus dem Suchkriterium als Eigenschaft der Objekte abgeleitet Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

2 Bäume Grundlegende Datenstruktur zur Abbildung einer Hierarchie Setzt Grundprinzip Teile und Herrsche (siehe Algorithmen ( ) als Datenstruktur um: Zerlegung von großen Datenmengen in kleinere, besser handhabbare Grundstruktur: ausgehend von einer Wurzel (Gesamtheit) kommt man über verschiedene Verzweigungen (Unterteilungen) zu den Blättern (kleinste Einheiten) Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

3 Allgemeine Struktur von Bäumen Höhe des Baumes 1 Wurzel Innere Knoten Blätter Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

4 Beispiele: Baumstrukturen in der Informatik Dateisysteme mit Festplatten, Verzeichnissen, wiederum darin enthaltenen Verzeichnissen und letztendlich Dateien Dokumentenstrukturen, z.b. Mit Kapiteln, Abschnitten, Absätzen HTML und XML als hierarchische Strukturen Syntaktische Analyse und Auswertung von Programmen/Termen: Zerlegung eines Satzes einer Sprache (Grammatik) enstprechend Regeln in Teilausdrücke/Wortgruppen bis hin zu kleinsten Einheiten (Atome, Terminale) Suchbäume als Indexe zum schnellen assoziativen Zugriff über Schlüsselwerte Datenbanksysteme Allgemein: Suche nach Worten in Texten Speziell: Suchmaschinen im World Wide Web Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

5 Binäre Suchbäume Binär = Verzweigungsgrad 2: jeder Knoten hat maximal 2 Kindknoten Jeder Knoten speichert einen Suchschlüssel und repräsentiert damit folgende Entscheidung: Ist der gesuchte Wert gleich dem Schlüssel GEFUNDEN Ist der Wert kleiner, gehe zum linken Kindknoten Ist der Wert größer, gehe zum rechten Kindknoten Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

6 Binäre Suchbäume: Suchen und Einfügen Suchen und Einfügen prinzipiell ähnlich: Algorithmus startet an der Wurzel In jedem Knoten: wenn Schlüssel nicht gefunden, verzweige zu einem Kindknoten Auf Blattebene: Einfügen: neuen Kindknoten erzeugen Suchen: Worst Case - Schlüssel nicht gefunden Aufwand für beide Operationen dominiert vom Durchlaufen des Weges von der Wurzel bis zum Blatt, d.h. Höhe des Baumes an dieser Stelle Balancierter Baum ( ): Baum ist so gleichmäßig gefüllt, dass Weg von der Wurzel zu Blättern überall möglichst gleich Bei balanciertem Baum mit n = 2 k Elementen ist die Höhe des Baumes ca. h = k = log 2 n Durchschnittlicher Aufwand für beide Operationen damit: O(log n) Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

7 Balancierte Binäre Suchbäume: Aufwand Maximale #Knoten 1= 2^1-1 3=2^2-1 7=2^3-1 15=2^4-1 31=2^5-1 63=2^ =2^ =2^ n Höhe = Aufwand O(log n) Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

8 Binärbaum: Beispielimplementierung (C++) Einfach Implementierung bestehend aus Klassen für Knoten mit Schlüssel und Verweisen auf Kindknoten Binärbaum mit Verweis auf Wurzeln Implementiert nur Suchen und Einfügen Eigentliche Daten werden nicht eingetragen, nur Schlüssel vom Typint Hinweise Verwendetfriend-Klassen: umgehen Kapselung, indem befreundete Klassen aufprivat-daten zugreifen können Vollständiger Quelltext auf der Web-Seit zur Vorlesung Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

9 Binärbaum: Knotenklasse class Node { friend class BinaryTree; private : int key; Node* left; Node* right; }; Node(int k) {... } bool search(int k); void insert(int k); void print(int level); Definiert rekursive Methoden zum Einfügen und Suchen Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

10 Binärbaum: Baumklasse class BinaryTree { }; public : BinaryTree() { root = NULL; } bool search(int key); void insert(int key); void print(); private : Node* root; Methoden zum Einfügen und Suchen als Einstiespunkt für Rekursion ausgehend von der Wurzel Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

11 Binärbaum: Einfügen void Node::insert(int k) { if (k==key) return; if (k<key) if (left!= NULL) left->insert(k); else left = new Node(k); if (k>key) if (right!= NULL) right->insert(k); else right = new Node(k); } Schlüssel vorhanden Einfügen beenden Andernfalls, falls möglich im linken (neuer Schlüssel kleiner) oder rechten Teilbaum einfügen (neuer Schlüssel größer) Falls kein Kindknoten links oder rechts existiert: neuen Kindknoten mit neuem Schlüssel erzeugen Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

12 Entartung von Bäumen Balanciertheit wichtige Eigenschaft von Bäumen: garantiert effiziente Ausführung der Operationen mit O(log n) Ohne weiteres aber keine garantierte Eigenschaft Abhängig zum Beispiel von Einfügereihenfolge Schlechte Einfügereihenfolge kann zu Entartung des Baumes führen Im schlimmsten Fall wird Baum zu Liste Operationen dann mit wesentlich schlechterer Laufzeitkomplexität O(n): sequentielle Suche Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

13 Beispiel: Entartung von Bäumen Balancierter Baum bei Einfügereihenfolge 4, 2, 6, 3, 1, 7, 5 Entarteter Baum bei Einfügereihenfolge 1, 2, 3, 4, 5, 6, Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

14 Balancierte Bäume Sicherstellung einer relativen Ausgeglichenheit bei binären Bäumen durch spezielle Modifikationsoperationen (Einfügen, Löschen) Angabe eines speziellen Balancekriteriums, z.b. AVL-Baum: in jedem Knoten darf der Höhenunterschied zwischen linkem und rechten Teilbaum maximal 1 sein! Wird Balancekriterium verletzt, werden Verfahren zur lokalen Reorganisation des Baumes angewandt AVL-Bäume, Rot-Schwarz-Bäume Vollständige Ausgeglichenheit möglich durch Knoten mit variablem Verzweigungsgrad Mehr als 1 Schlüssel pro Knoten Verweis auf Kindknoten mit Werten zwischen 2 Schlüsseln (Bereich) Knotengröße kann an Speicherstrukturen angepasst werden (z.b. Blöcke der Festplatte) B-Bäume Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

15 ... geht es besser als O(log n)? Assoziative Zugriffe (Suche über einen Schlüsselwert) mit Bäumen mit logarithmischem Aufwand O(log n) D.h. nur ein zusätzlicher Suchschritt notwendige für jede Verdopplung der Größe der Datenmenge, in der gesucht wird Geht es noch besser? Ja, Hash-Tabellen können Schlüsselzugriff (unter bestimmten Bedingungen) mit konstantem Aufwand O(1) umsetzen D.h. egal wie groß die Datenmenge, das Finden der richtigen Daten geht immer gleich schnell! Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

16 Hash-Tabellen Auch Streuwerttabelle oder Hash Map Grundprinzip: Berechnung der Position der Daten im Speicher (strukturiert als Tabelle) aus dem Schlüsselwert key Berechnung der Position beim Einfügen Berechnung der Position beim Suchen Erfordert Vorreservierung eines Speicherbereichs der Größe M M meist sehr groß, ab mehreren Tausend Einträgen Positionen 0...M 1 in Speicherbereich werden auch Hash Buckets genannte Berechnung der Position über spezielle Hash-Funktion h : dom(key) {0, 1,...,M 1} Wahlfreier Zugriff im RAM und auf Festplatte ermöglicht direkten Zugriff auf an dieser Stelle gespeicherte Daten Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

17 Einfügen in Hash-Tabellen Zu speichernde Objekte Hash-Tabelle Student MatrNr Udo Urban , Max Müller Student MatrNr Student MatrNr Eva Lange Max Müller , Udo Urban , Eva Lange Hash-Funktion h(matrnr)=matrnr % 7 Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

18 Suchen in Hash-Tabellen Hash-Tabelle Suche nach Matrikelnummer: , Max Müller , Udo Urban , Eva Lange Hash-Funktion h(matrnr)=matrnr % 7 Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

19 Hash-Funktionen Wertebereich ist (beim hier betrachteten statischen Hashen) durch Speichergröße M bestimmt Problem: Hash-Funktion ist nicht injektiv, d.h. verschiedene Schlüssel können auf eine Adresse abgebildet werden Kollisionen! Gute Hash-Funktionen erzeugen möglichst zufällig gestreute Speicherzuordnung und machen dadurch Kollisionen unwahrscheinlich Meist umgesetzt durch Kombination von verschiedenen Operationen mit möglichst zufälligem Ergebnis, z.b. Bit-Verschiebeoperationen Am Ende Modulodivision durch M Rest ist Hash-Wert Primzahlen als Parameter der Hash-Funktion sorgen für gute, zufällige Verteilung Kollisionen lassen sich aber meist nicht völlig vermeiden erfordern Kollisionsbehandlung Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

20 Hash-Tabellen: Kollisionsbehandlung Verkettete Liste: der Eintrag in einer Hash-Tabelle verweist auf eine Liste der dorthin gehashten Daten Kann bei schlechter Hash-Funktion mit vielen Kollisionen zu Entartung führen Mehraufwand für Speicherung Sondieren: (engl. Probing) ist der Hash Bucket bereits belegt, wird nach einem einfachen Muster ein anderer Platz gesucht Z.B. lineares Sondieren: testen ob folgende Hash Bucket frei ist, erster freier wird genutzt Doppeltes Hashen: ist der Hash Bucket belegt, wird (ggf. wiederholt) ein weiterer Hash-Wert berechnet und diese Position getestet Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

21 Implementierung von Hash-Tabellen (Bisher besprochene) statische Hash-Verfahren: vordefinierte Speichergröße kann effizient über Array umgesetzt werden Dynamische Hash-Verfahren können den benutzten Speicherbereich zur Laufzeit Vergrößern z.b. durch verkettete Arrays Kollisionsbehandlung durch verkettet Liste erfordert zusätzliche Datenstruktur Sondieren und Doppeltes Hashen Erfordern aufwändigere Operationsimplementierungen Beispielimplementierung auf der Web-Seite zur Vorlesung Einfaches statisches Hashverfahren mit linearem Sondieren In der Vorlesung nicht vorgestellt Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

22 Nachteile von Hashtabellen Keine Ordnung der Elemente: in Bäumen sind Elemente stets geordnet gespeichert geordnete Ausgabe aus einer Hash-Tabelle erfordert zusätzliche Sortierung Vorreservierung des Speichers notwendig: z.b. über Arrays, die zur Vermeidung von Überlauf und Kollisionen ggf. weit überdimensioniert sind (Trade-off: Speichereffizienz vs. Laufzeiteffizienz) Überlauf möglich: bei einigen statischen Verfahren (z.b. bei Überlaufbehandlung durch Sondieren, nicht bei verketteter Liste) kann die Hash-Tabelle tatsächlich vollständig gefüllt werden, so dass keine weiteren Daten eingetragen werden können Aufwand für Dynamik: Verfahren, welche zur Vermeidung von Überläufen und Kollisionen, die Hash-Tabelle dynamisch wachsen lassen, nähern sich mit ihrem Laufzeitverhalten Bäumen an Aufwand für Überlaufbehandlung: auch bei vielen Kollisionen, z.b. durch schlechte Hash-Funktion, verschlechtert sich die Laufzeitkomplexität Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

23 Zusammenfassung: Datenstrukturen Klassische Datenstrukturen bieten Standardlösungen für effiziente Bearbeitung von Daten Wichtigste hier vorgestellt: Kollektionsdatentypen wie Listen, Mengen und Multimengen zur Verwaltung einer Sammlung zusammengehörender Objekte Queues und Stacks zur Steuerung der Berabeitungsreihenfolge von Datenobjekten Bäume und Hash-Tabellen für schnelles Suchen von Daten über einen Schlüsselwert Oft in Form von generischen Klassenbibliotheken umgesetzt, z.b. STL in C++ Eigene Implementierung durch Verwendung von Typkonstruktoren (Arrays, Structs, Klassen) und Zeiger sowie Klassenschablonen (Templates, Generics) möglich Eike Schallehn Grundlagen der Informatik für Ingenieure 2008/

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

Geordnete Binärbäume

Geordnete Binärbäume Geordnete Binärbäume Prof. Dr. Martin Wirsing in Zusammenarbeit mit Gilbert Beyer und Christian Kroiß http://www.pst.ifi.lmu.de/lehre/wise-09-10/infoeinf/ WS 09/10 Einführung in die Informatik: Programmierung

Mehr

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write

B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write B-Bäume, Hashtabellen, Cloning/Shadowing, Copy-on-Write Thomas Maier Proseminar: Ein- / Ausgabe Stand der Wissenschaft Seite 1 von 13 Gliederung 1. Hashtabelle 3 2.B-Baum 3 2.1 Begriffserklärung 3 2.2

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen

2 Java: Bäume. 2.1 Implementierung von Bäumen. 2.2 Implementierung eines binären Suchbaums. 2.3 Traversierung von Bäumen 2 2 Java: Bäume 2.1 Implementierung von Bäumen 2.2 Implementierung eines binären Suchbaums 2.3 Traversierung von Bäumen 2.4 Implementierung von Heapsort 19 Teil II Java: Bäume Überblick Implementierung

Mehr

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume. B-Bäume Digitale Suchbäume Heaps

Teil 1: Suchen. Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume. B-Bäume Digitale Suchbäume Heaps Teil 1: Suchen Problemstellung Elementare Suchverfahren Hashverfahren Binäre Suchbäume Ausgeglichene Bäume AVL-Bäume Splay-Bäume B-Bäume Digitale Suchbäume Heaps M.O.Franz; Oktober 2007 Algorithmen und

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Binärbäume. Prof. Dr. E. Ehses, 2014 1

Binärbäume. Prof. Dr. E. Ehses, 2014 1 Binärbäume Grundbegriffe der Graphentheorie Bäume und Ihre Anwendungen Unterschiedliche Darstellungen von Bäumen und Binärbäumen Binärbäume in Java Rekursive Traversierung von Binärbäumen Ebenenweise Traversierung

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für Suchverfahren: u.a. Suchen in

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe

Inhaltsverzeichnis. Einführende Bemerkungen 11. Das Fach Informatik 11 Zielsetzung der Vorlesung Grundbegriffe Inhaltsverzeichnis Einführende Bemerkungen 11 Das Fach Informatik 11 Zielsetzung der Vorlesung 12 1. Grundbegriffe 1 3 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Information und Nachricht 1.1.1 Information 1.1.2 Nachricht

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 7. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@informatik.uni-leipzig.de aufbauend auf den Kursen der letzten Jahre von E. Rahm, G. Heyer,

Mehr

In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. 1. Bäume Grundlagen...

In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. 1. Bäume Grundlagen... Bäume und Graphen In diesem Kapitel behandeln wir erste Algorithmen mit dynamischen Strukturen, wie Bäume und Graphen. Inhalt 1. Bäume... 1.1. Grundlagen... 1.. Repräsentation von Binärbäumen... 9 1..1.

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

5.14 Generics. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

5.14 Generics. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Motivation für Generics: Containertypen speichern eine Anzahl von Elementen anderer Typen Wie definiert man die Containerklasse ArrayList? In der Definition könnte man als Elementtyp Object angeben maximale

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Mathematische Grundlagen: Das Handwerkszeug Mariano Zelke Datenstrukturen 2/26 Formeln: n - i = n (n+1) 2 und - i=1 k i=0 a i = ak+1 1 a 1, falls a 1 Rechnen

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Abschnitt 18: Effizientes Suchen in Mengen

Abschnitt 18: Effizientes Suchen in Mengen Abschnitt 18: Effizientes Suchen in Mengen 18. Effizientes Suchen in Mengen 18.1 Vollständig ausgeglichene binäre Suchbäume 18.2 AVL-Bäume 18.3 Operationen auf AVL-Bäumen 18.4 Zusammenfassung 18 Effizientes

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 9. Klassische Suche: Baumsuche und Graphensuche Malte Helmert Universität Basel 13. März 2015 Klassische Suche: Überblick Kapitelüberblick klassische Suche: 5. 7.

Mehr

Klausur Informatik B April Teil I: Informatik 3

Klausur Informatik B April Teil I: Informatik 3 Informatik 3 Seite 1 von 8 Klausur Informatik B April 1998 Teil I: Informatik 3 Informatik 3 Seite 2 von 8 Aufgabe 1: Fragekatalog (gesamt 5 ) Beantworten Sie folgende Fragen kurz in ein oder zwei Sätzen.

Mehr

Datenstrukturen in Java

Datenstrukturen in Java Datenstrukturen in Java SEP 350 Datenstrukturen Datenstrukturen ermöglichen Verwaltung von / Zugriff auf Daten (hier: Objekte) Datenstrukturen unterscheiden sich duch Funktionalität Implementierung modulares

Mehr

Suchen in Listen und Hashtabellen

Suchen in Listen und Hashtabellen Kapitel 12: Suchen in Listen und Hashtabellen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Einleitung Lineare Suche Binäre Suche (in sortierten Listen) Hashverfahren

Mehr

6-1 A. Schwill Grundlagen der Programmierung II SS 2005

6-1 A. Schwill Grundlagen der Programmierung II SS 2005 6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und

Mehr

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1

Bäume. 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Bäume 2006 Jiri Spale, Algorithmen und Datenstrukturen - Bäume 1 Inhalt Grundbegriffe: Baum, Binärbaum Binäre Suchbäume (Definition) Typische Aufgaben Suchaufwand Löschen allgemein, Methode Schlüsseltransfer

Mehr

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor

Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Fortgeschrittene Programmiertechnik Klausur WS 2014/15 Angewandte Informatik Bachelor Name Matrikelnummer Aufgabe Punkte Aufgabe Punkte Zwischensumme 1 6 2 8 3 16 4 14 5 12 56 6 16 7 18 8 20 9 10 Summe

Mehr

C für Java-Programmierer

C für Java-Programmierer Carsten Vogt C für Java-Programmierer ISBN-10: 3-446-40797-9 ISBN-13: 978-3-446-40797-8 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-40797-8 sowie im

Mehr

Einführung in die STL

Einführung in die STL 1/29 in die STL Florian Adamsky, B. Sc. (PhD cand.) florian.adamsky@iem.thm.de http://florian.adamsky.it/ cbd Softwareentwicklung im WS 2014/15 2/29 Outline 1 3/29 Inhaltsverzeichnis 1 4/29 Typisierung

Mehr

Definition. Gnutella. Gnutella. Kriterien für P2P-Netzwerke. Gnutella = +

Definition. Gnutella. Gnutella. Kriterien für P2P-Netzwerke. Gnutella = + Definition Gnutella Ein -to--netzwerk ist ein Kommunikationsnetzwerk zwischen Rechnern, in dem jeder Teilnehmer sowohl Client als auch Server- Aufgaben durchführt. Beobachtung: Das Internet ist (eigentlich

Mehr

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen

Binäre Bäume. 1. Allgemeines. 2. Funktionsweise. 2.1 Eintragen Binäre Bäume 1. Allgemeines Binäre Bäume werden grundsätzlich verwendet, um Zahlen der Größe nach, oder Wörter dem Alphabet nach zu sortieren. Dem einfacheren Verständnis zu Liebe werde ich mich hier besonders

Mehr

Programmierung mit C Zeiger

Programmierung mit C Zeiger Programmierung mit C Zeiger Zeiger (Pointer)... ist eine Variable, die die Adresse eines Speicherbereichs enthält. Der Speicherbereich kann... kann den Wert einer Variablen enthalten oder... dynamisch

Mehr

Übungen zu Programmierung I - Blatt 8

Übungen zu Programmierung I - Blatt 8 Dr. G. Zachmann A. Greß Universität Bonn Institut für Informatik II 1. Dezember 2004 Wintersemester 2004/2005 Übungen zu Programmierung I - Blatt 8 Abgabe am Mittwoch, dem 15.12.2004, 15:00 Uhr per E-Mail

Mehr

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13.1 Modellierung des Rucksackproblems 13.2 Lösung mit Greedy-Algorithmus 13.3 Lösung mit Backtracking 13.4 Lösung mit Dynamischer Programmierung

Mehr

Suchen und Sortieren

Suchen und Sortieren (Folie 69, Seite 36 im Skript) 5 6 1 4 Als assoziatives Array geeignet Schlüssel aus geordneter Menge Linke Kinder kleiner, rechte Kinder größer als Elternknoten Externe und interne Knoten Externe Knoten

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch

Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch Was bisher geschah ADT Menge mit Operationen: Suche nach einem Element Einfügen eines Elementes Löschen eines Elementes Realisierung durch verschiedene Datenstrukturen: lineare Datenstrukturen: Array,

Mehr

In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut.

In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut. Binäre Suchbäume Tries (Folie 182, Seite 58 im Skript) In vergleichsbasierten Suchbäumen wird nicht in Schlüssel hineingeschaut. In Tries entspricht die ite Verzweigung dem iten Zeichen des Schlüssels.

Mehr

Suchbäume mit inneren Knoten verschiedener Knotengrade.

Suchbäume mit inneren Knoten verschiedener Knotengrade. Was bisher geschah rekursive Datenstrukturen: lineare Datenstrukturen: Liste, Stack, Queue hierarchische Datenstrukturen: Bäume allgemeine Bäume Binäre Bäume Unäre Bäume = Listen Tiefe eines Knotens in

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung

Mehr

Suchen. lineare Suche, binäre Suche, divide and conquer, rekursive und iterative Algorithmen, geordnete Daten, Comparable

Suchen. lineare Suche, binäre Suche, divide and conquer, rekursive und iterative Algorithmen, geordnete Daten, Comparable Suchen lineare Suche, binäre Suche, divide and conquer, rekursive und iterative Algorithmen, geordnete Daten, Comparable Welche Nummer hat Herr Meier? Enthält Einträge (Elemente) der Form : Name, Vorname

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel.

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel. Java Crashkurs Kim-Manuel Klein (kmk@informatik.uni-kiel.de) May 7, 2015 Quellen und Editoren Internet Tutorial: z.b. http://www.java-tutorial.org Editoren Normaler Texteditor (Gedit, Scite oder ähnliche)

Mehr

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis

Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Kap. 4.4: B-Bäume Kap. 4.5: Dictionaries in der Praxis Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO DAP2 SS 2009 2./4. Juni 2009 1 2. Übungstest

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel : Andere dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4.8-4.11: Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.6 AVL-Bäume 4.8 Rot-Schwarz-Bäume Idee: Verwende Farben, um den Baum vertikal zu

Mehr

Advanced Programming in C

Advanced Programming in C Advanced Programming in C Pointer und Listen Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Oktober 2013 Überblick 1 Variablen vs. Pointer - Statischer und dynamischer

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 2. April

Mehr

Teil V. Generics und Kollektionen in Java

Teil V. Generics und Kollektionen in Java Teil V Generics und Überblick 1 Parametrisierbare Datenstrukturen in Java 2 Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 5 1 Parametrisierbare Datenstrukturen in Java Motivation für

Mehr

Datenbanksysteme I WS 2012/13 - Übung 0 - Bernhard Pietsch Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme

Datenbanksysteme I WS 2012/13 - Übung 0 - Bernhard Pietsch Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme Datenbanksysteme I WS 2012/13 - Übung 0 - Bernhard Pietsch Friedrich-Schiller-Universität Jena Lehrstuhl für Datenbanken und Informationssysteme Organisatorisches (I) http://www.informatik.unijena.de/dbis/lehre/ws2012/dbs1/index.html

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Quadtrees. Christian Höner zu Siederdissen

Quadtrees. Christian Höner zu Siederdissen Quadtrees Christian Höner zu Siederdissen Quadtrees Zum Verständnis benötigt... Was sind Quadtrees Datenstruktur Wofür Quadtrees Operationen auf dem Baum Vor- und Nachteile (spezialisierte Formen) Zum

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

Vorlesung 09: Mengen. Peter Thiemann SS 2010

Vorlesung 09: Mengen. Peter Thiemann SS 2010 Vorlesung 09: Mengen Peter Thiemann Universität Freiburg, Germany SS 2010 Peter Thiemann (Univ. Freiburg) JAVA 1 / 43 Inhalt Mengen HashSet LinkedHashSet CopyOnWriteArraySet EnumSet SortedSet NavigableSet

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

Wörterbucher. Das Wörterbuch 1 / 71

Wörterbucher. Das Wörterbuch 1 / 71 Wörterbucher Das Wörterbuch 1 / 71 Der abstrakte Datentyp Wörterbuch Ein Wörterbuch für eine gegebene Menge S besteht aus den folgenden Operationen: insert(x): Füge x zu S hinzu, d.h. setze S = S {x}.

Mehr

Lösungsvorschläge. zu den Aufgaben im Kapitel 4

Lösungsvorschläge. zu den Aufgaben im Kapitel 4 Lösungsvorschläge zu den Aufgaben im Kapitel 4 Aufgabe 4.1: Der KNP-Algorithmus kann verbessert werden, wenn in der Funktion nexttabelle die Zuweisung next[tabindex] = ruecksprung; auf die etwas differenziertere

Mehr

Fortgeschrittene Programmiertechnik Klausur SS 2015 Angewandte Informatik Bachelor

Fortgeschrittene Programmiertechnik Klausur SS 2015 Angewandte Informatik Bachelor Fortgeschrittene Programmiertechnik Klausur SS 2015 Angewandte Informatik Bachelor Name Matrikelnummer Aufgabe Punkte Aufgabe Punkte Zwischensumme 1 6 2 8 3 12 4 18 5 20 64 6 9 7 17 8 18 9 12 Summe 120

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Suchen und Sortieren (Die klassischen Algorithmen)

Suchen und Sortieren (Die klassischen Algorithmen) Suchen und Sortieren (Die klassischen Algorithmen) Lineare Suche und Binäre Suche (Vorbedingung und Komplexität) Sortieralgorithmen (allgemein) Direkte Sortierverfahren (einfach aber langsam) Schnelle

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I.6.5 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Hinweise zur Übungsklausur (Weitere) Traversierungen von Binärbäumen

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln.

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln. 4.4 Perfektes Hashing Das Ziel des perfekten Hashings ist es, für eine Schlüsselmenge eine Hashfunktion zu finden, so dass keine Kollisionen auftreten. Die Größe der Hashtabelle soll dabei natürlich möglichst

Mehr

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen 1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

6 Speicherorganisation

6 Speicherorganisation Der Speicher des Programms ist in verschiedene Speicherbereiche untergliedert Speicherbereiche, die den eigentlichen Programmcode und den Code der Laufzeitbibliothek enthalten; einen Speicherbereich für

Mehr

Pass by Value Pass by Reference Defaults, Overloading, variable Parameteranzahl

Pass by Value Pass by Reference Defaults, Overloading, variable Parameteranzahl Funktionen Zusammenfassung von Befehlssequenzen als aufrufbare/wiederverwendbare Funktionen in einem Programmblock mit festgelegter Schnittstelle (Signatur) Derartige prozedurale Programmierung erlaubt

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus wurden ausgewählte Teile in Abstimmung

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Suchen in Datenmengen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Fakultät Wirtschaftswissenschaft

Fakultät Wirtschaftswissenschaft Fakultät Wirtschaftswissenschaft Matrikelnr. Name Vorname KLAUSUR: Entwurf und Implementierung von Informationssystemen (32561) TERMIN: 11.09.2013, 14.00 16.00 Uhr PRÜFER: Univ.-Prof. Dr. Stefan Strecker

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

12. Rekursion Grundlagen der Programmierung 1 (Java)

12. Rekursion Grundlagen der Programmierung 1 (Java) 12. Rekursion Grundlagen der Programmierung 1 (Java) Fachhochschule Darmstadt Haardtring 100 D-64295 Darmstadt Prof. Dr. Bernhard Humm FH Darmstadt, 24. Januar 2006 Einordnung im Kontext der Vorlesung

Mehr

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl:

AVL-Bäume Analyse. Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: AVL-Bäume Analyse (Folie 85, Seite 39 im Skript) Theorem Ein AVL-Baum der Höhe h besitzt zwischen F h und 2 h 1 viele Knoten. Definition Wir definieren die nte Fibonaccizahl: 0 falls n = 0 F n = 1 falls

Mehr

Aufbau Datenbanksysteme

Aufbau Datenbanksysteme Aufbau Datenbanksysteme Lehrveranstaltung Datenbanktechnologien Prof. Dr. Ingo Claßen Prof. Dr. Martin Kempa Hochschule für Technik und Wirtschaft Berlin Speichersystem c Ingo Claßen, Martin Kempa Softwarearchitektur

Mehr

Projekt Systementwicklung

Projekt Systementwicklung Projekt Systementwicklung Effiziente Codierung: Laufzeitoptimierung Prof. Dr. Nikolaus Wulff Effiziente Codierung Der Wunsch effizienten Code zu schreiben entstammt mehreren Quellen: Zielplattformen mit

Mehr

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9

Übung 9. Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Informatik I 2 Übung 9 Quellcode Strukturieren Rekursive Datenstrukturen Uebung 9 Quellcode Strukturieren Wenn alle Funktionen in einer Datei zusammengefasst sind wird es schnell unübersichtlich Mehrere

Mehr

Klausur Datenstrukturen und Algorithmen SoSe 2012

Klausur Datenstrukturen und Algorithmen SoSe 2012 Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Klausur Datenstrukturen und Algorithmen SoSe 2012 Vorname: Nachname: Studiengang (bitte genau einen

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Rot-schwarz Bäume Eigenschaften Rotationen Einfügen (Löschen) 2 Einführung Binäre Suchbäume Höhe h O(h) für Operationen

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

11. Rekursion, Komplexität von Algorithmen

11. Rekursion, Komplexität von Algorithmen 11. Rekursion, Komplexität von Algorithmen Teil 2 Java-Beispiele: Power1.java Hanoi.java K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 23. Nov. 2015 Anwendung der Rekursion Rekursiv

Mehr