Dynamische Investitionsrechnung

Größe: px
Ab Seite anzeigen:

Download "Dynamische Investitionsrechnung"

Transkript

1 Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger) Dyamische Ivestitiosrechug - berücksichtigt mehrere oder alle Ivestitioe eier Periode (bei statisch wird ur mit eier Periode gerechet, berücksichtigt icht de Zeitfaktor) Methode Grudausrichtug Zielkriterie Kapitalwertmethode Dyamische Verfahre Barwert, bzw. Auität des Barwertes der Eiud Auszahluge als Etscheidugsalterative Itere Zisflußmethode Dyamische Amortisatiosrechug Gewimaximierug Gewimaximierug Iterer Zisfluß Risikomiimierug Pay-off-Zeit Kapitalwertmethode - Barwertige Betrachtug vo Zahlugsströme - Barwert Abzisugsfaktor wird berücksichtigt - alle eier Ivestitio azurechede Eizahluge ud Auszahluge werde mit eiem gegebee Kalkulatioszisfluß abgezist* - Ivestitio ist vorteilhaft, we Kapitalwert midestes - bei Vergleich mehrere Alterative ist das Alagegut vorzuziehe, das de höchste Kapitalwert hat positiver Kapitalwert = agesetzte Kalkulatioszisfluß wird vo Retabilität der Ivestitio übertroffe Kapitalwert vo Null = Ivestitio geau i Höhe des verwedete Kalkulatioszises verzist egativer Kapitalwert = ageommee Verzisug wird durch Ivestitio icht erreicht (Kalkulatioszissatz = vom Ivestor geforderte Midestverzisug) *Quelle: Olfert Fiazierug ** Quelle: WRW-Verlag Fiazierug Page / 7 dyamische_ivestitiosrechug.doc Feiiger

2 Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger). Ivestitio wird mit EK fiaziert i = Habezissatz (Zisertrag) + Risikozuschlag. FK-Fiazierug (ausschließlich) i = Sollzis (Zisaufwad) + Risikozuschläge 3. EK ud FK Fiazierug (Mischfiazierug) i = Habe + Sollzissätze + Risikozuschläge Kapitalwert = abgeziste Eizahluge (eischließlich Restwert) abgeziste Auszahluge (eischließlich Aschaffugswert) C = C E C A oder C E A E A A = A E E = Eizahlug i de Nutzugsjahre... A = Auszahluge i de Nutzugsjahre... = Kalkulatioszisfluß A = Aschaffugswert i der Periode *Quelle: Olfert Fiazierug ** Quelle: WRW-Verlag Fiazierug Page / 7 dyamische_ivestitiosrechug.doc Feiiger

3 Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger) Beispiel: kalkulatorischer Zissatz % (bei Barwert ) a E A Saldo Abzisugsfaktor Barwert (Saldo x Abziszugfaktor) , , , Kapitalwert C = 45 Kapitalwert = 45 der Gesamtivestitio, d.h. loht sich, da positiv (ist Azustrebe) WEIL: positiv = Azahlug durch Rückflüsse abgedeckt ud zusätzlich gewierwirtschafted durch Verzisug je höher der kalkulatorische Zissatz umso güstiger = durch Rückflüsse Ausgabe gedeckt ud Verzisug erreicht egativ = ugüstig, Midestverzisug icht erreicht *Quelle: Olfert Fiazierug ** Quelle: WRW-Verlag Fiazierug Page 3 / 7 dyamische_ivestitiosrechug.doc Feiiger

4 Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger) Itere Ziswertmethode - Ermittlug des Zisflusses, der zum Kapitalwert führt - Effektive Redite - Vergleich mit midest geforderte Kalkulatioszisfluß im Uterehme - vorteilhaft, we iterer Zisfluß Kalkulatioszisfluß - bei Vergleich vo mehrere Ivestitioe gilt Alterative mit dem höchste itere Zisfluß als die geeigete Beispiel: Maschie Aschaffugswert: Nutzugsdauer: 5 a Zissätze: 8% ud 6% Tabelle Kapitalwerte: Olfert S. 94 r = p C * p C p C r = iterer Zisfluß p = Versuchszissatz ( bzw. ) C = Kapitalwert (p bzw. p ) r = 8% * 6% 8% r = % *Quelle: Olfert Fiazierug ** Quelle: WRW-Verlag Fiazierug Page 4 / 7 dyamische_ivestitiosrechug.doc Feiiger

5 Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger) A e a ( ) = Aschaffugswert = Eiahme = Ausgabe = Barwertfaktor (siehe Tabelle)???? Kapitalwiedergewiugsfaktor C = (e-a) ( + i) -A = (e-a) A ( ) i( + i) Beispiel: A = Barwertfaktor bei 5% ud 5 Jahre =,983 e-a = 6 (e-a = - 4 = 6 )???????????????????????????????? *Quelle: Olfert Fiazierug ** Quelle: WRW-Verlag Fiazierug Page 5 / 7 dyamische_ivestitiosrechug.doc Feiiger

6 Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger) Beispiel. Lehrbrief Ivestitioe (S.45) r = % r = % Abzisugsfaktore Zahlugsreihe a r = % r=% Zeitwert Barwert r (=Zeitwert x r) Barwert r (=Zeitwert x r),, - (-) (-),99, ,864, ,753, ,683, ,69, Kapitalwerte r = C r C C C r 485 * % 93 *% r = r = 837 9,3 4 9 r =,% *Quelle: Olfert Fiazierug ** Quelle: WRW-Verlag Fiazierug Page 6 / 7 dyamische_ivestitiosrechug.doc Feiiger

7 Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger) Weitere Berechuge folge... *Quelle: Olfert Fiazierug ** Quelle: WRW-Verlag Fiazierug Page 7 / 7 dyamische_ivestitiosrechug.doc Feiiger

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek Uterehmesbewertug ud Aktieaalyse vo Karia Liebestei & Bartholomäus Fietzek Uterehmesbewertug Es gibt kei allgemei verbidliches Verfahre, soder eie Vielzahl vo Methode Sie diee zur Bewertug vo Uterehme

Mehr

Übungsaufgaben zur Investitionsrechnung

Übungsaufgaben zur Investitionsrechnung Übugsaufgabe zur Ivestitiosrechug Übugsaufgabe (Statische Ivestitiosrechug): Ihre Uterehmug plat die Aschaffug eier eue Maschie. Zur Wahl stehe die beide Alterative A ud B. Folgede Date sid für die beide

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Bochum /Fachhochschule Müster /Fachhochschule Südwestfale (Weiterbildeder) Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. Wolfgag Hufagel / Prof. Dr. Wifried Rimmele/ Fachhochschule

Mehr

Finanzwirtschaft. Investitionsentscheidung: langfristige Verwendung von Finanzmitteln

Finanzwirtschaft. Investitionsentscheidung: langfristige Verwendung von Finanzmitteln I. Fiazierugsetscheiduge. Kurzfristige Liquiditätspositio fiazwirtschaftliche Etscheiduge Fiazierugsetscheidug: über Beschaffug, Umschichtug ud Verwedug vo Fiazmittel auf de Bestadskote Ivestitiosetscheidug:

Mehr

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung 2 Ivestitio 2.1 Grudlage der Ivestitiosrechug Lerziele Dieses Kapitel vermittelt: Die grudsätzliche Aufgabe der Ivestitiosrechug Uterschiedliche Verfahre der Ivestitiosrechug 2.1.1 Ivestitiosbegriffe ud

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Investitionsrechnung

Investitionsrechnung Ivestitiosrechug Gliederug: 1. Grudlage der Ivestitiosrechug 2. Statistische Ivestitiosrechug 3. Dyamische Ivestitiosrechug 4. Ivestitiosetscheiduge mit Gewisteuer 5. Ivestitiosetscheiduge uter Usicherheit

Mehr

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist.

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist. . Folge ud Reihe.... Folge..... Grudlage.....2 Arithmetische Folge... 2..3 Geometrische Folge... 2.2 Reihe... 2.2. Grudlage... 2.2.2 Arithmetische Reihe... 2.2.3 Geometrische Reihe... 3.3 Eiige spezielle

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Einführung in die Investitionsrechnung

Einführung in die Investitionsrechnung Eiführug i die Ivestitiosrechug Geld ud / oder Zeit Frage: Wie viel ist mei Geld morge wert? Wie viel muss ma jährlich zahle, um i Jahre eie bestimmte Betrag gespart zu habe? Wie lage muss bei eiem gegebee

Mehr

Investitionsrechnung: Übungsserie I

Investitionsrechnung: Übungsserie I Thema Dokumetart Ivestitiosrechug: Übugsserie I Lösuge Theorie im Buch "Itegrale Betriebswirtschaftslehre" Teil: Kapitel: D1 Fiazmaagemet 3 Ivestitio Ivestitiosrechug: Übugsserie I Aufgabe 1 Die BAU AG

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Technische Universität Dresden Institut für Energietechnik Professur für Energiesystemtechnik und Wärmewirtschaft. Fernstudium.

Technische Universität Dresden Institut für Energietechnik Professur für Energiesystemtechnik und Wärmewirtschaft. Fernstudium. Techische Uiversität Dresde Istitut für Eergietechik Professur für Eergiesystemtechik ud Wärmewirtschaft Ferstudium Eergiewirtschaft Dr. Thomas Sader WALTHER-PAUER-Bau Zi. 211 Tel. 463 33097 Thomas.Sader@tu-dresde.de

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur

IWW Studienprogramm. Aufbaustudium. Gründungscontrolling. Lösungshinweise zur 3. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Aufbaustudium Grüdugscotrollig Lösugshiweise zur 3. Musterklausur Lösugshiweise

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik Prof. Dr. Güter Hellmig Aufgabeskript Fiazmathematik Ihalt: Aufgabe -: Eifache achschüssige Zise Aufgabe : Eifache vorschüssige Zise Aufgabe 4-5: Ziseszise bei Zisasammlug Aufgabe 6-: Ziseszise bei Zisauszahlug

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Formeln. für Betriebswirtschaftslehre/Rechnungswesen. Volkswirtschaftslehre. an Beruflichen Gymnasien und Fachoberschulen

Formeln. für Betriebswirtschaftslehre/Rechnungswesen. Volkswirtschaftslehre. an Beruflichen Gymnasien und Fachoberschulen Formel für Betriebswirtschaftslehre/Rechugswese Volkswirtschaftslehre a Berufliche Gymasie ud Fachoberschule Erfurt, de 0.0.20 2 Ihaltsverzeichis Marketig 3 2 Ivestitioe 4 3 Fiazierug 6 4 Rechugswese 8

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung osterechug Bei der Vorkalkulatio werde die eies Erzeugisses vor der Herstellug ermittelt. Sie ist Grudlage für ei Preisagebot. Die Nachkalkulatio wird ach der Herstellug eies Erzeugisses durchgeführt.

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Klausuraufgaben Finanzierung Klausur WS 01/02 (Mitschriften aus Vorlesungen der FH Merseburg Dipl Kfm. S. Baar) Ausarbeitung Feininger

Klausuraufgaben Finanzierung Klausur WS 01/02 (Mitschriften aus Vorlesungen der FH Merseburg Dipl Kfm. S. Baar) Ausarbeitung Feininger Aufgabe 1) (8 Punkte) Schlagen Sie ein geeignetes Investitionsrechenverfahren vor und begründen Sie Ihre Aussage. KEINE RECHNUNG NUR VERBALE AUSFÜHRUNGEN. a) Die Brumm Brumm-AG will Ihre Produktionspalette

Mehr

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen

Mathematik für Wirtschaftswissenschaftler Beispiele, Graken, Beweise. c Uwe Jensen Mathematik für Wirtschaftswisseschaftler Beispiele, Grake, Beweise c Uwe Jese 8. Oktober 2007 Ihaltsverzeichis 4 Folge, Reihe, Grezwerte, Stetigkeit 47 4. Folge ud Reihe............................ 47

Mehr

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen 2.1 Ivetur 2.1.4 Bewertug der Vermögesgegestäde 2.1.4.1 Eizelbewertug Grudsätzlich sid bei eier Ivetur die Vermögesgegestäde eizel zu erfasse ud etspreched zu bewerte.esgibtzweiausahme vomgrudsatz dereizelbewertug.

Mehr

Nutzung der Ergebnisse von Ringvergleichen und Methodenvalidierungen zur Ermittlung der Messunsicherheit

Nutzung der Ergebnisse von Ringvergleichen und Methodenvalidierungen zur Ermittlung der Messunsicherheit Nutzug der Ergebie vo igvergleiche ud Methodevalidieruge zur Ermittlug der Meuicherheit Abtract Deutch Wolfgag ichter I der chemiche Aalytik werde ebe der Bottom-u -Methode ach GUM auch Todow -Verfahre

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Vorteilhafte Immobilienfinanzierungen bei steuerbefreiten Körperschaften mit Hilfe von Teilamortisations-Leasingverträgen

Vorteilhafte Immobilienfinanzierungen bei steuerbefreiten Körperschaften mit Hilfe von Teilamortisations-Leasingverträgen Uiversität Augsburg Prof. Dr. Has Ulrich Buhl Kerkompetezzetrum Fiaz- & Iformatiosmaagemet Lehrstuhl für BWL, Wirtschaftsiformatik, Iformatios- & Fiazmaagemet Diskussiospapier WI-67 Vorteilhafte Immobiliefiazieruge

Mehr

Investition und Finanzierung

Investition und Finanzierung Ivestitio ud Fiazierug - Vorlesug 11 - Prof. Dr. Raier Elsche Prof. Dr. Raier Elsche - 186 - Eiheitskursfeststellug Kursfeststellug ach dem Meistausführugsprizip durch Börsemakler. Kaufaufträge Verkaufsaufträge

Mehr

Aufgabenblatt 6. Anpassung Beta an Verschuldungsgrad: Problem

Aufgabenblatt 6. Anpassung Beta an Verschuldungsgrad: Problem ufgabeblatt 6 Lösuge 1 passug Beta a Verschuldugsgrad: Problem Fall 1: I der Vergageheit war der Verschuldugsgrad geriger als heute. Das empirisch ermittelte Beta ist a die aktuelle Verschuldug azupasse

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Die Risiken der privaten Altersvorsorge und deren Handling durch die Anbieter

Die Risiken der privaten Altersvorsorge und deren Handling durch die Anbieter Die ud dere Hadlig durch die Abieter 1 Übersicht Sichere Altersvorsorge: Was erwarte wir vo der private Altersvorsorge? Was macht die private Altersvorsorge usicher? Altersvorsorge i volatile Kapitalmärkte

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Übersicht über die Vorlesug Solareergie Vorläufige Termiplaug Vorlesug Solareergie WS 2005/2006 Stad: 10.11.2005 Termi Thema Dozet Di. 25.10. Wirtschaftliche Lemmer/Heerig Aspekte/Eergiequelle Soe Fr.

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Fachartikel CVM-NET4+ Erfüllt die Energieeffizienz- Richtlinie. Neuer Multikanal-Leistungs- und Verbrauchsanalyser Aktuelle Situation

Fachartikel CVM-NET4+ Erfüllt die Energieeffizienz- Richtlinie. Neuer Multikanal-Leistungs- und Verbrauchsanalyser Aktuelle Situation 1 Joatha Azañó Fachartikel Abteilug Eergiemaagemet ud etzqualität CVM-ET4+ Erfüllt die Eergieeffiziez- Richtliie euer Multikaal-Leistugs- ud Verbrauchsaalyser Aktuelle Situatio Die gegewärtige Richtliie

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet

Kurs P = Preis für den Ankauf von Zahlungsverpflichtungen (z.b. Wertpapiere/Anleihen), wird auch als Marktwert bezeichnet . Zusammehag zwische Kurs ud Redite Kurs P = Preis für de Akauf vo Zahlugsverpflichtuge (z.b. Wertpapiere/Aleihe), wird auch als Marktwert bezeichet Nomialwert NW = Newert (oder Rückzahlugsbetrag) der

Mehr

Vorlesung Informationssysteme

Vorlesung Informationssysteme Saarbrücke, 2.05.205 Iformatio Systems Group Vorlesug Iformatiossysteme Vertiefug Kapitel 4: Vo (E)ER is Relatioemodell Erik Buchma (buchma@cs.ui-saarlad.de) Foto: M. Strauch Aus de Videos wisse Sie......welche

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

Finanzwirtschaftliche Formeln

Finanzwirtschaftliche Formeln Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft Fiazwirtschaftliche Formel AuF Aufzisugsfaktor ( 1+ i) Zist eie heutige Wert mit Zis ud Ziseszis für Jahre auf, hilft also bei der Frage,

Mehr

Dynamisches Investitionsrechenverfahren. t: Zeitpunkt : Kapitalwert zum Zeitpunkt Null : Anfangsauszahlung zum Zeitpunkt Null e t

Dynamisches Investitionsrechenverfahren. t: Zeitpunkt : Kapitalwert zum Zeitpunkt Null : Anfangsauszahlung zum Zeitpunkt Null e t Kapitalwertmethode Art: Ziel: Vorgehen: Dynamisches Investitionsrechenverfahren Die Kapitalwertmethode dient dazu, die Vorteilhaftigkeit der Investition anhand des Kapitalwertes zu ermitteln. Die Kapitalwertverfahren

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Aufgabe 1) 100.000 350.000

Aufgabe 1) 100.000 350.000 Aufgabe 1) Ausgangsdaten: Altanlage Ersatzinvestition Anschaffungskosten 500.000 (vor 4 Jahren) 850.000 Nutzungsdauer bisher 4 Jahre 8 Jahre ges. Geschätzte Restnutzungsdauer 5 Jahre erwartete Auslastung:

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Formelsammlung für. Betriebswirtschaftslehre/Rechnungswesen und Volkswirtschaftslehre. Beruflichen Gymnasien und Fachoberschulen

Formelsammlung für. Betriebswirtschaftslehre/Rechnungswesen und Volkswirtschaftslehre. Beruflichen Gymnasien und Fachoberschulen 1 Formelsammlug für Betriebswirtschaftslehre/Rechugswese ud Volkswirtschaftslehre a Berufliche Gymasie ud Fachoberschule Erfurt, de 01.06.2011 2 Ihaltsverzeichis 1 Marketig 3 2 Ivestitioe 4 3 Fiazierug

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Auswirkungen der betrieblichen Altersversorgung: Belastungen des Cashflow durch Direktzusage und Direktversicherung

Auswirkungen der betrieblichen Altersversorgung: Belastungen des Cashflow durch Direktzusage und Direktversicherung Die Kompetez i Pesioszusage Hartwig Kraft Auswirkuge der betriebliche Altersversorgug: Belastuge des Cashflow durch Direktzusage ud Direktversicherug Zusammefassug Für ei eifaches Modell der Fiazierug

Mehr

a) p% = 3% b) p% = 7% c) p% = 4,2% d) p% = 3,6% e) p% = 5,3% f) p% = 5,5% g) p% = 6,75% h) p% = 2,2%

a) p% = 3% b) p% = 7% c) p% = 4,2% d) p% = 3,6% e) p% = 5,3% f) p% = 5,5% g) p% = 6,75% h) p% = 2,2% Berufskolleg aufmäische Schule des reises Düre Mathematik-Übugsaufgabe Thema: Ziseszisrechug Schulform: Höhere Hadelsschule Ziseszisrechug eimalige Zahluge 1. Löse die Formel = 0 q ach 0, q bzw. auf. 2.

Mehr

Formelsammlung. zur Klausur. Beschreibende Statistik

Formelsammlung. zur Klausur. Beschreibende Statistik Formelsammlug zur Klausur Beschreibede Statistik Formelsammlug Beschreibede Statistik. Semester 004/005 Statistische Date Qualitative Date Nomial skalierte Merkmalsauspräguge (Uterscheidugsmerkmale) köe

Mehr

Factoring. Alternative zur Bankfinanzierung?

Factoring. Alternative zur Bankfinanzierung? Factorig Alterative zur Bakfiazierug? Beschreibug Factorig Im Factorigverfahre schließ e Uterehme ud Factor eie Vertrag, auf desse Grudlage alle kü ftige Forderuge des Uterehmes laufed gekauft werde. Zuvor

Mehr

Gruppe 108: Janina Bär Christian Hörr Robert Rex

Gruppe 108: Janina Bär Christian Hörr Robert Rex TEHNIHE UNIVEITÄT HEMNITZ FAULTÄT FÜ INFOMATI Hardwarepraktikum im W /3 Versuch 3 equetielle ysteme I Gruppe 8: aia Bär hristia Hörr obert ex hemitz, 7. November Hardwarepraktikum equetielle ysteme I Aufgabe

Mehr

Leitfaden zum. Bondm-Index

Leitfaden zum. Bondm-Index Leitfade zum Bodm-Idex Versio 1.0 vom 01. September 2011 1 Ihalt Eiführug 1 Parameter des Idex 1.1 Kürzel ud ISIN 1.2 Startwert 1.3 Verteilug 1.4 Preise ud Berechugsfrequez 1.5 Gewichtug 1.6 Idex-Komitee

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Klausur Internes Rechnungswesen Wintersemester 2014/15, Prof. Dr. Jan Schäfer-Kunz, 90 Minuten, Seite 1/10 1 2 3 4 5 6 7 8 9

Klausur Internes Rechnungswesen Wintersemester 2014/15, Prof. Dr. Jan Schäfer-Kunz, 90 Minuten, Seite 1/10 1 2 3 4 5 6 7 8 9 Klausur Iteres Rechugswese Witersemester 2014/15, Prof. Dr. Ja Schäfer-Kuz, 90 Miute, Seite 1/10 1 2 3 4 5 6 7 8 9 Name: Matr.Nr.: Pukte Hilfsmittel Tascherecher Casio FX-87 DE Plus Hiweise zur Bearbeitug

Mehr

Zur Bewertung einer Wagniskapitalbeteiligung aus Sicht des kapitalnachfragenden Unternehmens bei Erhalt der finanziellen Mittel in Tranchen

Zur Bewertung einer Wagniskapitalbeteiligung aus Sicht des kapitalnachfragenden Unternehmens bei Erhalt der finanziellen Mittel in Tranchen Ekoomia Meedżerska 2009, r 6, s. 33 48 Thomas Herig*, Christia Toll* Zur Bewertug eier Wagiskapitalbeteiligug aus Sicht des kapitalachfragede Uterehmes bei Erhalt der fiazielle Mittel i Trache 1. Problemstellug

Mehr

a) Zeichnen sie ein Schaltbild des Versuches und beschriften sie dieses.

a) Zeichnen sie ein Schaltbild des Versuches und beschriften sie dieses. Der Hz-Schwigkreis besteht aus eier Spule hoher Iduktivität ud eiem Kodesator. Wird ei solcher Schwigkreis kurzfristig mit elektrischer Eergie versorgt, so führt er eie stark gedämpfte Schwigug aus. Aufgezeichet

Mehr

Skript Mathematik. Inhaltsverzeichnis

Skript Mathematik. Inhaltsverzeichnis Skript Mathematik Ihaltsverzeichis Folge ud Reihe.... Arithmetische Folge ud Reihe.... Geometrische Folge ud Reihe.... Aufgabe... Zis- ud Ziseszisrechug...4. Eifache Verzisug...4. Ziseszisrechug...5. Gemischte

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Robuste Asset Allocation in der Praxis

Robuste Asset Allocation in der Praxis Fiazmarkt Sachgerechter Umgag mit Progosefehler Robuste Asset Allocatio i der Praxis Pesiosfods ud adere istitutioelle Aleger sid i aller Regel a ei bestimmtes Rediteziel (Rechugszis) gebude, das Jahr

Mehr

AXA Immoselect. Ein solides Fundament für jedes Anlegerportfolio

AXA Immoselect. Ein solides Fundament für jedes Anlegerportfolio Hattersheim, Philipp-Reis-Straße AXA Immoselect Ei solides Fudamet für jedes Alegerportfolio Bitte beachte Sie, dass die Rückahme der Ateile vom AXA Immoselect mit Wirkug zum 17.11.2009 ausgesetzt wurde.

Mehr

ICM Internationales Congress Center München DETAILS FOYER OG inkl. technische Informationen

ICM Internationales Congress Center München DETAILS FOYER OG inkl. technische Informationen ICM Iteratioales Cogress Ceter Müche DETAILS FOYER OG ikl. techische Iformatioe Fläche/Räume Bruttofläche i m² 2.850 (Nord: 1.367, Süd: 1.483) Kommuikatives Herzstück mit edlem Ambiete 1. Der repräsetative

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

Finanzierung: Übungsserie IV Aussenfinanzierung

Finanzierung: Übungsserie IV Aussenfinanzierung Them Dokumetrt Fizierug: Übugsserie IV Aussefizierug Lösuge Theorie im Buch "Itegrle Betriebswirtschftslehre" Teil: pitel: D Fizmgemet 2.4 Aussefizierug Fizierug: Übugsserie IV Aussefizierug Aufgbe Eie

Mehr

Bewertungen. BBWP ist auf die Thematik der Bewertungen spezialisiert. Reorganisation Konsolidierung Intern. Expansion Exit / Nachfolge

Bewertungen. BBWP ist auf die Thematik der Bewertungen spezialisiert. Reorganisation Konsolidierung Intern. Expansion Exit / Nachfolge BEWERTUNGEN SPEZIALISIERUNG 2 Bewertuge Bewertugsrelevate Fragestelluge ergebe sich i alle Phase eies Uterehmes ud köe gesellschafts-, bilaz- oder steuerrechtlich veralasst sei. Sie trete allerdigs isbesodere

Mehr

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n

2.2.1 Lagemaße. Exkurs: Quantile. und n. p n Ekurs: Quatile Ausgagspukt : Geordete Urliste Jeder Wert p, mit 0 < p

Mehr

Methodische Grundlagen der Kostenkalkulation

Methodische Grundlagen der Kostenkalkulation Methodische Grudlage der Kostekalkulatio Plaugsebee Gebrauchsgüter Die i der ladwirtschaftliche Produktio eigesetzte Produktiosmittel werde i Gebrauchsgüter ud Verbrauchsgüter uterteilt. Zu de Gebrauchsgüter

Mehr

52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! 13,0 MaxiRend Control 23 ZEICHNUNGSFRIST: 19.02. BIS 16.03.2007

52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! 13,0 MaxiRend Control 23 ZEICHNUNGSFRIST: 19.02. BIS 16.03.2007 QUALITÄT ZAHLT SICH AUS. 13,0 MaxiRed Cotrol 23 52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! * Effektive Redite: 9,81 % p. a. uter Berücksichtigug des Ausgabeaufschlages (Aahme: Zahlug des Bous vo 52 % am Ede

Mehr

Daten und Zufall in der Jahrgangsstufe 9 Seite 1

Daten und Zufall in der Jahrgangsstufe 9 Seite 1 Date ud uall i der Jahrgagsstue Seite usammegesetzte uallsexperimete, Padregel Aubaued au de Erahruge aus de vorhergehede Jahrgagsstue beschätige sich die Schüler systematisch mit zusammegesetzte uallsexperimete

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Die Instrumente des Personalmanagements

Die Instrumente des Personalmanagements 15 2 Die Istrumete des Persoalmaagemets Zur Lerorietierug Sie solle i der Lage sei:! die Ziele, Asätze ud Grüde eier systematische Persoalplaug darzulege;! die Istrumete der Persoalplaug zu differeziere;!

Mehr

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1

Körpergröße x Häufigkeit in [m] 1.50 1.60 1 1.60 1.70 5 1.70 1.80 49 1.80 1.90 53 1.90 2.00 15 2.00 2.10 1 8 Kofidezitervalle 1 Kapitel 8: Kofidezitervalle A: Beispiele Beispiel 1: Im WS 2000/01 wurde im Rahme der Statistik Vorlesug 124 Studete u.a. zu ihrer Körpergröße befragt. Ma erhielt folgedes Ergebis:

Mehr

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur

IWW Studienprogramm. Vertiefungsstudium. Modul XI: Volkswirtschaftslehre. Lösungshinweise zur 1. Musterklausur Istitut für Wirtschaftswisseschaftliche Forschug ud Weiterbildug GmbH Istitut a der FerUiversität i Hage IWW Studieprogramm Vertiefugsstudium Modul XI: Volkswirtschaftslehre Lösugshiweise zur 1. Musterklausur

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

Investitionsrechnungen in der Wohnungswirtschaft

Investitionsrechnungen in der Wohnungswirtschaft Wohugswirschafliche Theorie I Vorlesug vom 28. 1. 24 Folie Ivesiiosrechuge i der Wohugswirschaf Dr. Joachim Kircher Isiu Wohe ud Umwel GmbH (IWU) Theoreische Grudlage Eiführug 1. Ivesoregruppe 2. Besoderheie

Mehr

Finanzierung Mitschriften aus den Vorlesung von Dipl. Kfm. S. Baar am 19.09./10.10.2003 Feininger

Finanzierung Mitschriften aus den Vorlesung von Dipl. Kfm. S. Baar am 19.09./10.10.2003 Feininger Dynamische Verfahren Verfahren vorteilhafter, da unterschiedlicher zeitlicher Verlauf der Ein- und Auszahlungen berücksichtigt wird. Bedeutung der Daten im Zeitverlauf werden berücksichtigt (Sicherung

Mehr

Wahrscheinlichkeit & Statistik

Wahrscheinlichkeit & Statistik Wahrscheilichkeit & Statistik created by Versio: 3. Jui 005 www.matheachhilfe.ch ifo@matheachhilfe.ch 079 703 7 08 Mege als Sprache der Wahrscheilichkeitsrechug, Begriffe, Grudregel Ereigisraum: Ω Ω Mege

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Renditewissen für Ratingagenturen und Kredit-Praxis

Renditewissen für Ratingagenturen und Kredit-Praxis Reditewisse für Ratigageture ud Kredit-Praxis vo Diplomkaufma (Uiv.) Edmud J. Raosch (Wöllstadt) ud RA, M.B.A. (Uiv.) Johaes Fiala (Müche) Redite-Methode ud Ratighaftug I oder Ratig-Haftug bei Awedug der

Mehr

Steuerplanung Sommersemester 2008 2 SWS Teil IV

Steuerplanung Sommersemester 2008 2 SWS Teil IV Otto-vo-Guericke-Uiverität Magdeburg Lehrtuhl für BWL, ibeodere Betriebwirtchaftliche Steuerlehre Steuerplaug Sommeremeter 2008 2 SWS Teil IV Jae: Steuerplaug 1 Ihaltüberblick 1 Eiführug Steuerplaug ud

Mehr

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

Die Forschungsdatenbank zu Inschriften/Scans/Bildern im. Institut für Urchristentum und Antike

Die Forschungsdatenbank zu Inschriften/Scans/Bildern im. Institut für Urchristentum und Antike Gebhard Dettmar Istitut für Urchristetum ud Atike www2.hu-berli.de/ura Die Forschugsdatebak zu Ischrifte/Scas/Bilder im Istitut für Urchristetum ud Atike Eie Etwurfsdokumetatio zum Datebaketwurf ach dem

Mehr

Sensoren für den Prüfstandsbau

Sensoren für den Prüfstandsbau Prüfstadsbau Sesore für de Prüfstadsbau Kraft- ud Drucksesore Niedriger Temperaturkoeffiziet Dehugssesore Dichtigkeitsprüfuge Resoazmessuge Piezoelektrische ICP -Vibratiossesore Mikrofoe Ei Uterehme der

Mehr

Ziel: Erhöhung der Grenzfrequenz, erreicht mit PIN-, Lawinen-, Metall-Halbleiter- und Heterodioden

Ziel: Erhöhung der Grenzfrequenz, erreicht mit PIN-, Lawinen-, Metall-Halbleiter- und Heterodioden PIN-Photodiode Ziel: Erhöhug der Grezfrequez, erreicht mit PIN-, Lawie-, Metall-Halbleiter- ud Heterodiode PIN-Photodiode: breite eigeleitede Mittelschicht (I) zwische - ud -Teil, Hautsaugsabfall über

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

unibasel VORLESUNG PROGRAMMIER- PARADIGMEN departement mathematik & informatik informatik.unibas.ch/lehre/fs16/prog#thorsten.

unibasel VORLESUNG PROGRAMMIER- PARADIGMEN departement mathematik & informatik informatik.unibas.ch/lehre/fs16/prog#thorsten. uibasel VORLESUNG PROGRAMMIER- PARADIGMEN departemet mathematik & iformatik iformatik.uibas.ch/lehre/fs16/prog#thorste.moeller 2 Team Dozet: Dr. Thorste Möller thorste.moeller@uibas.ch Chief Techical Officer

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr