Einführung in die Magnetresonanztomographie (MRT, MRI, NMRI)

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Magnetresonanztomographie (MRT, MRI, NMRI)"

Transkript

1 Einführung in die Magnetresonanztomographie (MRT, MRI, NMRI) Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung T. Kaulisch

2 Das Magnetische Feld als Folge von Ladungsverschiebungen Gerader stromdurchflossener Leiter Spulenförmiger Leiter

3 Wichtige Kenngrößen des magnetischen Feldes Magnetische Feldstärke H Magnetische Flußdichte B [H] = A/m [B] = Vs/m 2 = T (Tesla) B = µ 0 µ r H µ 0 : magnetische Feldkonstante µ r : Permeabilität (Materialkonstante) Flußdichte des Erdmagnetfeldes 10-4 T = 1 Gauß

4 Kopplung von elektrischem und magnetischem Feld Zeitlich veränderliche Magnetfelder u. elektromagnetische Wellen Ein zeitlich veränderliches elektrisches Feld wird immer von einem zeitlich veränderlichen Magnetfeld begleitet. Beide Felder besitzen zueinander orthogonale Komponenten. Änderungen des elektrischen/magnetischen Feldes verbreiten sich wellenförmig im Raum

5 Das elektromagnetische Spektrum Röntgen sichtbares Licht Radiowellen Frequenz Energie Elektromagnetische Strahlung breitet sich wellenförmig aus, interagiert jedoch auch als Teilchen (Welle-Teilchen-Dualismus). Energie kann nur als Vielfaches der Energie der Strahlungsteilchen (Photonen) ausgetauscht werden. E = h ν ( h: Plancksches Wirkungsquantum, ν: Frequenz )

6 Ringströme und magnetisches Moment Ein Ringstrom oder eine rotierende Ladung erzeugen ein magnetisches Dipolfeld, das dem eines Stabmagneten entspricht. Das magnetisches Moment resultiert hierbei aus der der Kombination von Ladung und Rotation (Drehimpuls).

7 Der Spin Einige Elementarteilchen besitzen einen Eigendrehimpuls (Spin) - sie verhalten sich so, als ob sie sich in ständiger Rotation befinden würden. Atomkerne mit ungerader Anzahl an Protonen oder Neutronen besitzen ebenfalls einen Spin. Da sie eine Ladung aufweisen, besitzen sie gleichzeitig ein magnetisches Moment. Kernspin und kernmagnetisches Moment gehorchen den Gesetzen der Quantenmechanik. Wichtige Kerne : gyromagn. Verhältnis rel. Empfindlichkeit [MHz/T] [%] 1 H 42, F 40,05 83,3 31 P 17,24 6,6 13 C 10,71 1,6

8 Kernspins im Magnetfeld Zufällige Orientierung ohne äußeres Magnetfeld In einem äußeren Magnetfeld sind die Orientierungen nicht gleichwertig. In Richtung dieses Feldes können Mikroteilchen nur diskrete Zustände einnehmen (Richtungsquantelung). Für Teilchen mit Spin 1/2 existieren zwei Einstellmöglichkeiten (-1/2, +1/2)

9 Kernspins im Magnetfeld Die beiden möglichen Einstellungen in Richtung des Magnetfeldes besitzen unterschiedliche Energie. Der Energieunterschied steigt linear mit Stärke des äußeren Feldes. Der energetisch günstigere Zustand wird bevorzugt besetzt.

10 Präzession und Larmor-Frequenz ω = 2π γb 0 ω : Larmor-Frequenz γ : Gyromagnetische Konstante 1 H : γ = 42,577 MHz / T Die Spins orientieren sich nicht genau parallel oder anti-parallel zum Magnetfeld. Ähnlich einem mechanischen Kreisel führen sie eine Präzessionsbewegung um die Achse des Feldes mit einer für jeden Kern spezifischen Umlauffrequenz aus.

11 Kernmagnetisierung Die unterschiedliche Besetzung der möglichen Ausrichtungen führt zu einer Nettomagnetisierung in Richtung des äußeren Magnetfeldes. Die Präzessionsbewegung der Spins bleibt jedoch unkoordiniert - die Phasen sind zufällig verteilt (Inkohärenz).

12 Kernmagnetische Resonanz B 0 ω = 2π γb 0 B 1 Ein elektromagnetisches Wechselfeld geeigneter Frequenz tritt mit den präzedierenden Spins in Resonanz. Unter diesen Bedingungen können die Spins ihre Ausrichtung ändern. Die Magnetisierung wird aus ihrer Gleichgewichtslage gedreht.

13 Effekt von HF-Impulsen Ein HF-Feld mit kurzer Dauer dreht die Magnetisierung um einen Winkel φ aus der Richtung des statischen Magnetfeldes. Die entstehende Quermagnetisierung (x,y) präzediert weiterhin mit der Larmor-Frequenz um die Z-Achse. φ φ : Flip-Winkel t p : Impulsdauer B 1 : HF-Feld φ = 2π γ B 1 t p Abb.: Principles of NMR in one and two dimensions (Ernst, Bodenhausen, Wokaun)

14 Signaldetektion Die Quermagnetisierung stellt einen rotierenden magnetischen Dipol dar, welcher in einer Empfängerspule eine elektrische Wechselspannung induziert. Das derart erhaltene Signal wird vor der Aufzeichnung gegen eine geeignete Träger- Frequenz verglichen (Demodulation)

15 Transversale Relaxation (Lebensdauer der Quermagnetisierung) FID : Free Induction Decay Durch Spin-Spin-Interaktionen kommt es zum Verlust der Phasenkohärenz. Die Quermagnetisierung zerfällt exponentiell mit einer Zeitkonstanten T 2.

16 Longitudinale Relaxation Die durch einen HF-Impuls aus dem Gleichgewicht gebrachten Spins kehren in den ursprünglichen Zustand zurück. Die Kernmagnetisierung in Richtung des äußeren Magnetfeldes baut sich exponentiell mit der Zeitkonstanten T 1 wieder auf.

17 Effekt lokaler Magnetfeldinhomogenitäten homogene und inhomogene Probe In einer inhomogenen Probe ist das Magnetfeld lokal verändert und die Spins besitzen geringfügig unterschiedliche Larmor-Frequenzen. Diese spektrale Dispersion führt zu einem rascheren Verlust der Phasenkohärenz mit einer Zeitkonstanten T 2*. (T 2 * <= T 2 )

18 Signalanalyse - Fouriertransformation S( ν ) S( ω ) S( t) S( t) exp( i 2π ν t) dt S( t) exp( i ω t) dt S( ω ) exp(iω t) dω Die Fouriertransformation beschreibt eine Funktion in ihren harmonischen Komponenten mittels Frequenz, Amplitude und Phase. Die Fouriertransformierte einer zeitabhängigen Funktion wird als Spektrum bezeichnet. Aus dem Spektrum kann durch inverse Fouriertransformation die Zeitfunktion rekonstruiert werden. Zeit- und Frequenzdarstellung sind äquivalent.

19 Spektraldarstellung (I) y x Spektrum einer einzelnen harmonischen Schwingung, dargestellt mittels Phase und Magnitude (Amplitudenbetrag).

20 Spektraldarstellung (II) y x Spektrum einer einzelnen harmonischen Schwingung, dargestellt mittels Real- und Imaginärteil.

21 Spektren ausgewählter Funktionen (Spektral Modeling) Ein Rechteckprofil in der Zeitdomäne führt zu einem sin(x)/x-profil (sinc) im Frequenzbereich und umgekehrt.

22 1 H-Spektren und chemische Verschiebung Schematisches 1 H-Spektrum von menschlichem Gewebe ν Makromoleküle Frequenz Wasser Fett Atomkerne der gleichen Sorte besitzen abhängig von ihrer elektronischen Umgebung im Molekül geringfügig unterschiedliche Larmor-Frequenzen. Dieser Effekt - chemische Verschiebung genannt - ist sehr klein und bildet die Grundlage der Kernresonanzspektroskopie (NMR, MRS). ν 220 Hz = 3.4 ppm (bei 1,5 Tesla) Für die Bildgebung spielt die chem. Verschiebung nur eine untergeordnete Rolle, da Wasser ein dominierendes Signal liefert.

23 Mehrfachpulse und Signalwichtung - Inversion Recovery 180 -Impuls führt zur Inversion des Magnetisierungsvektors Während einer Zeit TI (Inversionszeit) freie Entwicklung mit Relaxation 90 -Impuls bringt aktuelle Z-Magnetisierung in die Detektionsebene FID-Amplitude abhängig von TI/T 1

24 Mehrfachpulse und Signalwichtung - Spin-Echo schnell langsam 90 -Impuls bringt Magnetisierung in x-y-ebene Dephasierung (T 2* ) während TE/2 (Echo-Zeit) 180 -Impuls invertiert Magnetisierung und partielle Refokussierung führt zum Neuaufbau des Signals

25 Mehrfachpulse und Signalwichtung - Multi-Echo Refokussierung ist mehrfach möglich - Echo-Amplituden folgen T 2 -Relaxation (Carr-Purcell-Meiboom-Gill-Sequenz ; CPMG)

26 Messwiederholung und dynamisches Gleichgewicht S ~ ρ exp(-te/t 2 ) [1 - exp(-tr/t 1 )] ρ : Spindichte, Protonendichte (Wassergehalt) TR : Repetitionszeit

27 Ortskodierung mittels Magnetfeldgradienten x x Eine Ortsabhängigkeit des äußeren Magnetfeldes führt ebenfalls zur Ortsabhängigkeit der Larmor-Frequenzen in Richtung der Feldänderung. Als Folge tritt eine beschleunigte Dephasierung der Spins auf. ν x = γ ( B 0 + G x x) G x B 0 G x = db 0 / dx

28 Gradientenechos A B C D E F G HF G x TE A B C D E F G Durch Gradienten dephasierte Spins können durch einen entgegengerichteten Gradienten wieder refokussiert werden. Echobedingung: Σ G x t x = 0 Echoamplitude: S ~ exp(-te/t 2* )

29 Selektive Impulse und Magnetfeldgradienten (Schichtenselektion) ν 0 z ν 0 ν ν ν 0 Ein engbandiger Impuls beeinflusst nur eine selektive Schicht einer Probe, die sich in einem Magnetfeldgradienten befindet. Schichtposition: ν 0 = γ (B 0 + G z z 0 ) Schichtdicke: ν = γ G z z z 0 G z z

30 Festlegung der Schichtdicke über die Gradientenstärke z z ν ν ν 0 ν 0 z 0 z z 0 z G z G z Bei vorgegebener Bandbreite des Anregungspulses bestimmt die Gradientenstärke die Breite der angeregten Schicht. Die Schichtauswahl ist der erste Schritt jeder Bildsequenz.

31 Nach der Schichtenselektion - Phasenkodierung y A B C G y A) Nach Anregung sind Spins einer Schicht in Phase. B) Während einer kurzen Dauer wird ein Gradient in y- Richtung angelegt und die Spins bauen eine Phasendifferenz auf. C) Nach Abschalten des y-gradienten besitzen die Spins wieder gleiche Larmor-Frequenz, der Phasenunterschied bleibt erhalten. Phasen-Differenz : φ y φ y = γ G y t y y

32 Frequenzkodierung A B Phasen-Differenz : φ x φ x = γ G x t x x S = S( φ x, φ y ) A) Nach Phasenkodierung. B) Gradient in x-richtung bewirkt Ortskodierung durch unterschiedliche Frequenz. Ein unter dem x- Gradienten generiertes Echo enthält in der Frequenzverteilung die komplette x-information und EINEN Messpunkt in y-richtung. x G x Das Signal S wird mit jedem Echo für den kompletten Zeitraum t x detektiert, jedoch nur für jeweils einen Zeitpunkt t y. Für eine vollständige Bildmatrix muss das Experiment mit mehreren Werten für t y wiederholt werden. K-Raum: k x = γ G x t x k y = γ G y t y

33 Kombination zur Bildsequenz (Rewinder) Die Kombination von Schichtenselektion (G z ), Phasenkodierung (G y ) und Frequenzkodierung (G x ) ermöglicht über eine Kollektion von Echos die Bildgebung.

34 Bildsequenz mittels Spin-Echo I - Rewinding A B C Nach dem 90 - Puls Spins einer Schicht präzedieren in Phase Rewinder G x Gradient mit halber Stärke führt zu Dephasierung in x-richtung Nach Abschalten des Gradienten bleibt Phasen- Differenz in x-richtung erhalten

35 Bildsequenz mittels Spin-Echo II - Phasenkodierung C D E G y Situation nach Rewinding Phasenkodierung y-gradient führt zu Dephasierung in y- Richtung Phasendifferenzen in x- und in y-richtung nach Abschalten des y-gradienten Phasenkodierung und Rewinding können gleichzeitig durchgeführt werden

36 Bildsequenz mittels Spin-Echo III - Inversion E F Nach Rewinding und Phasenkodierung 180 -Puls Inversion der Magnetisierung bezüglich der Puls-Achse (hier x)

37 Bildsequenz mittels Spin-Echo IV - Auslesen F G H Nach Rewinding, Phasenkodierung und Inversion G x Unmittelbar nach Einschalten des Lese- Gradienten beginnende Rephasierung in x- Richtung G x Vollständige Rephasierung des Rewinders und Echo- Formation Phaseninformation in y- Richtung bleibt erhalten

38 Datenmatrix und Bildrekonstruktion (schematisch) Gy z ky y x Objekt nach Schichtselektion kx Phasenkodiergradienten Datenmatrix (Ausschnitt aus der Gesamtsequenz)

39 Datenmatrix und Bildrekonstruktion Fouriertransformation in Leserichtung (x) k y k y k x x Ortsinformation in x-richtung Phasenmodulation in y-richtung

40 Datenmatrix und Bildrekonstruktion k y Fouriertransformation in Phasenkodierrichtung (y) y x x Ortsinformation in x- und y-richtung

41 Datenmatrix und Bildrekonstruktion k y y 0 0 k x x Die Gesamtheit der phasen- und frequenzkodierten Echos stellen ein Hologramm dar, aus welchem das fertige Bild durch zweidimensionale Fouriertransformation hervorgeht. Abb.: IfN

42 Aufbau einer MRT-Anlage Abb.: Morris, NMRI in Medicine and Biology Abb.: BRUKER Medizintechnik Abb.:???

43 Kontraste - Parameter für Signalintensität Intrinsisch: Spindichte (Wassergehalt) ρ Longitudinale Relaxationszeit T 1 Transversale Relaxationszeit T 2 Eff. transversale Rel.-Zeit T 2 * Makroskopische Bewegung (Fluss) Mikroskopische Bewegung (Diffusion) Kontrastmittelgabe etc... Experimentell: Repetitionszeit TR Echo-Zeit TE Drehwinkel α flip SEQUENZ Kontrast Gewebedifferenzierung über Signalunterschied (Grauwert) S = S( ρ, T 1, T 2,...,TR,TE)

44 Kontraste Relaxationsmechanismen und Gewebeeigenschaften T 2 -Relaxation Je stärker und regelloser die Wechselwirkung der Spins untereinander, desto schneller erfolgt Dephasierung. Weich dephasiert langsamer als hart T 1 -Relaxation Starke Wechselwirkungen beschleunigen die Wiederherstellung des thermischen Gleichgewichts. ABER: Umgebung muss Energie entsprechend der Larmor-Frequenz aufnehmen können. (Spin-Gitter-Rel.)

45 Kontraste - Relaxation und mikroskopische Beweglichkeit T 1,2 (log.) Flüssigkeiten Weichteilgewebe Festkörper Große Beweglichkeit bedeutet eine relativ schwache Wechselwirkung mit der Umgebung Relaxationszeiten sind groß. T 1 Zunehmende Anbindung an die Umgebung erhöht die dephasierende Wirkung und verringert T 2. Die Induktion von Spin-Spin- Übergängen ist maximal, wenn die Wechselwirkungen mit der Larmor-Frequenz erfolgen - T 1 durchläuft daher ein Minimum. Beweglichkeit T 2 Viskosität / Rigidität In Gewebe steigt T 1 mit größer werdendem Magnetfeld an, während T 2 nahezu unabhängig ist.

46 Kontraste - Relaxationskonstanten im ZNS (0,5 T) T 1 /ms T 2 /ms Spinalflüssigkeit (CSF) Graue Substanz Weiße Substanz Fett ca.-werte, Bottomley et. al, 1984

47 T1-Kontrast (nach 90 -Impuls) M z T 1 -Relaxation erfolgt für unterschiedliche Gewebearten mit verschiedenen Zeitkonstanten. Der Unterschied in der longitudinalen Magnetisierung zweier Gewebearten ist nach einer Zeit t, die zwischen den jeweiligen Relaxationszeiten liegt, maximal.

48 T2-Kontrast (nach 90 -Impuls) M y Der Unterschied in der transversalen Magnetisierung zweier Gewebearten ist zwischen den jeweiligen Relaxationszeiten maximal.

49 Kombinierter T 1 -T 2 -Kontrast (Spin-Echo) Ein Echo-Experiment vereint T 1 - mit T 2 -Wichtung. Der erhaltene Gesamt-Kontrast ist von der Kombination aus verwendeter Echo- und Repetitions-Zeit abhängig. T 1 -Wichtung Kontrastauslöschung/-umkehr Beginnende T 2 -Wichtung S ~ ρ exp(-te/t 2 ) [1 - exp(-tr/t 1 )]

50 Kontrasteinstellungen (Spin-Echo) S ~ ρ exp(-te/t 2 ) [1 - exp(-tr/t 1 )] Kontrast TR TE Abbildung T 1 : T 1 kurz ( < T 2 ) Kurzes T 1 hell Langes T 1 dunkel T 2 : lang ( > T 1 ) T 2 Kurzes T 2 dunkel Langes T 2 hell ρ: lang ( > T 1 ) kurz ( < T 2 )

51 MRT des Gehirns mit verschiedenen Wichtungen (Spin-Echo; 1,5 T) T 1 -Wichtung (TR = 500ms; TE = 20ms) T 2 -Wichtung (TR= 6s; TE = 70ms) ρ-wichtung (TR = 2,6s; TE = 20ms) Abb.: IfN

52 Kontrastverschiebung bei verlängerter Echozeit (Spin-Echo; 1,5 T) TE = 31 ms TE = 81 ms TE = 160 ms Optimale Echo-Zeit für Unterscheidung von grauer und weißer Substanz (T 2 -Wichtung) Verlängerte Echo-Zeit verschiebt den Kontrast zugunsten der Darstellung der Spinalflüssigkeit Bei sehr langen Echo- Zeiten verschwindet der Kontrast zwischen grauer und weißer Substanz nahezu vollständig Aufnahmen mittels Multi-Echo-Sequenz (CPMG) und nahezu vollständiger T 2 -Wichtung

53 Wichtung durch Sequenzwahl: Saturation-Recovery (T 1 -Wichtung) T 1 kurz T 1 mittel T 1 lang Ein 90 -Impuls dreht die Magnetisierung in die x-y-ebene, Spins relaxieren mit eigenem T 1. Eine anschließende Spin-Echo-Sequenz zeigt sehr intensive T 1 -Wichtung

54 Lagebezeichnungen und Schnittebenenorientierungen superior, cranial sagittal anterior posterior axial coronal inferior, basal

55 Lateralansicht mit Grobgliederung Lobus parietalis Lobus frontalis Lobus temporalis Lobus occipitalis Vorlage f. Abb.: Bertollini, Anatomie des Menschen

56 Lateralansicht (schematisch) und wichtigste Sulci Sulcus frontalis superior Sulcus precentralis Sulcus centralis Sulcus postcentralis Sulcus intraparietalis Sulcus frontalis inferior Sulcus parietooccipitalis Sulcus occipitalis transversus Sulcus lateralis (Fissura Sylvii) Sulcus temporalis inferior Sulcus temporalis superior Vorlage f. Abb.: Bertollini, Anatomie des Menschen

57 Lateralansicht (schematisch) und wichtigste Gyri Gyrus frontalis medius Gyrus frontalis inferior Gyrus frontalis superior Gyrus precentralis Gyrus postcentralis Lobulus parietalis superior Lobulus parietalis inferior Gyrus supramarginalis Gyrus angularis Operculae Pars orbitalis Gyri occipitales laterales Pars triangularis Pars opercularis Gyrus temporalis medius Gyrus temporalis inferior Gyrus temporalis superior Vorlage f. Abb.: Bertollini, Anatomie des Menschen

58 Sagittalansicht (medial - schematisch) Gyrus frontalis superior Corpus callosum Gyrus cinguli Sulcus centralis Fornix Precuneus Sulcus parietooccipitalis Commissura anterior Corpus mamillare Sulcus calcarinus Chiasma opticum Hypophyse Pedunculus cerebri Pons Medula ablongata Medula spinalis Lamina quadrigemina Cuneus Commisura posterior Epiphyse Vorlage f. Abb.: Glees, The Human Brain

59 Sagittal-Ansicht (T 1 -MRT) T1-gewichtete Aufnahmen bilden die Anatomie des Gehirns mit großer Genauigkeit ab und erlauben die Identifizierung selbst kleiner Strukturen. (Spin-Echo; TR = 500ms; TE = 20ms; 256x256 Pixel pro Schicht; Auflösung 1 x 1 x 1,5 mm) Abb.: IfN

60 Coronal-Ansicht (T 1 -MRT) Fissura longitudinalis Sulcus centralis Gyrus cinguli Corpus callosum Thalamus Seitenventrikel III. Ventrikel Hippocampus Abb.: IfN

61 Darstellung krankhafter Veränderungen (T 2 -MRT) Abb.: GE Medical Systems Gewebeveränderungen und insbesondere Tumore stellen sich häufig durch verlängerte Relaxationszeiten und erhöhten Wasseranteil dar. (Multi-Spin-Echo; TR = 3700ms; TE = 100ms)

62 Darstellung krankhafter Veränderungen durch Kontrastmittel T 2,ρ-Wichtung T 2 -Wichtung T 1 -Wichtung + Gd-DTPA Abb.: Reiser, Semmler, MRT, Springer Krankhafte Veränderungen sind mittels MRT nicht direkt sichtbar, wenn keine größeren Änderungen der Relaxationszeiten oder des Wassergehaltes vorliegen. Bestimmte Komplexe paramagnetischer Übergangsmetalle werden hier jedoch vermehrt eingetragen und verringern die Relaxationszeiten lokal, sodaß die Veränderungen sichtbar werden. Gd-DTPA: Gadolinium-Diethylentriaminpentaacetat Abb.: Reiser, Semmler, MRT, Springer

63 Inhomogenitäten durch Suszeptibilitätsunterschiede B Viele Stoffe verhalten sich nicht neutral sondern verändern das äußere statische Magnetfeld. In Gebieten mit Suzeptibilitätssprüngen ist das Magnetfeld daher lokal inhomogen verändert. Die Larmor-Frequenzen sind nicht mehr identisch und es kommt zu einer örtlich rascheren Dephasierung (T 2 * - Verkürzung).

64 Inhomogenitätsartefakte Abschattungen am Innenohr (Gradienten-Echo) Abb.: IfN Schlechte Grundhomogenität führt zu drastischen Verzerrungen in einer Multi- Echo-Sequenz (EPI) Abb.: GE Medical Systems Fehlender Frontalbereich (Metallklammer) Spin-Echo Abb.: Reiser, Semmler, MRT, Springer

65 Bewegungsartefakte Kehlkopfaufnahme mit... Bewegungsartefakte in Phasenrichtung durch Augenbewegungen und Pulsation Abb.: IfN Bewegungen von Teilobjekten innerhalb des Bildauschnittes während der Datenakquisition führen nicht nur zu Unschärfe des Objektes selbst, sondern auch zu Störungen außerhalb. Da Bewegung am wahrscheinlichsten zwischen der Aufnahme zweier unterschiedlich phasenkodierter Echos auftritt, treten die größten Artefakte in Phasenkodierrichtung auf.... und ohne Bewegungsartefakte Abb.: GE Medical Systems

66 Einfaltungen Abb.: IfN Die speziellen Eigenschaften der diskreten Fouriertransformation führen dazu, daß angeregte Bereiche außerhalb des Bildausschnittes als Einfaltungen erscheinen. Die genaue Lage und Größe des Bildausschnittes ist von den verwendeten Gradientenstärken, der Aufnahmerate (sample rate) sowie der Frequenz der eingestrahlten Radiowellen abhängig. Abb.: GE Medical Systems

67 Fettartefakte Wasser Wasser Frequenz ν Fett Phasenkodierung Fett In Geweben mit hohem Fettanteil ist der Wasserbeitrag zur Gesamtmagnetisierung nicht mehr völlig dominant. Das erhaltene MR-Signal ist vielmehr eine Mischung aus beiden Anteilen. Wasser und Fett besitzen unterschiedliche Relaxationseigenschaften; insbesondere unterliegen diese verschiedenen Einflüssen bei Gewebeveränderungen, sodaß eine Diagnose ev. erschwert werden kann. Frequenzkodierung Die unterschiedliche chemische Verschiebung führt zu einer falschen Frequenzkodierung von Fett in Vergleich zu Wasser. Bei ungünstigen Bedingungen erscheint ein zum Wasserbild versetztes Fettbild. (Verschiebungsartefakt, Fat Ghost )

68 Verschiebungsartefakt Multi-Echo-Sequenzen (EPI) zeigen starke Fettverschiebungsartefakte Die Unterdrückung des Fettsignals beseitigt Verschiebungsartefakte Abb.: GE Medical Systems

69 Fettunterdrückung Chem. Sel Fett sonstiges Ein selektiver Impuls dreht die Fettmagnetisierung in die x-y-ebene Eine unmittelbar anschließende Spin-Echo-Sequenz liefert hauptsächlich Signal von Nichtfettgewebe

70 Fettunterdrückung und Diagnostik Fett Wasser Wasser + Fett Wasser Fett Darstellung einer Knieverletzung ohne und mit Fettunterdrückung Untersuchung einer Augenverletzung Abb.: GE Medical Systems

71 Flusseffekte Blutdurchströmtes Gefäß Angeregtes Blut in Gefäß Unmagnetisiertes Blut strömt in die angeregte Schicht Angeregtes Blut verlässt die angeregte Schicht Blutfluss Blutfluss Angeregte Schicht Während einer Messung wird bereits angeregtes Blut aus der vermessenen Schicht herausbefördert, während noch unmagnetisiertes Blut nachströmt. Gefäße erscheinen daher im MR-Bild wie Objekte mit kurzen Relaxationszeiten. Hohe Flussgeschwindigkeiten können zur Signalauslöschung führen! Bei kleinen bis mittleren Geschwindigkeiten: T 1 - Wichtung : Gefäße erscheinen hell T2 -, ρ - Wichtung : Gefäße erscheinen dunkel

72 Flussartefakte und Gefäßdarstellung T 1 T 1 Die Darstellung von Gefäßen ist von der verwendeten Sequenz sowie der benutzten Wichtung abhängig. Häufig fallen Gefäße jedoch durch extreme Grauwerte nahezu weiß oder beinahe schwarz auf. T 2 Abb.: IfN ρ

73 Flusskompensation durch Sättigungsschichten (Spin-Echo) gewünschte Schicht Halbe Echo- Zeit Blutfluss 90 - Anregung mit breiter Schicht Anregung mit Schichtbreite, welche sowohl die gewünschte als auch benachbarte Schichten umfasst Refokussierung nur für gewünschte Schicht Bei Anwendung des 180 -Impulses ist nur bereits magnetisiertes Blut in die gewünschte Schicht nachgeströmt. Das erhaltene Echo ist frei von Flusseffekten

74 Angiographie Die Kombination aus Aufnahmen mit und ohne Flusskompensation ermöglicht die selektive Darstellung von Gefäßen in einem MR-Angiogramm. Abb.: IfN Abb.: GE Medical Systems

75 Ganzkörper-MRT Bildgebung der inneren Organe (Abdomen, Thorax) häufig durch Atembewegung und Herzschlag erschwert - Notwendigkeit der Synchronisation (Triggering) Axiales T1-Bild des Abdomens ohne und mit Kompensation der Atembewegung ventral Leber Brustbein R L dorsal Untere Hohlvene Aorta Magen Achtung: Gefäße mit hohen Fließgeschwindigkeiten (10 cm/s) erscheinen in Spin-Echo-Bildern schwarz! (Schicht enthält beim 180 -Puls bereits (fast) keine refokussierbare Magnetisierung mehr) Abb.: GE Medical Systems

76 Ganzkörper-MRT - Kontraste bei krankhaften Veränderungen Abb.: Reiser, Semmler MRT, Springer T 1 - (oben) sowie T 2 -Aufnahme des Abdomens mit Auffälligkeit in der Leber Darstellung einer Zyste (Echinokokken) mit entsprechendem Sonogramm 0,5 T;GE (TR = 315 ms, TE = 14 ms) ; SE (TR = 1600 ms, TE = 105 ms) 0,5 T; SE (TR = 200 ms, TE = 22 ms)

77 Weitere Beispiele für Ganzkörper-MRT Abdomen Thorax mit Herz Abb.: GE Medical Systems

78 Hämodynamik und Neurovaskuläre Kopplung (im ZNS) Normal Stimulation arteriös venös arteriös venös HbrO 2 (oxygeniert) Hbr (deoxygeniert) Dynamisches Gleichgewicht zwischen Entnahme/Anlieferung von O 2 im Kapillarbett Erhöhter O 2 -Bedarf bei Stimulation wird durch Nachregulation des Blutflusses überkompensiert; das Verhältnis Hbr/HbrO 2 verschiebt sich im Gleichgewicht zugunsten von HbrO 2

79 Blut als endogenes Kontrastmittel Hbr : paramagnetisch (besitzt ein molekulares magnetisches Moment) HbrO 2 : diamagnetisch (kein magnetisches Moment) Hbr stört das lokale Magnetfeld und führt in der Umgebung von (kleinen) Gefäßen zu stärkerer Relaxation Ein verringerter Hbr- Anteil vermindert die störende Wirkung auf die Umgebung und führt zu langsamerer Relaxation T 2 und insbesondere T 2 * sind verlängert Blood-Oxygen-Level-Dependent (BOLD) - Effekt

80 Funktionelle Bildgebung (fmri, BOLD-based MRI) BOLD-Kontrast : Erfassung der Änderung von T 2 * bei unterschiedlichen neuronalen Zuständen rel. klein (einige %) mit Zeitkonstanten im Sekundenbereich (Hämodynamik) fmri-experiment : Ändern des neuronalen Zustandes zwischen (mindestens) 2 Bedingungen Aufnahme einer Serie von T 2 *-gewichteten Bildern (Gradienten-Echo) Wiederholung bis ausreichende Anzahl an Bildern vorhanden (50-60) Suche nach Pixeln (Voxeln) deren Grauwerte den Bedingungen folgen S 0 Neutralbedingung (Ruhe) Aktivbedingung (Aufgabe) s t

81 Fast Low Angle SHot (FLASH) HF α k y G z G x 0 G y Signal TE 0 k x Für kleine Drehwinkel (α 15 ) erfolgt nur eine kleine Störung des Gleichgewichtszustandes und es kann beinahe unmittelbar nach Echo-Aufnahme erneut angeregt werden Pro Anregung wird nur ein Phasenkodierschritt durchgeführt und eine Zeile im k-raum aufgefüllt Aufnahmezeit (1 Schicht, 64x64 Matrix, TE = 40 ms) : ca. 3 s

82 Echo-Planar Imaging (EPI) HF 90 k y G z G x 0 G y Signal TE eff 0 k x Durch alternierende x-gradienten wird wiederholte Rephasierung erreicht (Echo-Zug). Durch den notwendigen großen Drehwinkel muß jedoch nach Aufnahme des letzten Echos zusätzlich bis zur nächsten Aufnahme gewartet werden Echo-Zug ermöglicht das Auffüllen des k-raumes mit einer Anregung Aufnahmezeit (1 Schicht, 64x64 Matrix, TE = 40 ms) : < 400 ms

83 Funktionelle Bildgebung (fmri) Neutralbedingung Aktivbedingung Stimulus t Angenommener Signalverlauf (Modellfunktion) S Signalverlauf Voxel A (nicht aktiv) Signalverlauf Voxel A (aktiviert)

84 Korrelationsanalyse x i : Meßwertzeitpunkt (zeitlicher Grauwert eines Voxels) i = 1,...,N y i : Hypothetischer Wert (Modell der BOLD-Antwort mit wechselnder Stimulation) Linearer Korrelationskoeffizient (Pearson s r) r = N i= 1 N i= 1 ( x i ( x i µ )( y µ ) x 2 x N i i= 1 µ ) ( y i y µ ) Null-Hypothese (H 0 ): X und Y sind unkorreliert (r = 0) H 0 wird abgelehnt für r > s y 2 µ = 1 N x x k N k = 1 Signifikanzniveau (falls Prüfgröße normalverteilt) p = 1 2 π s 2 N / 2 t e 0 2 dt Null-Hypothese (H 0 ): X und Y sind unkorreliert (p = 1) H 0 wird abgelehnt für (p < α) (α = 0,05)

85 Beispiel für ein fmri-experiment (Motor) FLASH - 4 Schichten (interleaved) TE = 40 ms TR = 208 ms ( 4 x 52 ms ) 64 Bilder in 12 Min ( 11,25 s / 4 Schichten ) Matrix 64 x 64 Bildausschnitt 18 cm Räumliche Auflösung 2,8 x 2,8 x 8 mm³ Jeweils 8 Blöcke à 4 Bilder für Ruhebedingung bzw. Aktivbedingung (45 s Blocklänge) Ruhebedingung: Ruhe (tue nichts) Aktivbedingung: Drehe einen Stift in der rechten Hand Modellfunktion: Rechteck (C-Box) Signifikanzniveau: α = 0,05

86 Motorischer und Somatosensorischer Cortex Motocortex Somatosensorischer Cortex Somatotopie und Darstellung als Homunculus Bloom, Lazerton 1988 Abb.: Neurowissenschaft (Dudel, Menzel, Schmidt)

87 Aktivierungsmuster des Motor-Experimentes (p-map) Farbkodierte Darstellung des Signifikanzniveaus aktivierter Voxel auf einem hochaufgelösten anatomischen T 1 -Datensatz R L Abb.: IfN Modellfunktion Mittlerer Zeitverlauf aller aktivierten Voxel

88 Dreidimensionale Darstellung (Motor) Abb.: IfN

89 Glättung der Hirnrindenoberfläche Abb.: IfN

90 Auffaltung nach Glättung Aus Glättung und Auffaltung resultierende Verzerrungen Abb.: IfN

91 Wollen Sie mehr wissen? Literatur (Auswahl) : M. Reiser, W. Semmler (Hrsg.), Magnetresonanztomographie, Springer-Verlag 1992 P.T. Callahan, Principles of Nuclear Magnetic Resonance Microscopy, 1993 Clarendon Press (Oxford) P.G. Morris, Nuclear Magnetic Resonance Imaging in Medicine and Biology, 1986 Zimmerman, Gibby, Carmody, Neuro-Imaging - Clinical and Physical Principals, Springer-Verlag 2000 etc. Script (VL-Folien) : ftp://ftp.ifn-magdeburg.de Verz.: pub login: anonymous password: < adress>

MR Grundlagen. Marco Lawrenz

MR Grundlagen. Marco Lawrenz MR Grundlagen Marco Lawrenz Department of Systems Neuroscience University Medical Center Hamburg-Eppendorf Hamburg, Germany and Neuroimage Nord University Medical Centers Hamburg Kiel Lübeck Hamburg Kiel

Mehr

Magnetresonanztomographie

Magnetresonanztomographie Magnetresonanztomographie 1 Inhalt Geschichtlicher Überblick MRT in Kürze Verfahrensschritte Physikalische Grundlagen der MRT Signal/Messung Bildgebung Vor- und Nachteile der MRT 2 Geschichtlicher Überblick

Mehr

Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung

Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung Leibniz-Institut für Neurobiologie Speziallabor Nicht-Invasive Bildgebung Das Magnetische Feld als Folge von Ladungsverschiebungen Gerader stromdurchflossener Leiter Spulenförmiger Leiter Wichtige Kenngrößen

Mehr

Definition MRT. MRT Magnetresonanztomographie = MRI Magnetic Resonance Imaging = Kernspintomographie = NMR Nuclear Magnetic Resonance

Definition MRT. MRT Magnetresonanztomographie = MRI Magnetic Resonance Imaging = Kernspintomographie = NMR Nuclear Magnetic Resonance MaReCuM Seminar MRT OA PD Dr. med Henrik Michaely Leiter des Geschäftsfelds Abdominelle und Vaskuläre Bildgebung Institut für Klinische Radiologie und Nuklearmedzin Definition MRT MRT Magnetresonanztomographie

Mehr

Bildgebende Verfahren in der Medizin MRT-Tomographie

Bildgebende Verfahren in der Medizin MRT-Tomographie Bildgebende Verfahren in der Medizin MRT-Tomographie INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW, Cnes/Spot Image, GeoEye KIT

Mehr

Wie funktioniert Kernspintomographie?

Wie funktioniert Kernspintomographie? Wie funktioniert Kernspintomographie? Vom Radfahren zum Gedankenlesen Hans-Henning Klauss Til Dellmann, Walter Keller, Hannes Kühne, Hemke Maeter, Frank Radtke, Denise Reichel, Göran Tronicke, Institut

Mehr

Longitudinale und transversale Relaxationszeit

Longitudinale und transversale Relaxationszeit Longitudinale und transversale Relaxationszeit Longitudinale Relaxationszeit T 1 (Zeit, die das System benötigt, um nach dem rf- Puls zurück ins Gleichgewicht zu kommen) Transversale Relaxationszeit T

Mehr

Magnetresonanztomographie (MRT)

Magnetresonanztomographie (MRT) Prinzip - aktiver Abbildungsvorgang durch Zuführung von Energie (starkes konstantes Magnetfeld + elektromagnetische Pulse) und - passiver Abbildungsvorgang durch Ausnutzung körpereigener Signale (Spin-Ensembles

Mehr

Physikalische Grundlagen der Kernspin-Tomographie

Physikalische Grundlagen der Kernspin-Tomographie Vorlesung: Bildgebende Diagnoseverfahren SS 2008 Physikalische Grundlagen der Kernspin-Tomographie Hans-Jochen Foth TU Kaiserslautern Für diese Bildgebende Diagnosemethode werden auch andere Begriffe verwendet:

Mehr

Seminar: ZNS-Grundlagen Grundlagen der radiologischen Diagnostik. D. Koenen

Seminar: ZNS-Grundlagen Grundlagen der radiologischen Diagnostik. D. Koenen Seminar: ZNS-Grundlagen Grundlagen der radiologischen Diagnostik D. Koenen -1 Diagnostische Verfahren Sonographie (TCD) Konventionelles Röntgen (Schädel, Wirbelsäule) Computertomographie (CT) Magnetresonanztomographie

Mehr

Magnetresonanztomographie

Magnetresonanztomographie Magnetresonanztomographie Kathrin Schulte 16. Januar 2008 Gliederung Abbildung: Magnetresonanztomograph Die Spin-Eigenschaft T1 / T2- Relaxation Sequenzen Rekonstruktion Zeitdiagramme Segmentierung des

Mehr

Vortrag im Rahmen des Seminars Moderne Anwendung der magnetischen Resonanz WS 2014/2015. 14.10.2014 Patricia Wenk 1

Vortrag im Rahmen des Seminars Moderne Anwendung der magnetischen Resonanz WS 2014/2015. 14.10.2014 Patricia Wenk 1 Vortrag im Rahmen des Seminars Moderne Anwendung der magnetischen Resonanz WS 2014/2015 14.10.2014 Patricia Wenk 1 Einfürung MRI Overhauser DNP Motivation Setup Modellsystem/ Probe Ergebnisse Zusammenfassung

Mehr

Grundlagen funktionelle MRT (fmrt)

Grundlagen funktionelle MRT (fmrt) Grundlagen funktionelle MRT (fmrt) Martin Lotze, Jörg Pfannmöller Funktionelle Bildgebung Diagnostische Radiologie und Neuroradiologie Universität Greifswald Aufbau eines MRT-Scanners Technologische Realisierung

Mehr

9 Kernspintomographie (MRI)

9 Kernspintomographie (MRI) 9.1 Einführung 9.1.1 Prinzip Die bildgebende Kernspinresonanz erlaubt die Darstellung der Dichte von Kernspins (in fast allen Fällen Waserstoff, d.h. Protonen) als Funktion des Ortes. Dazu werden Übergänge

Mehr

Nuclear Magnetic Resonance, Magnetresonanztomographie (MRT)

Nuclear Magnetic Resonance, Magnetresonanztomographie (MRT) Nuclear Magnetic Resonance, Magnetresonanztomographie (MRT) Die MRT ist ein nichtinvasives bildgebendes Schichtbildverfahren, welches ohne Strahlenbelastung arbeitet und den physikalischen Effekt der Magnetresonanz

Mehr

Komponenten eines MRT- Systems

Komponenten eines MRT- Systems Komponenten eines MRT- Systems Komponenten eines MRT- Systems starker Magnet zur Erzeugung des statischen homogenen Magnetfeldes (0,1-4,0 Tesla; zum Vergleich: Erdmagnetfeld 30 µt - 60 µt) Hochfrequenzanlage

Mehr

1. EINLEITUNG. 1.1 Knochensystem

1. EINLEITUNG. 1.1 Knochensystem 1. EINLEITUNG 1.1 Knochensystem Der biologische Zusammenhang zwischen Muskulatur und Knochen ist schon seit vielen Jahren bekannt. Am besten untersucht ist dabei wohl der genetische Zusammenhang zwischen

Mehr

Technisch-Physikalische Grundlagen bildgebender Verfahren

Technisch-Physikalische Grundlagen bildgebender Verfahren Technisch-Physikalische Grundlagen bildgebender Verfahren Magnetresonanz Christian Kollmann Zentrum für Medizinische Physik & Biomedizinische Technik Technisches Ultraschall-Labor im AKH Wien Medizin Universität

Mehr

V 44 Magnetische Kernresonanz

V 44 Magnetische Kernresonanz V 44 Magnetische Kernresonanz A) Stichworte zur Vorbereitung Magnetismus, Induktion, magnetische Momente, Kernresonanz, Fourieranalyse, Kernspintomographie, Magnetresonanztomographie, Ortskodierung, Kernspinspektroskopie.

Mehr

1. Allgemeine Grundlagen Quantenmechanik

1. Allgemeine Grundlagen Quantenmechanik 1. Allgemeine Grundlagen 1.3. Quantenmechanik Klassische Mechanik vs Quantenmechanik Klassische (Newton sche) Mechanik klassischer harmonischer Oszillator Quantenmechanik quantenmechanischer harmonischer

Mehr

Grundlagen der kernmagnetischen Resonanz (NMR)

Grundlagen der kernmagnetischen Resonanz (NMR) Grundlagen der TEP Verwandte Themen Kernspins, Atomkerne mit magnetischem Moment, Quantenphysik versus klassische Physik, Pauli- Ausschließungsprinzip, Präzessionsbewegung der Kernspins, Landau-Lifshitz-Gleichung,

Mehr

2) In welcher Einheit wird die Energie (x-achse) im NMR-Spektrum angegeben und wie ist sie definiert?

2) In welcher Einheit wird die Energie (x-achse) im NMR-Spektrum angegeben und wie ist sie definiert? Aufgabe 1: Verständnisfragen 1) Welche Eigenschaften eines Atomkerns führen zu einem starken NMR-Signal? (man sagt der Kern hat eine große Empfindlichkeit) Ein Isotop eines Elements wird empfindlich genannt,

Mehr

Entwicklung von neuen Sequenzen mit. ultrakurzen Echozeiten für die klinische. Magnetresonanzbildgebung

Entwicklung von neuen Sequenzen mit. ultrakurzen Echozeiten für die klinische. Magnetresonanzbildgebung Entwicklung von neuen Sequenzen mit ultrakurzen Echozeiten für die klinische Magnetresonanzbildgebung Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität

Mehr

Variable Trajektoriendichte für Magnetic Particle Imaging

Variable Trajektoriendichte für Magnetic Particle Imaging Variable Trajektoriendichte für Magnetic Particle Imaging Sven Biederer, Timo F. Sattel, Tobias Knopp, Thorsten M. Buzug Institut für Medizintechnik, Universität zu Lübeck, Lübeck biederer@imt.uni-luebeck.de

Mehr

Magnete, Fluss und Artefakte. Grundlagen, Techniken und Anwendungen der Magnetresonanztomographie

Magnete, Fluss und Artefakte. Grundlagen, Techniken und Anwendungen der Magnetresonanztomographie Magnete, Fluss und Artefakte Grundlagen, Techniken und Anwendungen der Magnetresonanztomographie Magnete, Fluss und Artefakte Magnete, Fluss und Artefakte Grundlagen, Techniken und Anwendungen der Magnetresonanztomographie

Mehr

Magnetresonanztomographie

Magnetresonanztomographie Magnetresonanztomographie Eine Übersicht Lukas Wissmann 6. März 2011 Die Magnetresonanztomographie, auch bekannt unter dem englischen Begriff Magnetic Resonance Imaging, ist ein medizinisches Bildgebungsverfahren.

Mehr

Magnetresonanztomographie (veraltet: Kernspintomographie) MRT

Magnetresonanztomographie (veraltet: Kernspintomographie) MRT 600 500 F lo w [m l/m in ] 400 300 200 100 0 0 100 200 300 400 500 600 700-100 time [ms] MRT Fluss Magnetresonanztomographie (veraltet: Kernspintomographie) MRT Diagnostische Radiologie Atomkerne rotieren

Mehr

Bestimmung der Struktur einer (un)bekannten Verbindung

Bestimmung der Struktur einer (un)bekannten Verbindung Bestimmung der Struktur einer (un)bekannten Verbindung Elementaranalyse Massenspektroskopie andere spektroskopische Methoden Röntgen- Strukturanalyse Kernmagnetische Resonanz - Spektroskopie neue Produktlinie,

Mehr

2. Magnetresonanztomographie (MRT, MRI) 2.2. Supraleitung

2. Magnetresonanztomographie (MRT, MRI) 2.2. Supraleitung 2. Magnetresonanztomographie (MRT, MRI) 2.2. Supraleitung Supraleitung Anwendung der Supraleitung in Methoden der Bildgebung in der Hirnforschung (f)mri: Erzeugung sehr stabiler, sehr hoher statischer

Mehr

Das INEPT-Experiment

Das INEPT-Experiment Das INEPT-Experiment Das Prinzip des Polarisations-Transfers (PT) ist im Zusammenhang mit dem heteronuklearen ( 13 C, 1 H) Experiment Selective Population Inversion (SPI) beschrieben worden. Hierbei wird

Mehr

Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren

Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren Methoden Spektroskopische Verfahren Mikroskopische Verfahren Streuverfahren Kalorimetrische Verfahren Literatur D. Haarer, H.W. Spiess (Hrsg.): Spektroskopie amorpher und kristtiner Festkörper Steinkopf

Mehr

2.2 Chemische Verschiebung

2.2 Chemische Verschiebung - 26-2.2 Chemische Verschiebung 2.2.1 Phänomenologie der chemischen Verschiebung Misst man den spektralen Bereich eines Isotops (z. B. 13 C) mit hoher Auflösung, so findet man meist nicht nur eine Resonanzlinie,

Mehr

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse Schulversuchspraktikum WS2000/2001 Redl Günther 9655337 Elektromagnet 7.Klasse Inhaltsverzeichnis: 1) Lernziele 2) Verwendete Quellen 3) Versuch nach Oersted 4) Magnetfeld eines stromdurchflossenen Leiter

Mehr

Bildgebende Verfahren in der Medizin

Bildgebende Verfahren in der Medizin Bildgebende Verfahren in der Medizin Einführung SS 2013 Einführung Bildgebende Verfahren 1 Bildgebende Verfahren Definition: "Oberbegriff für verschiedene Diagnostikmethoden, die Aufnahmen aus dem Körperinneren

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester # 29,30 11/12/2008 und 16/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Magnetische Kernresonanz Spins im Magnetfeld, Relaxation, Bildgebung Magnetische

Mehr

FAKULTÄT FÜR PHYSIK UND ASTRONOMIE

FAKULTÄT FÜR PHYSIK UND ASTRONOMIE FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Diffusionstensor-Magnetresonanz-Tomographie des menschlichen Gehirns zur Rekonstruktion von Nervenfaserbahnen: Einfluss der nicht diffusionsgewichteten Bilder Bachelor-Thesis

Mehr

Magnet. Probenkopf. Computer

Magnet. Probenkopf. Computer Praktikum Modul 417 Strukturbiochemie SS 2010 im Rahmen des Bachelorstudiengangs Molecular Life Sciences Aufbau eines NMR-Spektrometers Empfänger Lock - Empfänger Feld- Regulierung Magnet Shim- Spulen

Mehr

Polarisation des Lichtes

Polarisation des Lichtes Polarisation des Lichtes Licht = transversal schwingende el.-magn. Welle Polarisationsrichtung: Richtung des el. Feldvektors Polarisationsarten: unpolarisiert: keine Raumrichtung bevorzugt (z.b. Glühbirne)

Mehr

Funktionelle MRT MRT in a nutshell (1) - Protonen oszillieren in einem von außen angelegten Magnetfeld (Präzession der Kernspins)

Funktionelle MRT MRT in a nutshell (1) - Protonen oszillieren in einem von außen angelegten Magnetfeld (Präzession der Kernspins) MRT in a nutshell (1) - Protonen oszillieren in einem von außen angelegten Magnetfeld (Präzession der Kernspins) - Oszillationsfrequenz abhängig von Magnetfeldstärke Larmorfrequenz: ω 0 = γb; γ = gyromagnetisches

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Gibt es myonische Atome?

Gibt es myonische Atome? Minitest 7 Das Myon it ist ein Elementarteilchen, t das dem Elektron ähnelt, jedoch jd eine deutlich höhere Masse (105,6 MeV/c 2 statt 0,511 MeV/c 2 ) aufweist. Wie das Elektron ist es mit einer Elementarladung

Mehr

Praktikumsversuch: Anwendung analytischer Methoden in der Synthesechemie

Praktikumsversuch: Anwendung analytischer Methoden in der Synthesechemie 6. Fachsemester, Sommersemester 2014 Praktikumsversuch: Anwendung analytischer Methoden in der Synthesechemie 1. Theoretische Grundlagen... 2 1.1. NMR-Spektroskopie Grundlagen und Probenanalyse... 2 1.2.

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR.

DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Weitere Files findest du auf www.semestra.ch/files DIE FILES DÜRFEN NUR FÜR DEN EIGENEN GEBRAUCH BENUTZT WERDEN. DAS COPYRIGHT LIEGT BEIM JEWEILIGEN AUTOR. Messung von c und e/m Autor: Noé Lutz Assistent:

Mehr

Beschreibung Magnetfeld

Beschreibung Magnetfeld Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #21 am 1.06.2007 Vladimir Dyakonov Beschreibung Magnetfeld Magnetfeld: Zustand des Raumes, wobei

Mehr

Bildgebende Systeme in der Medizin

Bildgebende Systeme in der Medizin Hochschule Mannheim 11/10/2011 Page 1/20 Bildgebende Systeme in der Medizin Magnet Resonanz Tomographie I: Kern-Magnet-Resonanz Spektroskopie Multinuclear NMR Lehrstuhl für Computerunterstützte Klinische

Mehr

TüKliS Kernspintomographie praktische Übungen zur klinischen Anwendung

TüKliS Kernspintomographie praktische Übungen zur klinischen Anwendung TüKliS Kernspintomographie praktische Übungen zur klinischen Anwendung Grundlagen Kernspintomographen bestehen heute normalerweise aus einer Röhre, in die der Patient eingeschoben wird, um die sich die

Mehr

Spektroskopische Methoden

Spektroskopische Methoden Spektroskopische Methoden OCIfolie367 MS - Massenspektroskopie (Bestimmung von Molekulargewichten, charakteristischen Fragmentierungen von Molekülen) Absorptionsspektroskopische Methoden (Absorption =

Mehr

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation

6.4. Polarisation und Doppelbrechung. Exp. 51: Doppelbrechung am Kalkspat. Dieter Suter - 389 - Physik B2. 6.4.1. Polarisation Dieter Suter - 389 - Physik B2 6.4. Polarisation und Doppelbrechung 6.4.1. Polarisation Wie andere elektromagnetische Wellen ist Licht eine Transversalwelle. Es existieren deshalb zwei orthogonale Polarisationsrichtungen.

Mehr

Molekulare Biophysik. NMR-Spektroskopie (Teil 1)

Molekulare Biophysik. NMR-Spektroskopie (Teil 1) Molekulare Biophysik NMR-Spektroskopie (Teil 1) Das Vorlesungs-Programm 2/93 Vorlesung Molekulare Biophysik : NMR-Spektroskopie Tag 1 Theoretische Grundlagen der NMR-Spektroskopie (1) Tag 2 Theoretische

Mehr

Die fetale Hirnentwicklung zwischen der 16. und 30. Schwangerschaftswoche- Eine postmortale Untersuchnug von 117 Feten am 3Tesla- MRT

Die fetale Hirnentwicklung zwischen der 16. und 30. Schwangerschaftswoche- Eine postmortale Untersuchnug von 117 Feten am 3Tesla- MRT Die fetale Hirnentwicklung zwischen der 16. und 30. Schwangerschaftswoche- Eine postmortale Untersuchnug von 117 Feten am 3Tesla- MRT Dissertation zur Erlangung des akademischen Grades Dr. med. An der

Mehr

Dokumentation der Zungenartikulation beim Spielen eines Blechblasinstrumentes mittels Magnetresonanztomographie. Bachelorarbeit II

Dokumentation der Zungenartikulation beim Spielen eines Blechblasinstrumentes mittels Magnetresonanztomographie. Bachelorarbeit II Dokumentation der Zungenartikulation beim Spielen eines Blechblasinstrumentes mittels Magnetresonanztomographie Bachelorarbeit II Eingereicht von: Katja Deutsch Matrikelnummer: 1110386103 am Fachhochschul-Bachelorstudiengang

Mehr

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H

Elektromagnetisches Feld.... quellenfreies Vektorfeld der Feldstärke H ET 6 Elektromagnetisches Feld Magnetische Feldstärke (magnetische Erregung) In der Umgebung stromdurchflossener Leiter entsteht ein magnetisches Feld, H = H e s... quellenfreies Vektorfeld der Feldstärke

Mehr

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht

QED Materie, Licht und das Nichts. Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht QED Materie, Licht und das Nichts 1 Wissenschaftliches Gebiet und Thema: Physikalische Eigenschaften von Licht Titel/Jahr: QED Materie, Licht und das Nichts (2005) Filmstudio: Sciencemotion Webseite des

Mehr

Bildgebende Systeme in der Medizin

Bildgebende Systeme in der Medizin 10/27/2011 Page 1 Hochschule Mannheim Bildgebende Systeme in der Medizin Computer-Tomographie Faculty of Medicine Mannheim University of Heidelberg Theodor-Kutzer-Ufer 1-3 D-68167 Mannheim, Germany Friedrich.Wetterling@MedMa.Uni-Heidelberg.de

Mehr

UKGM UNIVERSITÄTSKLINIKUM GIESSEN UND MARBURG

UKGM UNIVERSITÄTSKLINIKUM GIESSEN UND MARBURG UKGM UNIVERSITÄTSKLINIKUM GIESSEN UND MARBURG STANDORT MARBURG Magnetresonanz- Tomographie Lernskript für Mediziner Grundlagen der Magnetresonanz-Tomographie Grundlagen Dr. med. Christoph Pabst Klinik

Mehr

Grundlagen für das Ingenieurstudium kurz und prägnant

Grundlagen für das Ingenieurstudium kurz und prägnant ürgen Eichler S Grundlagen für das ngenieurstudium kurz und prägnant Mit 241 Abbildungen und 54 Tabellen 3., überarbeitete und ergänzte Auflage Studium Technik V nhaltsverzeichnis Physikalische Größen.

Mehr

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil)

Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) TU Hamburg-Harburg Theoretische Elektrotechnik Prof. Dr. Christian Schuster F R A G E N K A T A L O G Diplomprüfung Theoretische Elektrotechnik Erster Teil (Wissensteil) Die folgenden Fragen sind Beispiele

Mehr

6. Instrumentelle Aspekte

6. Instrumentelle Aspekte Prof. Dieter Suter Magnetische Resonanz SS 99 6. Instrumentelle Aspekte 6. INSTRUMENTELLE ASPEKTE 1 6.1 Spektrometer 2 6.1.1 Messprinzip 2 6.1.2 Magnet 2 6.1.3 RF Spule und Schwingkreis 3 6.1.4 Detektion

Mehr

Übungen zu Experimentalphysik 4 - Lösungsvorschläge Prof. S. Paul Sommersemester 005 Dr. Jan Friedrich Nr. 5 16.05.005 Email Jan.Friedrich@ph.tum.de Telefon 089/89-1586 Physik Department E18, Raum 3564

Mehr

Inhalt. a) Typische Wechselwirkungen im Festkörper. b) Spektrenform für Einkristalle und Pulver. c) Messung und Interpretation einfacher Systeme

Inhalt. a) Typische Wechselwirkungen im Festkörper. b) Spektrenform für Einkristalle und Pulver. c) Messung und Interpretation einfacher Systeme Inhalt. Grundlagen der FK-NMR-Spektroskopie a) Typische Wechselwirkungen im Festkörper b) Spektrenform für Einkristalle und Pulver c) Messung und Interpretation einfacher Systeme. Wichtige Techniken und

Mehr

1 H-NMR ohne Formeln. Dr. Philipp Reiß Fb. Chemie der Philipps-Universität Marburg reiss@chemie.uni-marburg.de

1 H-NMR ohne Formeln. Dr. Philipp Reiß Fb. Chemie der Philipps-Universität Marburg reiss@chemie.uni-marburg.de 1 -NMR ohne Formeln Dr. Philipp Reiß Fb. Chemie der Philipps-Universität Marburg reiss@chemie.uni-marburg.de Fb. Chemie Dr. Reiß: 1 -NMR ohne Formeln 1 Inhaltsverzeichnis 0. Einleitung... 2 1. Grundlagen...

Mehr

Ausdehnung des Nahfeldes nur durch Strukturgrösse limitiert

Ausdehnung des Nahfeldes nur durch Strukturgrösse limitiert 6.2.2 Streulicht- Nahfeldmikroskop Beleuchtung einer sub-wellenlängen grossen streuenden Struktur (Spitze) Streulicht hat Nahfeld-Komponenten Detektion im Fernfeld Vorteile: Ausdehnung des Nahfeldes nur

Mehr

III. Strukturbestimmung organischer Moleküle

III. Strukturbestimmung organischer Moleküle III. Strukturbestimmung organischer Moleküle Röntgenstrukturbestimmung g Spektroskopie UV-VIS IR NMR Massenspektrometrie (MS) Röntgenstruktur eines bakteriellen Kohlenhydrats O O O O O O O C3 Röntgenstruktur

Mehr

Man nimmt an, dass sich der Kernspin zusammensetzt aus der Vektorsumme der Nukleonenspins und der Bahndrehimpulse der Nukleonen

Man nimmt an, dass sich der Kernspin zusammensetzt aus der Vektorsumme der Nukleonenspins und der Bahndrehimpulse der Nukleonen 2.5.1 Spin und magnetische Momente Proton und Neutron sind Spin-½ Teilchen (Fermionen) Aus Hyperfeinstruktur der Energieniveaus vieler Atomkerne kann man schließen, dass Atomkerne ein magnetisches Moment

Mehr

Laser B Versuch P2-23,24,25

Laser B Versuch P2-23,24,25 Vorbereitung Laser B Versuch P2-23,24,25 Iris Conradi und Melanie Hauck Gruppe Mo-02 20. Mai 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Fouriertransformation 3 2 Michelson-Interferometer 4 2.1 Magnetostriktion...............................

Mehr

Abbildungsverzeichnis

Abbildungsverzeichnis Abbildungsverzeichnis 299 Abbildungsverzeichnis Abbildung 2.1 Schematischer Überblick über den Verlauf der Hörbahn. Eingezeichnet sind die Bahnen eines Ohres (Quelle: Birbaumer & Schmidt, S. 242, 2003)...

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Einführung in die Spektroskopie für Studenten der Biologie

Einführung in die Spektroskopie für Studenten der Biologie Einführung in die Spektroskopie für Studenten der Biologie Jörg H. Kleinschmidt http://www.biologie.uni-konstanz.de/folding/home.html Literatur Banwell, C. N., Elaine M. McCash, Molekülspektroskopie. Ein

Mehr

Magnetresonanz-Tomographie

Magnetresonanz-Tomographie Michael Gasperl Magnetresonanz-Tomographie Seite 1 / 7 Magnetresonanz-Tomographie E i n l e i t u n g Lange Zeit war dem Menschen der Blick ins Innere des Körpers verwehrt. Zuallererst war die Sektion

Mehr

Hochdisperse Metalle

Hochdisperse Metalle Hochdisperse Metalle von Prof. Dr. rer. nat. habil. Wladyslaw Romanowski Wroclaw Bearbeitet und herausgegeben von Prof. Dr. rer. nat. habil. Siegfried Engels Merseburg Mit 36 Abbildungen und 7 Tabellen

Mehr

Transmissionselektronen mikroskopie (TEM)

Transmissionselektronen mikroskopie (TEM) Transmissionselektronen mikroskopie (TEM) im speziellen STEM Inhalt 1. Einleitung 2. Das Messprinzip 3. Der Aufbau 3.1 Unterschiede beim STEM 3.2 Bildgebung 3.3 Detektoren 3.4 Kontrast 3.5 Materialkontrast

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 12: Fotometrie und Polarimetrie

Theoretische Grundlagen Physikalisches Praktikum. Versuch 12: Fotometrie und Polarimetrie Theoretische Grundlagen Physikalisches Praktikum Versuch 12: Fotometrie und Polarimetrie Licht als elektromagnetische Welle sichtbares Licht ist eine elektromagnetische Welle andere elektromagnetische

Mehr

Ausgewählte Kapitel der Physik. Thema: TD-NMR

Ausgewählte Kapitel der Physik. Thema: TD-NMR Thema: TD-NMR Durchführende: Melanie Schröder Sandra Dehn Sylvia Schulze Datum: 23.01.2004 Betreuer : Frau Dr. J. Peters Frau Dipl. Ing. C. Koch Inhaltsverzeichnis Einleitung Physikalische Grundlagen Versuchsbeschreibung

Mehr

Magnetic Particle Imaging

Magnetic Particle Imaging Medizintechnikseminar: Magnetic Particle Imaging Jan-Philip Gehrcke Julius-Maximilians-Universität Würzburg 07. Februar 2009 Übersicht 1 Motivation MPI 2 Theorie 3 Forschung & Probleme 4 Anwendungen 5

Mehr

Péter Maróti Professor für Biophysik, Universität Szeged, Ungarn

Péter Maróti Professor für Biophysik, Universität Szeged, Ungarn Moderne Methode in medizinischer Diagnostik und Therapie, die ohne moderne (Quanten)Physik unerreichbar blieben. Wie kann man die Ergebnisse der modernen Physik (Quantenphysik) in der Medizin anwenden?

Mehr

Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie

Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie Bestimmung der Primärstruktur kleiner Moleküle mittels 1D-NMR-Spektroskopie Zusammenfassung Mit Hilfe von 1D 1 H- und 13 C-NMR-Spektren und gegebener Summenformel wird die Primärstruktur eines unbekannten

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 11. Übungsblatt - 17. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (7 Punkte) a)

Mehr

Auflösungsvermögen von Mikroskopen

Auflösungsvermögen von Mikroskopen Auflösungsvermögen von Mikroskopen Menschliches Auge Lichtmikroskopie 0.2 µm Optisches Nahfeld Rasterelektronen mikroskopie Transmissions Elektronenmikroskopie Rastersonden mikroskopie 10 mm 1 mm 100 µm

Mehr

Protokoll. Kombinierte Anwendung verschiedener Spektroskopischer Methoden

Protokoll. Kombinierte Anwendung verschiedener Spektroskopischer Methoden Protokoll Kombinierte Anwendung verschiedener Spektroskopischer Methoden Zielstellung: Durch die Auswertung von IR-, Raman-, MR-, UV-VIS- und Massenspektren soll die Struktur einer unbekannten Substanz

Mehr

4.12 Elektromotor und Generator

4.12 Elektromotor und Generator 4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Die Revolution in der Röhre Bildgebende Verfahren in der Biomedizin Markus Rudin, Professor für Molekulare Bildgebung und funktionelle Pharmakologie

Die Revolution in der Röhre Bildgebende Verfahren in der Biomedizin Markus Rudin, Professor für Molekulare Bildgebung und funktionelle Pharmakologie Die Revolution in der Röhre Bildgebende Verfahren in der Biomedizin, Professor für Molekulare Bildgebung und funktionelle Pharmakologie ETH/UZH Bildgebung 120 Jahr Innovation nicht-invasive Einblicke in

Mehr

Rekonstruktion von Magnetic Particle Imaging Daten mittels einer modellierten Systemfunktion

Rekonstruktion von Magnetic Particle Imaging Daten mittels einer modellierten Systemfunktion Rekonstruktion von Magnetic Particle Imaging Daten mittels einer modellierten Systemfunktion Tobias Knopp 1, Sven Biederer 1, Timo F. Sattel 1, Jürgen Weizenecker 2, Bernhard Gleich 2, Jörn Borgert 2,

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz

Versuch O3. Polarisiertes Licht. Sommersemester 2006. Daniel Scholz Demonstrationspraktikum für Lehramtskandidaten Versuch O3 Polarisiertes Licht Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt am:

Mehr

MTV-Klausurvorbereitung, TFH Berlin, Cornelius Bradter

MTV-Klausurvorbereitung, TFH Berlin, Cornelius Bradter Modulation Die Modulation ist ein technischer Vorgang, bei dem ein oder mehrere Merkmale einer Trägerschwingung entsprechend dem Signal einer zu modulierenden Schwingung verändert werden. Mathematisch

Mehr

MR Aktuell - Grundkurs. Anforderungen im Abdomen. Untersuchungskonzepte Abdomen und Becken. Atemtriggerung Atemgurt-Triggerung. Artefaktunterdrückung

MR Aktuell - Grundkurs. Anforderungen im Abdomen. Untersuchungskonzepte Abdomen und Becken. Atemtriggerung Atemgurt-Triggerung. Artefaktunterdrückung MR Aktuell - Grundkurs Untersuchungskonzepte Abdomen und Becken Anforderungen im Abdomen Atemartefakte Darmbewegung Pulsationsartefakte Christoph Bremer Institut für Klinische Radiologie Universitätsklinikum

Mehr

Das Higgs-Boson wie wir danach suchen

Das Higgs-Boson wie wir danach suchen Das Higgs-Boson wie wir danach suchen Beschleuniger und Detektoren Anja Vest Wie erzeugt man das Higgs? Teilchenbeschleuniger Erzeugung massereicher Teilchen Masse ist eine Form von Energie! Masse und

Mehr

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2

SC Saccharimetrie. Inhaltsverzeichnis. Konstantin Sering, Moritz Stoll, Marcel Schmittfull. 25. April 2007. 1 Einführung 2 SC Saccharimetrie Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik und Wellenoptik.......... 2 2.2 Linear polarisiertes Licht.................

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte

Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Einführung und Erklärung: Einfache Versuche zum Diamagnetismus Daniel Schwarz, Marion Schulte Die aufgebauten Versuche beinhalten diamagnetische Stoffe. Bei den angelegten inhomogenen Feldern kann beobachtet

Mehr

Rekonstruktion dynamischer Kardio-CT-Daten

Rekonstruktion dynamischer Kardio-CT-Daten Seminar Kardiologie Dipl.-Phys. Stefan Wesarg Rekonstruktion dynamischer Kardio-CT-Daten Vortrag von Florian Nöll Überblick 1. Die Bedeutung der Computertomographie und wie man eine CT durchführt 2. Evolution

Mehr

PO Doppelbrechung und elliptisch polarisiertes Licht

PO Doppelbrechung und elliptisch polarisiertes Licht PO Doppelbrechung und elliptisch polarisiertes Licht Blockpraktikum Herbst 27 (Gruppe 2b) 24. Oktober 27 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Polarisation.................................. 2 1.2 Brechung...................................

Mehr

Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR

Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR Atomic-resolution dynamics on the surface of amyloid-β protofibrils probed by solution NMR N. L. Fawzi, J. Ying, R. Ghirlando, D. A. Torchia, G. M. Clore, Nature 2011, 480, 268 272. Moderne Anwendungen

Mehr

Energieumsatz bei Phasenübergang

Energieumsatz bei Phasenübergang Energieumsatz bei Phasenübergang wenn E Vib > E Bindung schmelzen verdampfen Q Aufbrechen von Bindungen Kondensation: Bildung von Bindungen E Bindung Q E Transl. E Bindung für System A B durch Stöße auf

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

KNP-3: Methoden der kognitiven Neuropsychologie II

KNP-3: Methoden der kognitiven Neuropsychologie II KNP-3: Methoden der kognitiven Neuropsychologie II 1 04.05. Geschichte der kognitiven Neurowissenschaft (1) 2 11.05. Funktionelle Neuroanatomie (2) & (3) 3 18.05. Methoden der kognitiven Neurowissenschaft

Mehr

THz Physik: Grundlagen und Anwendungen

THz Physik: Grundlagen und Anwendungen THz Physik: Grundlagen und Anwendungen Inhalt: 1. Einleitung 2. Wechselwirkung von THz-Strahlung mit Materie 3. Erzeugung von THz-Strahlung 3.1 Elektronische Erzeugung 3.2 Photonische Erzeugung 3.3 Nachweis

Mehr

Magnetostatik. Magnetfelder

Magnetostatik. Magnetfelder Magnetostatik 1. Permanentmagnete i. Phänomenologie ii. Kräfte im Magnetfeld iii. Magnetische Feldstärke iv.erdmagnetfeld 2. Magnetfeld stationärer Ströme 3. Kräfte auf bewegte Ladungen im Magnetfeld 4.

Mehr